made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_ps(fr->ic->k_rf);
113     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_ps(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165         fix1             = _mm_setzero_ps();
166         fiy1             = _mm_setzero_ps();
167         fiz1             = _mm_setzero_ps();
168         fix2             = _mm_setzero_ps();
169         fiy2             = _mm_setzero_ps();
170         fiz2             = _mm_setzero_ps();
171         fix3             = _mm_setzero_ps();
172         fiy3             = _mm_setzero_ps();
173         fiz3             = _mm_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208             dx30             = _mm_sub_ps(ix3,jx0);
209             dy30             = _mm_sub_ps(iy3,jy0);
210             dz30             = _mm_sub_ps(iz3,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
217
218             rinv00           = gmx_mm_invsqrt_ps(rsq00);
219             rinv10           = gmx_mm_invsqrt_ps(rsq10);
220             rinv20           = gmx_mm_invsqrt_ps(rsq20);
221             rinv30           = gmx_mm_invsqrt_ps(rsq30);
222
223             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
224             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
225             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm_setzero_ps();
236             fjy0             = _mm_setzero_ps();
237             fjz0             = _mm_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,
248                                          vdwparam+vdwioffset0+vdwjidx0C,
249                                          vdwparam+vdwioffset0+vdwjidx0D,
250                                          &c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm_mul_ps(r00,vftabscale);
254             vfitab           = _mm_cvttps_epi32(rt);
255 #ifdef __XOP__
256             vfeps            = _mm_frcz_ps(rt);
257 #else
258             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
259 #endif
260             twovfeps         = _mm_add_ps(vfeps,vfeps);
261             vfitab           = _mm_slli_epi32(vfitab,3);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
266             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
267             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
268             _MM_TRANSPOSE4_PS(Y,F,G,H);
269             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
270             VV               = _mm_macc_ps(vfeps,Fp,Y);
271             vvdw6            = _mm_mul_ps(c6_00,VV);
272             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
273             fvdw6            = _mm_mul_ps(c6_00,FF);
274
275             /* CUBIC SPLINE TABLE REPULSION */
276             vfitab           = _mm_add_epi32(vfitab,ifour);
277             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
279             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
280             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
281             _MM_TRANSPOSE4_PS(Y,F,G,H);
282             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
283             VV               = _mm_macc_ps(vfeps,Fp,Y);
284             vvdw12           = _mm_mul_ps(c12_00,VV);
285             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
286             fvdw12           = _mm_mul_ps(c12_00,FF);
287             vvdw             = _mm_add_ps(vvdw12,vvdw6);
288             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295              /* Update vectorial force */
296             fix0             = _mm_macc_ps(dx00,fscal,fix0);
297             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
298             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
299
300             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
301             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
302             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm_mul_ps(iq1,jq0);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
313             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm_add_ps(velecsum,velec);
317
318             fscal            = felec;
319
320              /* Update vectorial force */
321             fix1             = _mm_macc_ps(dx10,fscal,fix1);
322             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
323             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
324
325             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
326             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
327             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq20             = _mm_mul_ps(iq2,jq0);
335
336             /* REACTION-FIELD ELECTROSTATICS */
337             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
338             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm_add_ps(velecsum,velec);
342
343             fscal            = felec;
344
345              /* Update vectorial force */
346             fix2             = _mm_macc_ps(dx20,fscal,fix2);
347             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
348             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
349
350             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
351             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
352             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq30             = _mm_mul_ps(iq3,jq0);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
363             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370              /* Update vectorial force */
371             fix3             = _mm_macc_ps(dx30,fscal,fix3);
372             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
373             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
374
375             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
376             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
377             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
378
379             fjptrA             = f+j_coord_offsetA;
380             fjptrB             = f+j_coord_offsetB;
381             fjptrC             = f+j_coord_offsetC;
382             fjptrD             = f+j_coord_offsetD;
383
384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
385
386             /* Inner loop uses 164 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             /* Get j neighbor index, and coordinate index */
393             jnrlistA         = jjnr[jidx];
394             jnrlistB         = jjnr[jidx+1];
395             jnrlistC         = jjnr[jidx+2];
396             jnrlistD         = jjnr[jidx+3];
397             /* Sign of each element will be negative for non-real atoms.
398              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
399              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
400              */
401             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
402             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
403             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
404             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
405             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
406             j_coord_offsetA  = DIM*jnrA;
407             j_coord_offsetB  = DIM*jnrB;
408             j_coord_offsetC  = DIM*jnrC;
409             j_coord_offsetD  = DIM*jnrD;
410
411             /* load j atom coordinates */
412             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
413                                               x+j_coord_offsetC,x+j_coord_offsetD,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_ps(ix0,jx0);
418             dy00             = _mm_sub_ps(iy0,jy0);
419             dz00             = _mm_sub_ps(iz0,jz0);
420             dx10             = _mm_sub_ps(ix1,jx0);
421             dy10             = _mm_sub_ps(iy1,jy0);
422             dz10             = _mm_sub_ps(iz1,jz0);
423             dx20             = _mm_sub_ps(ix2,jx0);
424             dy20             = _mm_sub_ps(iy2,jy0);
425             dz20             = _mm_sub_ps(iz2,jz0);
426             dx30             = _mm_sub_ps(ix3,jx0);
427             dy30             = _mm_sub_ps(iy3,jy0);
428             dz30             = _mm_sub_ps(iz3,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
432             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
433             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
434             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
435
436             rinv00           = gmx_mm_invsqrt_ps(rsq00);
437             rinv10           = gmx_mm_invsqrt_ps(rsq10);
438             rinv20           = gmx_mm_invsqrt_ps(rsq20);
439             rinv30           = gmx_mm_invsqrt_ps(rsq30);
440
441             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
442             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
443             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
444
445             /* Load parameters for j particles */
446             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
447                                                               charge+jnrC+0,charge+jnrD+0);
448             vdwjidx0A        = 2*vdwtype[jnrA+0];
449             vdwjidx0B        = 2*vdwtype[jnrB+0];
450             vdwjidx0C        = 2*vdwtype[jnrC+0];
451             vdwjidx0D        = 2*vdwtype[jnrD+0];
452
453             fjx0             = _mm_setzero_ps();
454             fjy0             = _mm_setzero_ps();
455             fjz0             = _mm_setzero_ps();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r00              = _mm_mul_ps(rsq00,rinv00);
462             r00              = _mm_andnot_ps(dummy_mask,r00);
463
464             /* Compute parameters for interactions between i and j atoms */
465             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
466                                          vdwparam+vdwioffset0+vdwjidx0B,
467                                          vdwparam+vdwioffset0+vdwjidx0C,
468                                          vdwparam+vdwioffset0+vdwjidx0D,
469                                          &c6_00,&c12_00);
470
471             /* Calculate table index by multiplying r with table scale and truncate to integer */
472             rt               = _mm_mul_ps(r00,vftabscale);
473             vfitab           = _mm_cvttps_epi32(rt);
474 #ifdef __XOP__
475             vfeps            = _mm_frcz_ps(rt);
476 #else
477             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
478 #endif
479             twovfeps         = _mm_add_ps(vfeps,vfeps);
480             vfitab           = _mm_slli_epi32(vfitab,3);
481
482             /* CUBIC SPLINE TABLE DISPERSION */
483             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
484             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
485             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
486             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
487             _MM_TRANSPOSE4_PS(Y,F,G,H);
488             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
489             VV               = _mm_macc_ps(vfeps,Fp,Y);
490             vvdw6            = _mm_mul_ps(c6_00,VV);
491             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
492             fvdw6            = _mm_mul_ps(c6_00,FF);
493
494             /* CUBIC SPLINE TABLE REPULSION */
495             vfitab           = _mm_add_epi32(vfitab,ifour);
496             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
497             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
498             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
499             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
500             _MM_TRANSPOSE4_PS(Y,F,G,H);
501             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
502             VV               = _mm_macc_ps(vfeps,Fp,Y);
503             vvdw12           = _mm_mul_ps(c12_00,VV);
504             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
505             fvdw12           = _mm_mul_ps(c12_00,FF);
506             vvdw             = _mm_add_ps(vvdw12,vvdw6);
507             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
511             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
512
513             fscal            = fvdw;
514
515             fscal            = _mm_andnot_ps(dummy_mask,fscal);
516
517              /* Update vectorial force */
518             fix0             = _mm_macc_ps(dx00,fscal,fix0);
519             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
520             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
521
522             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
523             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
524             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq10             = _mm_mul_ps(iq1,jq0);
532
533             /* REACTION-FIELD ELECTROSTATICS */
534             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
535             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545              /* Update vectorial force */
546             fix1             = _mm_macc_ps(dx10,fscal,fix1);
547             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
548             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
549
550             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
551             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
552             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq20             = _mm_mul_ps(iq2,jq0);
560
561             /* REACTION-FIELD ELECTROSTATICS */
562             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
563             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm_andnot_ps(dummy_mask,velec);
567             velecsum         = _mm_add_ps(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm_andnot_ps(dummy_mask,fscal);
572
573              /* Update vectorial force */
574             fix2             = _mm_macc_ps(dx20,fscal,fix2);
575             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
576             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
577
578             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
579             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
580             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq30             = _mm_mul_ps(iq3,jq0);
588
589             /* REACTION-FIELD ELECTROSTATICS */
590             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
591             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_andnot_ps(dummy_mask,velec);
595             velecsum         = _mm_add_ps(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm_andnot_ps(dummy_mask,fscal);
600
601              /* Update vectorial force */
602             fix3             = _mm_macc_ps(dx30,fscal,fix3);
603             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
604             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
605
606             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
607             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
608             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
609
610             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
611             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
612             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
613             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
614
615             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
616
617             /* Inner loop uses 165 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         ggid                        = gid[iidx];
626         /* Update potential energies */
627         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
628         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
629
630         /* Increment number of inner iterations */
631         inneriter                  += j_index_end - j_index_start;
632
633         /* Outer loop uses 26 flops */
634     }
635
636     /* Increment number of outer iterations */
637     outeriter        += nri;
638
639     /* Update outer/inner flops */
640
641     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
642 }
643 /*
644  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_single
645  * Electrostatics interaction: ReactionField
646  * VdW interaction:            CubicSplineTable
647  * Geometry:                   Water4-Particle
648  * Calculate force/pot:        Force
649  */
650 void
651 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_single
652                     (t_nblist * gmx_restrict                nlist,
653                      rvec * gmx_restrict                    xx,
654                      rvec * gmx_restrict                    ff,
655                      t_forcerec * gmx_restrict              fr,
656                      t_mdatoms * gmx_restrict               mdatoms,
657                      nb_kernel_data_t * gmx_restrict        kernel_data,
658                      t_nrnb * gmx_restrict                  nrnb)
659 {
660     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
661      * just 0 for non-waters.
662      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
663      * jnr indices corresponding to data put in the four positions in the SIMD register.
664      */
665     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
666     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
667     int              jnrA,jnrB,jnrC,jnrD;
668     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
669     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
670     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
671     real             rcutoff_scalar;
672     real             *shiftvec,*fshift,*x,*f;
673     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
674     real             scratch[4*DIM];
675     __m128           fscal,rcutoff,rcutoff2,jidxall;
676     int              vdwioffset0;
677     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwioffset1;
679     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
680     int              vdwioffset2;
681     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
682     int              vdwioffset3;
683     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
684     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
685     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
686     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
687     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
688     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
689     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
690     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
691     real             *charge;
692     int              nvdwtype;
693     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
694     int              *vdwtype;
695     real             *vdwparam;
696     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
697     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
698     __m128i          vfitab;
699     __m128i          ifour       = _mm_set1_epi32(4);
700     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
701     real             *vftab;
702     __m128           dummy_mask,cutoff_mask;
703     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
704     __m128           one     = _mm_set1_ps(1.0);
705     __m128           two     = _mm_set1_ps(2.0);
706     x                = xx[0];
707     f                = ff[0];
708
709     nri              = nlist->nri;
710     iinr             = nlist->iinr;
711     jindex           = nlist->jindex;
712     jjnr             = nlist->jjnr;
713     shiftidx         = nlist->shift;
714     gid              = nlist->gid;
715     shiftvec         = fr->shift_vec[0];
716     fshift           = fr->fshift[0];
717     facel            = _mm_set1_ps(fr->epsfac);
718     charge           = mdatoms->chargeA;
719     krf              = _mm_set1_ps(fr->ic->k_rf);
720     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
721     crf              = _mm_set1_ps(fr->ic->c_rf);
722     nvdwtype         = fr->ntype;
723     vdwparam         = fr->nbfp;
724     vdwtype          = mdatoms->typeA;
725
726     vftab            = kernel_data->table_vdw->data;
727     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
728
729     /* Setup water-specific parameters */
730     inr              = nlist->iinr[0];
731     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
732     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
733     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
734     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
735
736     /* Avoid stupid compiler warnings */
737     jnrA = jnrB = jnrC = jnrD = 0;
738     j_coord_offsetA = 0;
739     j_coord_offsetB = 0;
740     j_coord_offsetC = 0;
741     j_coord_offsetD = 0;
742
743     outeriter        = 0;
744     inneriter        = 0;
745
746     for(iidx=0;iidx<4*DIM;iidx++)
747     {
748         scratch[iidx] = 0.0;
749     }
750
751     /* Start outer loop over neighborlists */
752     for(iidx=0; iidx<nri; iidx++)
753     {
754         /* Load shift vector for this list */
755         i_shift_offset   = DIM*shiftidx[iidx];
756
757         /* Load limits for loop over neighbors */
758         j_index_start    = jindex[iidx];
759         j_index_end      = jindex[iidx+1];
760
761         /* Get outer coordinate index */
762         inr              = iinr[iidx];
763         i_coord_offset   = DIM*inr;
764
765         /* Load i particle coords and add shift vector */
766         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
767                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
768
769         fix0             = _mm_setzero_ps();
770         fiy0             = _mm_setzero_ps();
771         fiz0             = _mm_setzero_ps();
772         fix1             = _mm_setzero_ps();
773         fiy1             = _mm_setzero_ps();
774         fiz1             = _mm_setzero_ps();
775         fix2             = _mm_setzero_ps();
776         fiy2             = _mm_setzero_ps();
777         fiz2             = _mm_setzero_ps();
778         fix3             = _mm_setzero_ps();
779         fiy3             = _mm_setzero_ps();
780         fiz3             = _mm_setzero_ps();
781
782         /* Start inner kernel loop */
783         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
784         {
785
786             /* Get j neighbor index, and coordinate index */
787             jnrA             = jjnr[jidx];
788             jnrB             = jjnr[jidx+1];
789             jnrC             = jjnr[jidx+2];
790             jnrD             = jjnr[jidx+3];
791             j_coord_offsetA  = DIM*jnrA;
792             j_coord_offsetB  = DIM*jnrB;
793             j_coord_offsetC  = DIM*jnrC;
794             j_coord_offsetD  = DIM*jnrD;
795
796             /* load j atom coordinates */
797             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
798                                               x+j_coord_offsetC,x+j_coord_offsetD,
799                                               &jx0,&jy0,&jz0);
800
801             /* Calculate displacement vector */
802             dx00             = _mm_sub_ps(ix0,jx0);
803             dy00             = _mm_sub_ps(iy0,jy0);
804             dz00             = _mm_sub_ps(iz0,jz0);
805             dx10             = _mm_sub_ps(ix1,jx0);
806             dy10             = _mm_sub_ps(iy1,jy0);
807             dz10             = _mm_sub_ps(iz1,jz0);
808             dx20             = _mm_sub_ps(ix2,jx0);
809             dy20             = _mm_sub_ps(iy2,jy0);
810             dz20             = _mm_sub_ps(iz2,jz0);
811             dx30             = _mm_sub_ps(ix3,jx0);
812             dy30             = _mm_sub_ps(iy3,jy0);
813             dz30             = _mm_sub_ps(iz3,jz0);
814
815             /* Calculate squared distance and things based on it */
816             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
817             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
818             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
819             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
820
821             rinv00           = gmx_mm_invsqrt_ps(rsq00);
822             rinv10           = gmx_mm_invsqrt_ps(rsq10);
823             rinv20           = gmx_mm_invsqrt_ps(rsq20);
824             rinv30           = gmx_mm_invsqrt_ps(rsq30);
825
826             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
827             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
828             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
829
830             /* Load parameters for j particles */
831             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
832                                                               charge+jnrC+0,charge+jnrD+0);
833             vdwjidx0A        = 2*vdwtype[jnrA+0];
834             vdwjidx0B        = 2*vdwtype[jnrB+0];
835             vdwjidx0C        = 2*vdwtype[jnrC+0];
836             vdwjidx0D        = 2*vdwtype[jnrD+0];
837
838             fjx0             = _mm_setzero_ps();
839             fjy0             = _mm_setzero_ps();
840             fjz0             = _mm_setzero_ps();
841
842             /**************************
843              * CALCULATE INTERACTIONS *
844              **************************/
845
846             r00              = _mm_mul_ps(rsq00,rinv00);
847
848             /* Compute parameters for interactions between i and j atoms */
849             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
850                                          vdwparam+vdwioffset0+vdwjidx0B,
851                                          vdwparam+vdwioffset0+vdwjidx0C,
852                                          vdwparam+vdwioffset0+vdwjidx0D,
853                                          &c6_00,&c12_00);
854
855             /* Calculate table index by multiplying r with table scale and truncate to integer */
856             rt               = _mm_mul_ps(r00,vftabscale);
857             vfitab           = _mm_cvttps_epi32(rt);
858 #ifdef __XOP__
859             vfeps            = _mm_frcz_ps(rt);
860 #else
861             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
862 #endif
863             twovfeps         = _mm_add_ps(vfeps,vfeps);
864             vfitab           = _mm_slli_epi32(vfitab,3);
865
866             /* CUBIC SPLINE TABLE DISPERSION */
867             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
868             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
869             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
870             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
871             _MM_TRANSPOSE4_PS(Y,F,G,H);
872             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
873             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
874             fvdw6            = _mm_mul_ps(c6_00,FF);
875
876             /* CUBIC SPLINE TABLE REPULSION */
877             vfitab           = _mm_add_epi32(vfitab,ifour);
878             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
879             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
880             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
881             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
882             _MM_TRANSPOSE4_PS(Y,F,G,H);
883             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
884             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
885             fvdw12           = _mm_mul_ps(c12_00,FF);
886             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
887
888             fscal            = fvdw;
889
890              /* Update vectorial force */
891             fix0             = _mm_macc_ps(dx00,fscal,fix0);
892             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
893             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
894
895             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
896             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
897             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             /* Compute parameters for interactions between i and j atoms */
904             qq10             = _mm_mul_ps(iq1,jq0);
905
906             /* REACTION-FIELD ELECTROSTATICS */
907             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
908
909             fscal            = felec;
910
911              /* Update vectorial force */
912             fix1             = _mm_macc_ps(dx10,fscal,fix1);
913             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
914             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
915
916             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
917             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
918             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq20             = _mm_mul_ps(iq2,jq0);
926
927             /* REACTION-FIELD ELECTROSTATICS */
928             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
929
930             fscal            = felec;
931
932              /* Update vectorial force */
933             fix2             = _mm_macc_ps(dx20,fscal,fix2);
934             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
935             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
936
937             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
938             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
939             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             /* Compute parameters for interactions between i and j atoms */
946             qq30             = _mm_mul_ps(iq3,jq0);
947
948             /* REACTION-FIELD ELECTROSTATICS */
949             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
950
951             fscal            = felec;
952
953              /* Update vectorial force */
954             fix3             = _mm_macc_ps(dx30,fscal,fix3);
955             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
956             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
957
958             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
959             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
960             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
961
962             fjptrA             = f+j_coord_offsetA;
963             fjptrB             = f+j_coord_offsetB;
964             fjptrC             = f+j_coord_offsetC;
965             fjptrD             = f+j_coord_offsetD;
966
967             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
968
969             /* Inner loop uses 141 flops */
970         }
971
972         if(jidx<j_index_end)
973         {
974
975             /* Get j neighbor index, and coordinate index */
976             jnrlistA         = jjnr[jidx];
977             jnrlistB         = jjnr[jidx+1];
978             jnrlistC         = jjnr[jidx+2];
979             jnrlistD         = jjnr[jidx+3];
980             /* Sign of each element will be negative for non-real atoms.
981              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
982              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
983              */
984             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
985             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
986             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
987             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
988             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
989             j_coord_offsetA  = DIM*jnrA;
990             j_coord_offsetB  = DIM*jnrB;
991             j_coord_offsetC  = DIM*jnrC;
992             j_coord_offsetD  = DIM*jnrD;
993
994             /* load j atom coordinates */
995             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
996                                               x+j_coord_offsetC,x+j_coord_offsetD,
997                                               &jx0,&jy0,&jz0);
998
999             /* Calculate displacement vector */
1000             dx00             = _mm_sub_ps(ix0,jx0);
1001             dy00             = _mm_sub_ps(iy0,jy0);
1002             dz00             = _mm_sub_ps(iz0,jz0);
1003             dx10             = _mm_sub_ps(ix1,jx0);
1004             dy10             = _mm_sub_ps(iy1,jy0);
1005             dz10             = _mm_sub_ps(iz1,jz0);
1006             dx20             = _mm_sub_ps(ix2,jx0);
1007             dy20             = _mm_sub_ps(iy2,jy0);
1008             dz20             = _mm_sub_ps(iz2,jz0);
1009             dx30             = _mm_sub_ps(ix3,jx0);
1010             dy30             = _mm_sub_ps(iy3,jy0);
1011             dz30             = _mm_sub_ps(iz3,jz0);
1012
1013             /* Calculate squared distance and things based on it */
1014             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1015             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1016             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1017             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1018
1019             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1020             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1021             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1022             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1023
1024             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1025             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1026             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1027
1028             /* Load parameters for j particles */
1029             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1030                                                               charge+jnrC+0,charge+jnrD+0);
1031             vdwjidx0A        = 2*vdwtype[jnrA+0];
1032             vdwjidx0B        = 2*vdwtype[jnrB+0];
1033             vdwjidx0C        = 2*vdwtype[jnrC+0];
1034             vdwjidx0D        = 2*vdwtype[jnrD+0];
1035
1036             fjx0             = _mm_setzero_ps();
1037             fjy0             = _mm_setzero_ps();
1038             fjz0             = _mm_setzero_ps();
1039
1040             /**************************
1041              * CALCULATE INTERACTIONS *
1042              **************************/
1043
1044             r00              = _mm_mul_ps(rsq00,rinv00);
1045             r00              = _mm_andnot_ps(dummy_mask,r00);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1049                                          vdwparam+vdwioffset0+vdwjidx0B,
1050                                          vdwparam+vdwioffset0+vdwjidx0C,
1051                                          vdwparam+vdwioffset0+vdwjidx0D,
1052                                          &c6_00,&c12_00);
1053
1054             /* Calculate table index by multiplying r with table scale and truncate to integer */
1055             rt               = _mm_mul_ps(r00,vftabscale);
1056             vfitab           = _mm_cvttps_epi32(rt);
1057 #ifdef __XOP__
1058             vfeps            = _mm_frcz_ps(rt);
1059 #else
1060             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1061 #endif
1062             twovfeps         = _mm_add_ps(vfeps,vfeps);
1063             vfitab           = _mm_slli_epi32(vfitab,3);
1064
1065             /* CUBIC SPLINE TABLE DISPERSION */
1066             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1067             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1068             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1069             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1070             _MM_TRANSPOSE4_PS(Y,F,G,H);
1071             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1072             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1073             fvdw6            = _mm_mul_ps(c6_00,FF);
1074
1075             /* CUBIC SPLINE TABLE REPULSION */
1076             vfitab           = _mm_add_epi32(vfitab,ifour);
1077             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1078             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1079             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1080             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1081             _MM_TRANSPOSE4_PS(Y,F,G,H);
1082             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1083             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1084             fvdw12           = _mm_mul_ps(c12_00,FF);
1085             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1086
1087             fscal            = fvdw;
1088
1089             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1090
1091              /* Update vectorial force */
1092             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1093             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1094             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1095
1096             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1097             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1098             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq10             = _mm_mul_ps(iq1,jq0);
1106
1107             /* REACTION-FIELD ELECTROSTATICS */
1108             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1109
1110             fscal            = felec;
1111
1112             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1113
1114              /* Update vectorial force */
1115             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1116             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1117             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1118
1119             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1120             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1121             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1122
1123             /**************************
1124              * CALCULATE INTERACTIONS *
1125              **************************/
1126
1127             /* Compute parameters for interactions between i and j atoms */
1128             qq20             = _mm_mul_ps(iq2,jq0);
1129
1130             /* REACTION-FIELD ELECTROSTATICS */
1131             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1132
1133             fscal            = felec;
1134
1135             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1136
1137              /* Update vectorial force */
1138             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1139             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1140             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1141
1142             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1143             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1144             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq30             = _mm_mul_ps(iq3,jq0);
1152
1153             /* REACTION-FIELD ELECTROSTATICS */
1154             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1155
1156             fscal            = felec;
1157
1158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1159
1160              /* Update vectorial force */
1161             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1162             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1163             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1164
1165             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1166             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1167             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1168
1169             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1170             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1171             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1172             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1173
1174             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1175
1176             /* Inner loop uses 142 flops */
1177         }
1178
1179         /* End of innermost loop */
1180
1181         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1182                                               f+i_coord_offset,fshift+i_shift_offset);
1183
1184         /* Increment number of inner iterations */
1185         inneriter                  += j_index_end - j_index_start;
1186
1187         /* Outer loop uses 24 flops */
1188     }
1189
1190     /* Increment number of outer iterations */
1191     outeriter        += nri;
1192
1193     /* Update outer/inner flops */
1194
1195     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1196 }