2b821a2d1bef57e08c144fb0c564c0a1d7cac3a1
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm_set1_ps(fr->ic->k_rf);
108     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
109     crf              = _mm_set1_ps(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
117     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
118     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->rvdw_switch;
127     rswitch          = _mm_set1_ps(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_ps(d_scalar);
131     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174         fix1             = _mm_setzero_ps();
175         fiy1             = _mm_setzero_ps();
176         fiz1             = _mm_setzero_ps();
177         fix2             = _mm_setzero_ps();
178         fiy2             = _mm_setzero_ps();
179         fiz2             = _mm_setzero_ps();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_ps();
183         vvdwsum          = _mm_setzero_ps();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               x+j_coord_offsetC,x+j_coord_offsetD,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_ps(ix0,jx0);
206             dy00             = _mm_sub_ps(iy0,jy0);
207             dz00             = _mm_sub_ps(iz0,jz0);
208             dx10             = _mm_sub_ps(ix1,jx0);
209             dy10             = _mm_sub_ps(iy1,jy0);
210             dz10             = _mm_sub_ps(iz1,jz0);
211             dx20             = _mm_sub_ps(ix2,jx0);
212             dy20             = _mm_sub_ps(iy2,jy0);
213             dz20             = _mm_sub_ps(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
217             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
218             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
219
220             rinv00           = gmx_mm_invsqrt_ps(rsq00);
221             rinv10           = gmx_mm_invsqrt_ps(rsq10);
222             rinv20           = gmx_mm_invsqrt_ps(rsq20);
223
224             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
225             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
226             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                               charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             fjx0             = _mm_setzero_ps();
237             fjy0             = _mm_setzero_ps();
238             fjz0             = _mm_setzero_ps();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (gmx_mm_any_lt(rsq00,rcutoff2))
245             {
246
247             r00              = _mm_mul_ps(rsq00,rinv00);
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm_mul_ps(iq0,jq0);
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* REACTION-FIELD ELECTROSTATICS */
258             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
259             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
265             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
267             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
268
269             d                = _mm_sub_ps(r00,rswitch);
270             d                = _mm_max_ps(d,_mm_setzero_ps());
271             d2               = _mm_mul_ps(d,d);
272             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
273
274             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
275
276             /* Evaluate switch function */
277             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
278             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
279             vvdw             = _mm_mul_ps(vvdw,sw);
280             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velec            = _mm_and_ps(velec,cutoff_mask);
284             velecsum         = _mm_add_ps(velecsum,velec);
285             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
286             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
287
288             fscal            = _mm_add_ps(felec,fvdw);
289
290             fscal            = _mm_and_ps(fscal,cutoff_mask);
291
292              /* Update vectorial force */
293             fix0             = _mm_macc_ps(dx00,fscal,fix0);
294             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
295             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
296
297             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
298             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
299             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
300
301             }
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm_any_lt(rsq10,rcutoff2))
308             {
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm_mul_ps(iq1,jq0);
312
313             /* REACTION-FIELD ELECTROSTATICS */
314             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
315             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
316
317             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm_and_ps(velec,cutoff_mask);
321             velecsum         = _mm_add_ps(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm_and_ps(fscal,cutoff_mask);
326
327              /* Update vectorial force */
328             fix1             = _mm_macc_ps(dx10,fscal,fix1);
329             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
330             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
331
332             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
333             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
334             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
335
336             }
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq20,rcutoff2))
343             {
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq20             = _mm_mul_ps(iq2,jq0);
347
348             /* REACTION-FIELD ELECTROSTATICS */
349             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
350             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
351
352             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_ps(velec,cutoff_mask);
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_ps(fscal,cutoff_mask);
361
362              /* Update vectorial force */
363             fix2             = _mm_macc_ps(dx20,fscal,fix2);
364             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
365             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
366
367             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
368             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
369             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
370
371             }
372
373             fjptrA             = f+j_coord_offsetA;
374             fjptrB             = f+j_coord_offsetB;
375             fjptrC             = f+j_coord_offsetC;
376             fjptrD             = f+j_coord_offsetD;
377
378             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
379
380             /* Inner loop uses 151 flops */
381         }
382
383         if(jidx<j_index_end)
384         {
385
386             /* Get j neighbor index, and coordinate index */
387             jnrlistA         = jjnr[jidx];
388             jnrlistB         = jjnr[jidx+1];
389             jnrlistC         = jjnr[jidx+2];
390             jnrlistD         = jjnr[jidx+3];
391             /* Sign of each element will be negative for non-real atoms.
392              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
393              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
394              */
395             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
396             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
397             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
398             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
399             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
400             j_coord_offsetA  = DIM*jnrA;
401             j_coord_offsetB  = DIM*jnrB;
402             j_coord_offsetC  = DIM*jnrC;
403             j_coord_offsetD  = DIM*jnrD;
404
405             /* load j atom coordinates */
406             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
407                                               x+j_coord_offsetC,x+j_coord_offsetD,
408                                               &jx0,&jy0,&jz0);
409
410             /* Calculate displacement vector */
411             dx00             = _mm_sub_ps(ix0,jx0);
412             dy00             = _mm_sub_ps(iy0,jy0);
413             dz00             = _mm_sub_ps(iz0,jz0);
414             dx10             = _mm_sub_ps(ix1,jx0);
415             dy10             = _mm_sub_ps(iy1,jy0);
416             dz10             = _mm_sub_ps(iz1,jz0);
417             dx20             = _mm_sub_ps(ix2,jx0);
418             dy20             = _mm_sub_ps(iy2,jy0);
419             dz20             = _mm_sub_ps(iz2,jz0);
420
421             /* Calculate squared distance and things based on it */
422             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
423             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
424             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
425
426             rinv00           = gmx_mm_invsqrt_ps(rsq00);
427             rinv10           = gmx_mm_invsqrt_ps(rsq10);
428             rinv20           = gmx_mm_invsqrt_ps(rsq20);
429
430             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
431             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
432             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
433
434             /* Load parameters for j particles */
435             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
436                                                               charge+jnrC+0,charge+jnrD+0);
437             vdwjidx0A        = 2*vdwtype[jnrA+0];
438             vdwjidx0B        = 2*vdwtype[jnrB+0];
439             vdwjidx0C        = 2*vdwtype[jnrC+0];
440             vdwjidx0D        = 2*vdwtype[jnrD+0];
441
442             fjx0             = _mm_setzero_ps();
443             fjy0             = _mm_setzero_ps();
444             fjz0             = _mm_setzero_ps();
445
446             /**************************
447              * CALCULATE INTERACTIONS *
448              **************************/
449
450             if (gmx_mm_any_lt(rsq00,rcutoff2))
451             {
452
453             r00              = _mm_mul_ps(rsq00,rinv00);
454             r00              = _mm_andnot_ps(dummy_mask,r00);
455
456             /* Compute parameters for interactions between i and j atoms */
457             qq00             = _mm_mul_ps(iq0,jq0);
458             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
459                                          vdwparam+vdwioffset0+vdwjidx0B,
460                                          vdwparam+vdwioffset0+vdwjidx0C,
461                                          vdwparam+vdwioffset0+vdwjidx0D,
462                                          &c6_00,&c12_00);
463
464             /* REACTION-FIELD ELECTROSTATICS */
465             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
466             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
467
468             /* LENNARD-JONES DISPERSION/REPULSION */
469
470             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
471             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
472             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
473             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
474             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
475
476             d                = _mm_sub_ps(r00,rswitch);
477             d                = _mm_max_ps(d,_mm_setzero_ps());
478             d2               = _mm_mul_ps(d,d);
479             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
480
481             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
482
483             /* Evaluate switch function */
484             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
485             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
486             vvdw             = _mm_mul_ps(vvdw,sw);
487             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _mm_and_ps(velec,cutoff_mask);
491             velec            = _mm_andnot_ps(dummy_mask,velec);
492             velecsum         = _mm_add_ps(velecsum,velec);
493             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
494             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
495             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
496
497             fscal            = _mm_add_ps(felec,fvdw);
498
499             fscal            = _mm_and_ps(fscal,cutoff_mask);
500
501             fscal            = _mm_andnot_ps(dummy_mask,fscal);
502
503              /* Update vectorial force */
504             fix0             = _mm_macc_ps(dx00,fscal,fix0);
505             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
506             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
507
508             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
509             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
510             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
511
512             }
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             if (gmx_mm_any_lt(rsq10,rcutoff2))
519             {
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq10             = _mm_mul_ps(iq1,jq0);
523
524             /* REACTION-FIELD ELECTROSTATICS */
525             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
526             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
527
528             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_and_ps(velec,cutoff_mask);
532             velec            = _mm_andnot_ps(dummy_mask,velec);
533             velecsum         = _mm_add_ps(velecsum,velec);
534
535             fscal            = felec;
536
537             fscal            = _mm_and_ps(fscal,cutoff_mask);
538
539             fscal            = _mm_andnot_ps(dummy_mask,fscal);
540
541              /* Update vectorial force */
542             fix1             = _mm_macc_ps(dx10,fscal,fix1);
543             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
544             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
545
546             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
547             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
548             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
549
550             }
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             if (gmx_mm_any_lt(rsq20,rcutoff2))
557             {
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq20             = _mm_mul_ps(iq2,jq0);
561
562             /* REACTION-FIELD ELECTROSTATICS */
563             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
564             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
565
566             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_and_ps(velec,cutoff_mask);
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_and_ps(fscal,cutoff_mask);
576
577             fscal            = _mm_andnot_ps(dummy_mask,fscal);
578
579              /* Update vectorial force */
580             fix2             = _mm_macc_ps(dx20,fscal,fix2);
581             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
582             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
583
584             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
585             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
586             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
587
588             }
589
590             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
591             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
592             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
593             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
594
595             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
596
597             /* Inner loop uses 152 flops */
598         }
599
600         /* End of innermost loop */
601
602         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
603                                               f+i_coord_offset,fshift+i_shift_offset);
604
605         ggid                        = gid[iidx];
606         /* Update potential energies */
607         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
608         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
609
610         /* Increment number of inner iterations */
611         inneriter                  += j_index_end - j_index_start;
612
613         /* Outer loop uses 20 flops */
614     }
615
616     /* Increment number of outer iterations */
617     outeriter        += nri;
618
619     /* Update outer/inner flops */
620
621     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*152);
622 }
623 /*
624  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
625  * Electrostatics interaction: ReactionField
626  * VdW interaction:            LennardJones
627  * Geometry:                   Water3-Particle
628  * Calculate force/pot:        Force
629  */
630 void
631 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
632                     (t_nblist * gmx_restrict                nlist,
633                      rvec * gmx_restrict                    xx,
634                      rvec * gmx_restrict                    ff,
635                      t_forcerec * gmx_restrict              fr,
636                      t_mdatoms * gmx_restrict               mdatoms,
637                      nb_kernel_data_t * gmx_restrict        kernel_data,
638                      t_nrnb * gmx_restrict                  nrnb)
639 {
640     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
641      * just 0 for non-waters.
642      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
643      * jnr indices corresponding to data put in the four positions in the SIMD register.
644      */
645     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
646     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
647     int              jnrA,jnrB,jnrC,jnrD;
648     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
649     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
650     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
651     real             rcutoff_scalar;
652     real             *shiftvec,*fshift,*x,*f;
653     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
654     real             scratch[4*DIM];
655     __m128           fscal,rcutoff,rcutoff2,jidxall;
656     int              vdwioffset0;
657     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
658     int              vdwioffset1;
659     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
660     int              vdwioffset2;
661     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
662     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
663     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
664     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
665     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
666     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
667     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
668     real             *charge;
669     int              nvdwtype;
670     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
671     int              *vdwtype;
672     real             *vdwparam;
673     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
674     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
675     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
676     real             rswitch_scalar,d_scalar;
677     __m128           dummy_mask,cutoff_mask;
678     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
679     __m128           one     = _mm_set1_ps(1.0);
680     __m128           two     = _mm_set1_ps(2.0);
681     x                = xx[0];
682     f                = ff[0];
683
684     nri              = nlist->nri;
685     iinr             = nlist->iinr;
686     jindex           = nlist->jindex;
687     jjnr             = nlist->jjnr;
688     shiftidx         = nlist->shift;
689     gid              = nlist->gid;
690     shiftvec         = fr->shift_vec[0];
691     fshift           = fr->fshift[0];
692     facel            = _mm_set1_ps(fr->epsfac);
693     charge           = mdatoms->chargeA;
694     krf              = _mm_set1_ps(fr->ic->k_rf);
695     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
696     crf              = _mm_set1_ps(fr->ic->c_rf);
697     nvdwtype         = fr->ntype;
698     vdwparam         = fr->nbfp;
699     vdwtype          = mdatoms->typeA;
700
701     /* Setup water-specific parameters */
702     inr              = nlist->iinr[0];
703     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
704     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
705     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
706     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
707
708     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
709     rcutoff_scalar   = fr->rcoulomb;
710     rcutoff          = _mm_set1_ps(rcutoff_scalar);
711     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
712
713     rswitch_scalar   = fr->rvdw_switch;
714     rswitch          = _mm_set1_ps(rswitch_scalar);
715     /* Setup switch parameters */
716     d_scalar         = rcutoff_scalar-rswitch_scalar;
717     d                = _mm_set1_ps(d_scalar);
718     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
719     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
720     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
721     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
722     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
723     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
724
725     /* Avoid stupid compiler warnings */
726     jnrA = jnrB = jnrC = jnrD = 0;
727     j_coord_offsetA = 0;
728     j_coord_offsetB = 0;
729     j_coord_offsetC = 0;
730     j_coord_offsetD = 0;
731
732     outeriter        = 0;
733     inneriter        = 0;
734
735     for(iidx=0;iidx<4*DIM;iidx++)
736     {
737         scratch[iidx] = 0.0;
738     }
739
740     /* Start outer loop over neighborlists */
741     for(iidx=0; iidx<nri; iidx++)
742     {
743         /* Load shift vector for this list */
744         i_shift_offset   = DIM*shiftidx[iidx];
745
746         /* Load limits for loop over neighbors */
747         j_index_start    = jindex[iidx];
748         j_index_end      = jindex[iidx+1];
749
750         /* Get outer coordinate index */
751         inr              = iinr[iidx];
752         i_coord_offset   = DIM*inr;
753
754         /* Load i particle coords and add shift vector */
755         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
756                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
757
758         fix0             = _mm_setzero_ps();
759         fiy0             = _mm_setzero_ps();
760         fiz0             = _mm_setzero_ps();
761         fix1             = _mm_setzero_ps();
762         fiy1             = _mm_setzero_ps();
763         fiz1             = _mm_setzero_ps();
764         fix2             = _mm_setzero_ps();
765         fiy2             = _mm_setzero_ps();
766         fiz2             = _mm_setzero_ps();
767
768         /* Start inner kernel loop */
769         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
770         {
771
772             /* Get j neighbor index, and coordinate index */
773             jnrA             = jjnr[jidx];
774             jnrB             = jjnr[jidx+1];
775             jnrC             = jjnr[jidx+2];
776             jnrD             = jjnr[jidx+3];
777             j_coord_offsetA  = DIM*jnrA;
778             j_coord_offsetB  = DIM*jnrB;
779             j_coord_offsetC  = DIM*jnrC;
780             j_coord_offsetD  = DIM*jnrD;
781
782             /* load j atom coordinates */
783             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
784                                               x+j_coord_offsetC,x+j_coord_offsetD,
785                                               &jx0,&jy0,&jz0);
786
787             /* Calculate displacement vector */
788             dx00             = _mm_sub_ps(ix0,jx0);
789             dy00             = _mm_sub_ps(iy0,jy0);
790             dz00             = _mm_sub_ps(iz0,jz0);
791             dx10             = _mm_sub_ps(ix1,jx0);
792             dy10             = _mm_sub_ps(iy1,jy0);
793             dz10             = _mm_sub_ps(iz1,jz0);
794             dx20             = _mm_sub_ps(ix2,jx0);
795             dy20             = _mm_sub_ps(iy2,jy0);
796             dz20             = _mm_sub_ps(iz2,jz0);
797
798             /* Calculate squared distance and things based on it */
799             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
800             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
801             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
802
803             rinv00           = gmx_mm_invsqrt_ps(rsq00);
804             rinv10           = gmx_mm_invsqrt_ps(rsq10);
805             rinv20           = gmx_mm_invsqrt_ps(rsq20);
806
807             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
808             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
809             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
810
811             /* Load parameters for j particles */
812             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
813                                                               charge+jnrC+0,charge+jnrD+0);
814             vdwjidx0A        = 2*vdwtype[jnrA+0];
815             vdwjidx0B        = 2*vdwtype[jnrB+0];
816             vdwjidx0C        = 2*vdwtype[jnrC+0];
817             vdwjidx0D        = 2*vdwtype[jnrD+0];
818
819             fjx0             = _mm_setzero_ps();
820             fjy0             = _mm_setzero_ps();
821             fjz0             = _mm_setzero_ps();
822
823             /**************************
824              * CALCULATE INTERACTIONS *
825              **************************/
826
827             if (gmx_mm_any_lt(rsq00,rcutoff2))
828             {
829
830             r00              = _mm_mul_ps(rsq00,rinv00);
831
832             /* Compute parameters for interactions between i and j atoms */
833             qq00             = _mm_mul_ps(iq0,jq0);
834             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
835                                          vdwparam+vdwioffset0+vdwjidx0B,
836                                          vdwparam+vdwioffset0+vdwjidx0C,
837                                          vdwparam+vdwioffset0+vdwjidx0D,
838                                          &c6_00,&c12_00);
839
840             /* REACTION-FIELD ELECTROSTATICS */
841             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
842
843             /* LENNARD-JONES DISPERSION/REPULSION */
844
845             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
846             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
847             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
848             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
849             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
850
851             d                = _mm_sub_ps(r00,rswitch);
852             d                = _mm_max_ps(d,_mm_setzero_ps());
853             d2               = _mm_mul_ps(d,d);
854             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
855
856             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
857
858             /* Evaluate switch function */
859             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
860             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
861             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
862
863             fscal            = _mm_add_ps(felec,fvdw);
864
865             fscal            = _mm_and_ps(fscal,cutoff_mask);
866
867              /* Update vectorial force */
868             fix0             = _mm_macc_ps(dx00,fscal,fix0);
869             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
870             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
871
872             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
873             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
874             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
875
876             }
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             if (gmx_mm_any_lt(rsq10,rcutoff2))
883             {
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq10             = _mm_mul_ps(iq1,jq0);
887
888             /* REACTION-FIELD ELECTROSTATICS */
889             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
890
891             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
892
893             fscal            = felec;
894
895             fscal            = _mm_and_ps(fscal,cutoff_mask);
896
897              /* Update vectorial force */
898             fix1             = _mm_macc_ps(dx10,fscal,fix1);
899             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
900             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
901
902             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
903             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
904             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
905
906             }
907
908             /**************************
909              * CALCULATE INTERACTIONS *
910              **************************/
911
912             if (gmx_mm_any_lt(rsq20,rcutoff2))
913             {
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq20             = _mm_mul_ps(iq2,jq0);
917
918             /* REACTION-FIELD ELECTROSTATICS */
919             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
920
921             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
922
923             fscal            = felec;
924
925             fscal            = _mm_and_ps(fscal,cutoff_mask);
926
927              /* Update vectorial force */
928             fix2             = _mm_macc_ps(dx20,fscal,fix2);
929             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
930             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
931
932             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
933             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
934             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
935
936             }
937
938             fjptrA             = f+j_coord_offsetA;
939             fjptrB             = f+j_coord_offsetB;
940             fjptrC             = f+j_coord_offsetC;
941             fjptrD             = f+j_coord_offsetD;
942
943             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
944
945             /* Inner loop uses 130 flops */
946         }
947
948         if(jidx<j_index_end)
949         {
950
951             /* Get j neighbor index, and coordinate index */
952             jnrlistA         = jjnr[jidx];
953             jnrlistB         = jjnr[jidx+1];
954             jnrlistC         = jjnr[jidx+2];
955             jnrlistD         = jjnr[jidx+3];
956             /* Sign of each element will be negative for non-real atoms.
957              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
958              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
959              */
960             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
961             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
962             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
963             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
964             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
965             j_coord_offsetA  = DIM*jnrA;
966             j_coord_offsetB  = DIM*jnrB;
967             j_coord_offsetC  = DIM*jnrC;
968             j_coord_offsetD  = DIM*jnrD;
969
970             /* load j atom coordinates */
971             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
972                                               x+j_coord_offsetC,x+j_coord_offsetD,
973                                               &jx0,&jy0,&jz0);
974
975             /* Calculate displacement vector */
976             dx00             = _mm_sub_ps(ix0,jx0);
977             dy00             = _mm_sub_ps(iy0,jy0);
978             dz00             = _mm_sub_ps(iz0,jz0);
979             dx10             = _mm_sub_ps(ix1,jx0);
980             dy10             = _mm_sub_ps(iy1,jy0);
981             dz10             = _mm_sub_ps(iz1,jz0);
982             dx20             = _mm_sub_ps(ix2,jx0);
983             dy20             = _mm_sub_ps(iy2,jy0);
984             dz20             = _mm_sub_ps(iz2,jz0);
985
986             /* Calculate squared distance and things based on it */
987             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
988             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
989             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
990
991             rinv00           = gmx_mm_invsqrt_ps(rsq00);
992             rinv10           = gmx_mm_invsqrt_ps(rsq10);
993             rinv20           = gmx_mm_invsqrt_ps(rsq20);
994
995             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
996             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
997             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
998
999             /* Load parameters for j particles */
1000             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1001                                                               charge+jnrC+0,charge+jnrD+0);
1002             vdwjidx0A        = 2*vdwtype[jnrA+0];
1003             vdwjidx0B        = 2*vdwtype[jnrB+0];
1004             vdwjidx0C        = 2*vdwtype[jnrC+0];
1005             vdwjidx0D        = 2*vdwtype[jnrD+0];
1006
1007             fjx0             = _mm_setzero_ps();
1008             fjy0             = _mm_setzero_ps();
1009             fjz0             = _mm_setzero_ps();
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_mm_any_lt(rsq00,rcutoff2))
1016             {
1017
1018             r00              = _mm_mul_ps(rsq00,rinv00);
1019             r00              = _mm_andnot_ps(dummy_mask,r00);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq00             = _mm_mul_ps(iq0,jq0);
1023             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1024                                          vdwparam+vdwioffset0+vdwjidx0B,
1025                                          vdwparam+vdwioffset0+vdwjidx0C,
1026                                          vdwparam+vdwioffset0+vdwjidx0D,
1027                                          &c6_00,&c12_00);
1028
1029             /* REACTION-FIELD ELECTROSTATICS */
1030             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
1031
1032             /* LENNARD-JONES DISPERSION/REPULSION */
1033
1034             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1035             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1036             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1037             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1038             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1039
1040             d                = _mm_sub_ps(r00,rswitch);
1041             d                = _mm_max_ps(d,_mm_setzero_ps());
1042             d2               = _mm_mul_ps(d,d);
1043             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1044
1045             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1046
1047             /* Evaluate switch function */
1048             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1049             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1050             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1051
1052             fscal            = _mm_add_ps(felec,fvdw);
1053
1054             fscal            = _mm_and_ps(fscal,cutoff_mask);
1055
1056             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1057
1058              /* Update vectorial force */
1059             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1060             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1061             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1062
1063             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1064             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1065             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1066
1067             }
1068
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             if (gmx_mm_any_lt(rsq10,rcutoff2))
1074             {
1075
1076             /* Compute parameters for interactions between i and j atoms */
1077             qq10             = _mm_mul_ps(iq1,jq0);
1078
1079             /* REACTION-FIELD ELECTROSTATICS */
1080             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1081
1082             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1083
1084             fscal            = felec;
1085
1086             fscal            = _mm_and_ps(fscal,cutoff_mask);
1087
1088             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1089
1090              /* Update vectorial force */
1091             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1092             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1093             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1094
1095             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1096             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1097             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1098
1099             }
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             if (gmx_mm_any_lt(rsq20,rcutoff2))
1106             {
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq20             = _mm_mul_ps(iq2,jq0);
1110
1111             /* REACTION-FIELD ELECTROSTATICS */
1112             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1113
1114             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1115
1116             fscal            = felec;
1117
1118             fscal            = _mm_and_ps(fscal,cutoff_mask);
1119
1120             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1121
1122              /* Update vectorial force */
1123             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1124             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1125             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1126
1127             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1128             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1129             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1130
1131             }
1132
1133             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1134             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1135             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1136             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1137
1138             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1139
1140             /* Inner loop uses 131 flops */
1141         }
1142
1143         /* End of innermost loop */
1144
1145         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1146                                               f+i_coord_offset,fshift+i_shift_offset);
1147
1148         /* Increment number of inner iterations */
1149         inneriter                  += j_index_end - j_index_start;
1150
1151         /* Outer loop uses 18 flops */
1152     }
1153
1154     /* Increment number of outer iterations */
1155     outeriter        += nri;
1156
1157     /* Update outer/inner flops */
1158
1159     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1160 }