a355ac4f793fdbeda55a5dbedad3b255bfb6d1c5
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
85     real             *vftab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     krf              = _mm_set1_ps(fr->ic->k_rf);
104     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
105     crf              = _mm_set1_ps(fr->ic->c_rf);
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = jnrC = jnrD = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117     j_coord_offsetC = 0;
118     j_coord_offsetD = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     for(iidx=0;iidx<4*DIM;iidx++)
124     {
125         scratch[iidx] = 0.0;
126     }
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _mm_setzero_ps();
146         fiy0             = _mm_setzero_ps();
147         fiz0             = _mm_setzero_ps();
148
149         /* Load parameters for i particles */
150         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         velecsum         = _mm_setzero_ps();
155         vvdwsum          = _mm_setzero_ps();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               x+j_coord_offsetC,x+j_coord_offsetD,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_ps(ix0,jx0);
178             dy00             = _mm_sub_ps(iy0,jy0);
179             dz00             = _mm_sub_ps(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
183
184             rinv00           = gmx_mm_invsqrt_ps(rsq00);
185
186             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
190                                                               charge+jnrC+0,charge+jnrD+0);
191             vdwjidx0A        = 2*vdwtype[jnrA+0];
192             vdwjidx0B        = 2*vdwtype[jnrB+0];
193             vdwjidx0C        = 2*vdwtype[jnrC+0];
194             vdwjidx0D        = 2*vdwtype[jnrD+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             r00              = _mm_mul_ps(rsq00,rinv00);
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_ps(iq0,jq0);
204             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,
206                                          vdwparam+vdwioffset0+vdwjidx0C,
207                                          vdwparam+vdwioffset0+vdwjidx0D,
208                                          &c6_00,&c12_00);
209
210             /* Calculate table index by multiplying r with table scale and truncate to integer */
211             rt               = _mm_mul_ps(r00,vftabscale);
212             vfitab           = _mm_cvttps_epi32(rt);
213 #ifdef __XOP__
214             vfeps            = _mm_frcz_ps(rt);
215 #else
216             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
217 #endif
218             twovfeps         = _mm_add_ps(vfeps,vfeps);
219             vfitab           = _mm_slli_epi32(vfitab,3);
220
221             /* REACTION-FIELD ELECTROSTATICS */
222             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
223             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
224
225             /* CUBIC SPLINE TABLE DISPERSION */
226             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
227             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
228             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
229             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
230             _MM_TRANSPOSE4_PS(Y,F,G,H);
231             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
232             VV               = _mm_macc_ps(vfeps,Fp,Y);
233             vvdw6            = _mm_mul_ps(c6_00,VV);
234             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
235             fvdw6            = _mm_mul_ps(c6_00,FF);
236
237             /* CUBIC SPLINE TABLE REPULSION */
238             vfitab           = _mm_add_epi32(vfitab,ifour);
239             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
240             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
241             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
242             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
243             _MM_TRANSPOSE4_PS(Y,F,G,H);
244             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
245             VV               = _mm_macc_ps(vfeps,Fp,Y);
246             vvdw12           = _mm_mul_ps(c12_00,VV);
247             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
248             fvdw12           = _mm_mul_ps(c12_00,FF);
249             vvdw             = _mm_add_ps(vvdw12,vvdw6);
250             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm_add_ps(velecsum,velec);
254             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
255
256             fscal            = _mm_add_ps(felec,fvdw);
257
258              /* Update vectorial force */
259             fix0             = _mm_macc_ps(dx00,fscal,fix0);
260             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
261             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
268                                                    _mm_mul_ps(dx00,fscal),
269                                                    _mm_mul_ps(dy00,fscal),
270                                                    _mm_mul_ps(dz00,fscal));
271
272             /* Inner loop uses 70 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             /* Get j neighbor index, and coordinate index */
279             jnrlistA         = jjnr[jidx];
280             jnrlistB         = jjnr[jidx+1];
281             jnrlistC         = jjnr[jidx+2];
282             jnrlistD         = jjnr[jidx+3];
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
286              */
287             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
289             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
290             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
291             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
292             j_coord_offsetA  = DIM*jnrA;
293             j_coord_offsetB  = DIM*jnrB;
294             j_coord_offsetC  = DIM*jnrC;
295             j_coord_offsetD  = DIM*jnrD;
296
297             /* load j atom coordinates */
298             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
299                                               x+j_coord_offsetC,x+j_coord_offsetD,
300                                               &jx0,&jy0,&jz0);
301
302             /* Calculate displacement vector */
303             dx00             = _mm_sub_ps(ix0,jx0);
304             dy00             = _mm_sub_ps(iy0,jy0);
305             dz00             = _mm_sub_ps(iz0,jz0);
306
307             /* Calculate squared distance and things based on it */
308             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
309
310             rinv00           = gmx_mm_invsqrt_ps(rsq00);
311
312             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
313
314             /* Load parameters for j particles */
315             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
316                                                               charge+jnrC+0,charge+jnrD+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318             vdwjidx0B        = 2*vdwtype[jnrB+0];
319             vdwjidx0C        = 2*vdwtype[jnrC+0];
320             vdwjidx0D        = 2*vdwtype[jnrD+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r00              = _mm_mul_ps(rsq00,rinv00);
327             r00              = _mm_andnot_ps(dummy_mask,r00);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq00             = _mm_mul_ps(iq0,jq0);
331             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
332                                          vdwparam+vdwioffset0+vdwjidx0B,
333                                          vdwparam+vdwioffset0+vdwjidx0C,
334                                          vdwparam+vdwioffset0+vdwjidx0D,
335                                          &c6_00,&c12_00);
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = _mm_mul_ps(r00,vftabscale);
339             vfitab           = _mm_cvttps_epi32(rt);
340 #ifdef __XOP__
341             vfeps            = _mm_frcz_ps(rt);
342 #else
343             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
344 #endif
345             twovfeps         = _mm_add_ps(vfeps,vfeps);
346             vfitab           = _mm_slli_epi32(vfitab,3);
347
348             /* REACTION-FIELD ELECTROSTATICS */
349             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
350             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
351
352             /* CUBIC SPLINE TABLE DISPERSION */
353             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
354             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
355             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
356             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
357             _MM_TRANSPOSE4_PS(Y,F,G,H);
358             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
359             VV               = _mm_macc_ps(vfeps,Fp,Y);
360             vvdw6            = _mm_mul_ps(c6_00,VV);
361             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
362             fvdw6            = _mm_mul_ps(c6_00,FF);
363
364             /* CUBIC SPLINE TABLE REPULSION */
365             vfitab           = _mm_add_epi32(vfitab,ifour);
366             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
367             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
368             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
369             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
370             _MM_TRANSPOSE4_PS(Y,F,G,H);
371             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
372             VV               = _mm_macc_ps(vfeps,Fp,Y);
373             vvdw12           = _mm_mul_ps(c12_00,VV);
374             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
375             fvdw12           = _mm_mul_ps(c12_00,FF);
376             vvdw             = _mm_add_ps(vvdw12,vvdw6);
377             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velec            = _mm_andnot_ps(dummy_mask,velec);
381             velecsum         = _mm_add_ps(velecsum,velec);
382             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
383             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
384
385             fscal            = _mm_add_ps(felec,fvdw);
386
387             fscal            = _mm_andnot_ps(dummy_mask,fscal);
388
389              /* Update vectorial force */
390             fix0             = _mm_macc_ps(dx00,fscal,fix0);
391             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
392             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
393
394             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
395             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
396             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
397             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
398             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
399                                                    _mm_mul_ps(dx00,fscal),
400                                                    _mm_mul_ps(dy00,fscal),
401                                                    _mm_mul_ps(dz00,fscal));
402
403             /* Inner loop uses 71 flops */
404         }
405
406         /* End of innermost loop */
407
408         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
409                                               f+i_coord_offset,fshift+i_shift_offset);
410
411         ggid                        = gid[iidx];
412         /* Update potential energies */
413         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
414         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
415
416         /* Increment number of inner iterations */
417         inneriter                  += j_index_end - j_index_start;
418
419         /* Outer loop uses 9 flops */
420     }
421
422     /* Increment number of outer iterations */
423     outeriter        += nri;
424
425     /* Update outer/inner flops */
426
427     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
428 }
429 /*
430  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_single
431  * Electrostatics interaction: ReactionField
432  * VdW interaction:            CubicSplineTable
433  * Geometry:                   Particle-Particle
434  * Calculate force/pot:        Force
435  */
436 void
437 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_single
438                     (t_nblist * gmx_restrict                nlist,
439                      rvec * gmx_restrict                    xx,
440                      rvec * gmx_restrict                    ff,
441                      t_forcerec * gmx_restrict              fr,
442                      t_mdatoms * gmx_restrict               mdatoms,
443                      nb_kernel_data_t * gmx_restrict        kernel_data,
444                      t_nrnb * gmx_restrict                  nrnb)
445 {
446     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
447      * just 0 for non-waters.
448      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
449      * jnr indices corresponding to data put in the four positions in the SIMD register.
450      */
451     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
452     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
453     int              jnrA,jnrB,jnrC,jnrD;
454     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
455     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
456     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
457     real             rcutoff_scalar;
458     real             *shiftvec,*fshift,*x,*f;
459     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
460     real             scratch[4*DIM];
461     __m128           fscal,rcutoff,rcutoff2,jidxall;
462     int              vdwioffset0;
463     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
464     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
465     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
466     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
467     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
468     real             *charge;
469     int              nvdwtype;
470     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
471     int              *vdwtype;
472     real             *vdwparam;
473     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
474     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
475     __m128i          vfitab;
476     __m128i          ifour       = _mm_set1_epi32(4);
477     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
478     real             *vftab;
479     __m128           dummy_mask,cutoff_mask;
480     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
481     __m128           one     = _mm_set1_ps(1.0);
482     __m128           two     = _mm_set1_ps(2.0);
483     x                = xx[0];
484     f                = ff[0];
485
486     nri              = nlist->nri;
487     iinr             = nlist->iinr;
488     jindex           = nlist->jindex;
489     jjnr             = nlist->jjnr;
490     shiftidx         = nlist->shift;
491     gid              = nlist->gid;
492     shiftvec         = fr->shift_vec[0];
493     fshift           = fr->fshift[0];
494     facel            = _mm_set1_ps(fr->epsfac);
495     charge           = mdatoms->chargeA;
496     krf              = _mm_set1_ps(fr->ic->k_rf);
497     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
498     crf              = _mm_set1_ps(fr->ic->c_rf);
499     nvdwtype         = fr->ntype;
500     vdwparam         = fr->nbfp;
501     vdwtype          = mdatoms->typeA;
502
503     vftab            = kernel_data->table_vdw->data;
504     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
505
506     /* Avoid stupid compiler warnings */
507     jnrA = jnrB = jnrC = jnrD = 0;
508     j_coord_offsetA = 0;
509     j_coord_offsetB = 0;
510     j_coord_offsetC = 0;
511     j_coord_offsetD = 0;
512
513     outeriter        = 0;
514     inneriter        = 0;
515
516     for(iidx=0;iidx<4*DIM;iidx++)
517     {
518         scratch[iidx] = 0.0;
519     }
520
521     /* Start outer loop over neighborlists */
522     for(iidx=0; iidx<nri; iidx++)
523     {
524         /* Load shift vector for this list */
525         i_shift_offset   = DIM*shiftidx[iidx];
526
527         /* Load limits for loop over neighbors */
528         j_index_start    = jindex[iidx];
529         j_index_end      = jindex[iidx+1];
530
531         /* Get outer coordinate index */
532         inr              = iinr[iidx];
533         i_coord_offset   = DIM*inr;
534
535         /* Load i particle coords and add shift vector */
536         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
537
538         fix0             = _mm_setzero_ps();
539         fiy0             = _mm_setzero_ps();
540         fiz0             = _mm_setzero_ps();
541
542         /* Load parameters for i particles */
543         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
544         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
545
546         /* Start inner kernel loop */
547         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
548         {
549
550             /* Get j neighbor index, and coordinate index */
551             jnrA             = jjnr[jidx];
552             jnrB             = jjnr[jidx+1];
553             jnrC             = jjnr[jidx+2];
554             jnrD             = jjnr[jidx+3];
555             j_coord_offsetA  = DIM*jnrA;
556             j_coord_offsetB  = DIM*jnrB;
557             j_coord_offsetC  = DIM*jnrC;
558             j_coord_offsetD  = DIM*jnrD;
559
560             /* load j atom coordinates */
561             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
562                                               x+j_coord_offsetC,x+j_coord_offsetD,
563                                               &jx0,&jy0,&jz0);
564
565             /* Calculate displacement vector */
566             dx00             = _mm_sub_ps(ix0,jx0);
567             dy00             = _mm_sub_ps(iy0,jy0);
568             dz00             = _mm_sub_ps(iz0,jz0);
569
570             /* Calculate squared distance and things based on it */
571             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
572
573             rinv00           = gmx_mm_invsqrt_ps(rsq00);
574
575             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
576
577             /* Load parameters for j particles */
578             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
579                                                               charge+jnrC+0,charge+jnrD+0);
580             vdwjidx0A        = 2*vdwtype[jnrA+0];
581             vdwjidx0B        = 2*vdwtype[jnrB+0];
582             vdwjidx0C        = 2*vdwtype[jnrC+0];
583             vdwjidx0D        = 2*vdwtype[jnrD+0];
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r00              = _mm_mul_ps(rsq00,rinv00);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq00             = _mm_mul_ps(iq0,jq0);
593             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
594                                          vdwparam+vdwioffset0+vdwjidx0B,
595                                          vdwparam+vdwioffset0+vdwjidx0C,
596                                          vdwparam+vdwioffset0+vdwjidx0D,
597                                          &c6_00,&c12_00);
598
599             /* Calculate table index by multiplying r with table scale and truncate to integer */
600             rt               = _mm_mul_ps(r00,vftabscale);
601             vfitab           = _mm_cvttps_epi32(rt);
602 #ifdef __XOP__
603             vfeps            = _mm_frcz_ps(rt);
604 #else
605             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
606 #endif
607             twovfeps         = _mm_add_ps(vfeps,vfeps);
608             vfitab           = _mm_slli_epi32(vfitab,3);
609
610             /* REACTION-FIELD ELECTROSTATICS */
611             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
612
613             /* CUBIC SPLINE TABLE DISPERSION */
614             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
615             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
616             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
617             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
618             _MM_TRANSPOSE4_PS(Y,F,G,H);
619             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
620             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
621             fvdw6            = _mm_mul_ps(c6_00,FF);
622
623             /* CUBIC SPLINE TABLE REPULSION */
624             vfitab           = _mm_add_epi32(vfitab,ifour);
625             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
626             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
627             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
628             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
629             _MM_TRANSPOSE4_PS(Y,F,G,H);
630             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
631             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
632             fvdw12           = _mm_mul_ps(c12_00,FF);
633             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
634
635             fscal            = _mm_add_ps(felec,fvdw);
636
637              /* Update vectorial force */
638             fix0             = _mm_macc_ps(dx00,fscal,fix0);
639             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
640             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
641
642             fjptrA             = f+j_coord_offsetA;
643             fjptrB             = f+j_coord_offsetB;
644             fjptrC             = f+j_coord_offsetC;
645             fjptrD             = f+j_coord_offsetD;
646             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
647                                                    _mm_mul_ps(dx00,fscal),
648                                                    _mm_mul_ps(dy00,fscal),
649                                                    _mm_mul_ps(dz00,fscal));
650
651             /* Inner loop uses 57 flops */
652         }
653
654         if(jidx<j_index_end)
655         {
656
657             /* Get j neighbor index, and coordinate index */
658             jnrlistA         = jjnr[jidx];
659             jnrlistB         = jjnr[jidx+1];
660             jnrlistC         = jjnr[jidx+2];
661             jnrlistD         = jjnr[jidx+3];
662             /* Sign of each element will be negative for non-real atoms.
663              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
664              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
665              */
666             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
667             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
668             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
669             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
670             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
671             j_coord_offsetA  = DIM*jnrA;
672             j_coord_offsetB  = DIM*jnrB;
673             j_coord_offsetC  = DIM*jnrC;
674             j_coord_offsetD  = DIM*jnrD;
675
676             /* load j atom coordinates */
677             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
678                                               x+j_coord_offsetC,x+j_coord_offsetD,
679                                               &jx0,&jy0,&jz0);
680
681             /* Calculate displacement vector */
682             dx00             = _mm_sub_ps(ix0,jx0);
683             dy00             = _mm_sub_ps(iy0,jy0);
684             dz00             = _mm_sub_ps(iz0,jz0);
685
686             /* Calculate squared distance and things based on it */
687             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
688
689             rinv00           = gmx_mm_invsqrt_ps(rsq00);
690
691             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
692
693             /* Load parameters for j particles */
694             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
695                                                               charge+jnrC+0,charge+jnrD+0);
696             vdwjidx0A        = 2*vdwtype[jnrA+0];
697             vdwjidx0B        = 2*vdwtype[jnrB+0];
698             vdwjidx0C        = 2*vdwtype[jnrC+0];
699             vdwjidx0D        = 2*vdwtype[jnrD+0];
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             r00              = _mm_mul_ps(rsq00,rinv00);
706             r00              = _mm_andnot_ps(dummy_mask,r00);
707
708             /* Compute parameters for interactions between i and j atoms */
709             qq00             = _mm_mul_ps(iq0,jq0);
710             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
711                                          vdwparam+vdwioffset0+vdwjidx0B,
712                                          vdwparam+vdwioffset0+vdwjidx0C,
713                                          vdwparam+vdwioffset0+vdwjidx0D,
714                                          &c6_00,&c12_00);
715
716             /* Calculate table index by multiplying r with table scale and truncate to integer */
717             rt               = _mm_mul_ps(r00,vftabscale);
718             vfitab           = _mm_cvttps_epi32(rt);
719 #ifdef __XOP__
720             vfeps            = _mm_frcz_ps(rt);
721 #else
722             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
723 #endif
724             twovfeps         = _mm_add_ps(vfeps,vfeps);
725             vfitab           = _mm_slli_epi32(vfitab,3);
726
727             /* REACTION-FIELD ELECTROSTATICS */
728             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
729
730             /* CUBIC SPLINE TABLE DISPERSION */
731             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
732             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
733             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
734             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
735             _MM_TRANSPOSE4_PS(Y,F,G,H);
736             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
737             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
738             fvdw6            = _mm_mul_ps(c6_00,FF);
739
740             /* CUBIC SPLINE TABLE REPULSION */
741             vfitab           = _mm_add_epi32(vfitab,ifour);
742             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
743             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
744             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
745             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
746             _MM_TRANSPOSE4_PS(Y,F,G,H);
747             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
748             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
749             fvdw12           = _mm_mul_ps(c12_00,FF);
750             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
751
752             fscal            = _mm_add_ps(felec,fvdw);
753
754             fscal            = _mm_andnot_ps(dummy_mask,fscal);
755
756              /* Update vectorial force */
757             fix0             = _mm_macc_ps(dx00,fscal,fix0);
758             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
759             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
760
761             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
762             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
763             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
764             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
765             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
766                                                    _mm_mul_ps(dx00,fscal),
767                                                    _mm_mul_ps(dy00,fscal),
768                                                    _mm_mul_ps(dz00,fscal));
769
770             /* Inner loop uses 58 flops */
771         }
772
773         /* End of innermost loop */
774
775         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
776                                               f+i_coord_offset,fshift+i_shift_offset);
777
778         /* Increment number of inner iterations */
779         inneriter                  += j_index_end - j_index_start;
780
781         /* Outer loop uses 7 flops */
782     }
783
784     /* Increment number of outer iterations */
785     outeriter        += nri;
786
787     /* Update outer/inner flops */
788
789     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
790 }