7e9da631d8eeccd46001e881bdf6e1967d66e9fb
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83     real             rswitch_scalar,d_scalar;
84     __m128           dummy_mask,cutoff_mask;
85     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
86     __m128           one     = _mm_set1_ps(1.0);
87     __m128           two     = _mm_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     krf              = _mm_set1_ps(fr->ic->k_rf);
102     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
103     crf              = _mm_set1_ps(fr->ic->c_rf);
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
109     rcutoff_scalar   = fr->rcoulomb;
110     rcutoff          = _mm_set1_ps(rcutoff_scalar);
111     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
112
113     rswitch_scalar   = fr->rvdw_switch;
114     rswitch          = _mm_set1_ps(rswitch_scalar);
115     /* Setup switch parameters */
116     d_scalar         = rcutoff_scalar-rswitch_scalar;
117     d                = _mm_set1_ps(d_scalar);
118     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
119     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
120     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
121     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
122     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
123     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm_setzero_ps();
158         fiy0             = _mm_setzero_ps();
159         fiz0             = _mm_setzero_ps();
160
161         /* Load parameters for i particles */
162         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_ps();
167         vvdwsum          = _mm_setzero_ps();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               x+j_coord_offsetC,x+j_coord_offsetD,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_ps(ix0,jx0);
190             dy00             = _mm_sub_ps(iy0,jy0);
191             dz00             = _mm_sub_ps(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm_invsqrt_ps(rsq00);
197
198             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
202                                                               charge+jnrC+0,charge+jnrD+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (gmx_mm_any_lt(rsq00,rcutoff2))
213             {
214
215             r00              = _mm_mul_ps(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq00             = _mm_mul_ps(iq0,jq0);
219             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
220                                          vdwparam+vdwioffset0+vdwjidx0B,
221                                          vdwparam+vdwioffset0+vdwjidx0C,
222                                          vdwparam+vdwioffset0+vdwjidx0D,
223                                          &c6_00,&c12_00);
224
225             /* REACTION-FIELD ELECTROSTATICS */
226             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
227             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
233             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
234             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
235             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
236
237             d                = _mm_sub_ps(r00,rswitch);
238             d                = _mm_max_ps(d,_mm_setzero_ps());
239             d2               = _mm_mul_ps(d,d);
240             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
241
242             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
243
244             /* Evaluate switch function */
245             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
246             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
247             vvdw             = _mm_mul_ps(vvdw,sw);
248             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velec            = _mm_and_ps(velec,cutoff_mask);
252             velecsum         = _mm_add_ps(velecsum,velec);
253             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
254             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
255
256             fscal            = _mm_add_ps(felec,fvdw);
257
258             fscal            = _mm_and_ps(fscal,cutoff_mask);
259
260              /* Update vectorial force */
261             fix0             = _mm_macc_ps(dx00,fscal,fix0);
262             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
263             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
270                                                    _mm_mul_ps(dx00,fscal),
271                                                    _mm_mul_ps(dy00,fscal),
272                                                    _mm_mul_ps(dz00,fscal));
273
274             }
275
276             /* Inner loop uses 73 flops */
277         }
278
279         if(jidx<j_index_end)
280         {
281
282             /* Get j neighbor index, and coordinate index */
283             jnrlistA         = jjnr[jidx];
284             jnrlistB         = jjnr[jidx+1];
285             jnrlistC         = jjnr[jidx+2];
286             jnrlistD         = jjnr[jidx+3];
287             /* Sign of each element will be negative for non-real atoms.
288              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
289              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
290              */
291             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
292             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
293             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
294             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
295             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
296             j_coord_offsetA  = DIM*jnrA;
297             j_coord_offsetB  = DIM*jnrB;
298             j_coord_offsetC  = DIM*jnrC;
299             j_coord_offsetD  = DIM*jnrD;
300
301             /* load j atom coordinates */
302             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
303                                               x+j_coord_offsetC,x+j_coord_offsetD,
304                                               &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm_sub_ps(ix0,jx0);
308             dy00             = _mm_sub_ps(iy0,jy0);
309             dz00             = _mm_sub_ps(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
313
314             rinv00           = gmx_mm_invsqrt_ps(rsq00);
315
316             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
320                                                               charge+jnrC+0,charge+jnrD+0);
321             vdwjidx0A        = 2*vdwtype[jnrA+0];
322             vdwjidx0B        = 2*vdwtype[jnrB+0];
323             vdwjidx0C        = 2*vdwtype[jnrC+0];
324             vdwjidx0D        = 2*vdwtype[jnrD+0];
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm_any_lt(rsq00,rcutoff2))
331             {
332
333             r00              = _mm_mul_ps(rsq00,rinv00);
334             r00              = _mm_andnot_ps(dummy_mask,r00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm_mul_ps(iq0,jq0);
338             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
339                                          vdwparam+vdwioffset0+vdwjidx0B,
340                                          vdwparam+vdwioffset0+vdwjidx0C,
341                                          vdwparam+vdwioffset0+vdwjidx0D,
342                                          &c6_00,&c12_00);
343
344             /* REACTION-FIELD ELECTROSTATICS */
345             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
346             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
347
348             /* LENNARD-JONES DISPERSION/REPULSION */
349
350             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
351             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
352             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
353             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
354             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
355
356             d                = _mm_sub_ps(r00,rswitch);
357             d                = _mm_max_ps(d,_mm_setzero_ps());
358             d2               = _mm_mul_ps(d,d);
359             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
360
361             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
366             vvdw             = _mm_mul_ps(vvdw,sw);
367             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_ps(velec,cutoff_mask);
371             velec            = _mm_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm_add_ps(velecsum,velec);
373             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
374             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
375             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
376
377             fscal            = _mm_add_ps(felec,fvdw);
378
379             fscal            = _mm_and_ps(fscal,cutoff_mask);
380
381             fscal            = _mm_andnot_ps(dummy_mask,fscal);
382
383              /* Update vectorial force */
384             fix0             = _mm_macc_ps(dx00,fscal,fix0);
385             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
386             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
387
388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
392             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
393                                                    _mm_mul_ps(dx00,fscal),
394                                                    _mm_mul_ps(dy00,fscal),
395                                                    _mm_mul_ps(dz00,fscal));
396
397             }
398
399             /* Inner loop uses 74 flops */
400         }
401
402         /* End of innermost loop */
403
404         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
405                                               f+i_coord_offset,fshift+i_shift_offset);
406
407         ggid                        = gid[iidx];
408         /* Update potential energies */
409         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
410         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
411
412         /* Increment number of inner iterations */
413         inneriter                  += j_index_end - j_index_start;
414
415         /* Outer loop uses 9 flops */
416     }
417
418     /* Increment number of outer iterations */
419     outeriter        += nri;
420
421     /* Update outer/inner flops */
422
423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
424 }
425 /*
426  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_single
427  * Electrostatics interaction: ReactionField
428  * VdW interaction:            LennardJones
429  * Geometry:                   Particle-Particle
430  * Calculate force/pot:        Force
431  */
432 void
433 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_single
434                     (t_nblist * gmx_restrict                nlist,
435                      rvec * gmx_restrict                    xx,
436                      rvec * gmx_restrict                    ff,
437                      t_forcerec * gmx_restrict              fr,
438                      t_mdatoms * gmx_restrict               mdatoms,
439                      nb_kernel_data_t * gmx_restrict        kernel_data,
440                      t_nrnb * gmx_restrict                  nrnb)
441 {
442     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
443      * just 0 for non-waters.
444      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
445      * jnr indices corresponding to data put in the four positions in the SIMD register.
446      */
447     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
448     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449     int              jnrA,jnrB,jnrC,jnrD;
450     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
451     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
452     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
453     real             rcutoff_scalar;
454     real             *shiftvec,*fshift,*x,*f;
455     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
456     real             scratch[4*DIM];
457     __m128           fscal,rcutoff,rcutoff2,jidxall;
458     int              vdwioffset0;
459     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
460     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
461     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
462     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
463     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
464     real             *charge;
465     int              nvdwtype;
466     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
467     int              *vdwtype;
468     real             *vdwparam;
469     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
470     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
471     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
472     real             rswitch_scalar,d_scalar;
473     __m128           dummy_mask,cutoff_mask;
474     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
475     __m128           one     = _mm_set1_ps(1.0);
476     __m128           two     = _mm_set1_ps(2.0);
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = _mm_set1_ps(fr->epsfac);
489     charge           = mdatoms->chargeA;
490     krf              = _mm_set1_ps(fr->ic->k_rf);
491     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
492     crf              = _mm_set1_ps(fr->ic->c_rf);
493     nvdwtype         = fr->ntype;
494     vdwparam         = fr->nbfp;
495     vdwtype          = mdatoms->typeA;
496
497     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
498     rcutoff_scalar   = fr->rcoulomb;
499     rcutoff          = _mm_set1_ps(rcutoff_scalar);
500     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
501
502     rswitch_scalar   = fr->rvdw_switch;
503     rswitch          = _mm_set1_ps(rswitch_scalar);
504     /* Setup switch parameters */
505     d_scalar         = rcutoff_scalar-rswitch_scalar;
506     d                = _mm_set1_ps(d_scalar);
507     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
508     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
509     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
510     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
511     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
512     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
513
514     /* Avoid stupid compiler warnings */
515     jnrA = jnrB = jnrC = jnrD = 0;
516     j_coord_offsetA = 0;
517     j_coord_offsetB = 0;
518     j_coord_offsetC = 0;
519     j_coord_offsetD = 0;
520
521     outeriter        = 0;
522     inneriter        = 0;
523
524     for(iidx=0;iidx<4*DIM;iidx++)
525     {
526         scratch[iidx] = 0.0;
527     }
528
529     /* Start outer loop over neighborlists */
530     for(iidx=0; iidx<nri; iidx++)
531     {
532         /* Load shift vector for this list */
533         i_shift_offset   = DIM*shiftidx[iidx];
534
535         /* Load limits for loop over neighbors */
536         j_index_start    = jindex[iidx];
537         j_index_end      = jindex[iidx+1];
538
539         /* Get outer coordinate index */
540         inr              = iinr[iidx];
541         i_coord_offset   = DIM*inr;
542
543         /* Load i particle coords and add shift vector */
544         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
545
546         fix0             = _mm_setzero_ps();
547         fiy0             = _mm_setzero_ps();
548         fiz0             = _mm_setzero_ps();
549
550         /* Load parameters for i particles */
551         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
552         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
553
554         /* Start inner kernel loop */
555         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
556         {
557
558             /* Get j neighbor index, and coordinate index */
559             jnrA             = jjnr[jidx];
560             jnrB             = jjnr[jidx+1];
561             jnrC             = jjnr[jidx+2];
562             jnrD             = jjnr[jidx+3];
563             j_coord_offsetA  = DIM*jnrA;
564             j_coord_offsetB  = DIM*jnrB;
565             j_coord_offsetC  = DIM*jnrC;
566             j_coord_offsetD  = DIM*jnrD;
567
568             /* load j atom coordinates */
569             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
570                                               x+j_coord_offsetC,x+j_coord_offsetD,
571                                               &jx0,&jy0,&jz0);
572
573             /* Calculate displacement vector */
574             dx00             = _mm_sub_ps(ix0,jx0);
575             dy00             = _mm_sub_ps(iy0,jy0);
576             dz00             = _mm_sub_ps(iz0,jz0);
577
578             /* Calculate squared distance and things based on it */
579             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
580
581             rinv00           = gmx_mm_invsqrt_ps(rsq00);
582
583             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
584
585             /* Load parameters for j particles */
586             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
587                                                               charge+jnrC+0,charge+jnrD+0);
588             vdwjidx0A        = 2*vdwtype[jnrA+0];
589             vdwjidx0B        = 2*vdwtype[jnrB+0];
590             vdwjidx0C        = 2*vdwtype[jnrC+0];
591             vdwjidx0D        = 2*vdwtype[jnrD+0];
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             if (gmx_mm_any_lt(rsq00,rcutoff2))
598             {
599
600             r00              = _mm_mul_ps(rsq00,rinv00);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq00             = _mm_mul_ps(iq0,jq0);
604             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
605                                          vdwparam+vdwioffset0+vdwjidx0B,
606                                          vdwparam+vdwioffset0+vdwjidx0C,
607                                          vdwparam+vdwioffset0+vdwjidx0D,
608                                          &c6_00,&c12_00);
609
610             /* REACTION-FIELD ELECTROSTATICS */
611             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
612
613             /* LENNARD-JONES DISPERSION/REPULSION */
614
615             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
616             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
617             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
618             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
619             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
620
621             d                = _mm_sub_ps(r00,rswitch);
622             d                = _mm_max_ps(d,_mm_setzero_ps());
623             d2               = _mm_mul_ps(d,d);
624             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
625
626             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
627
628             /* Evaluate switch function */
629             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
630             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
631             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
632
633             fscal            = _mm_add_ps(felec,fvdw);
634
635             fscal            = _mm_and_ps(fscal,cutoff_mask);
636
637              /* Update vectorial force */
638             fix0             = _mm_macc_ps(dx00,fscal,fix0);
639             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
640             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
641
642             fjptrA             = f+j_coord_offsetA;
643             fjptrB             = f+j_coord_offsetB;
644             fjptrC             = f+j_coord_offsetC;
645             fjptrD             = f+j_coord_offsetD;
646             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
647                                                    _mm_mul_ps(dx00,fscal),
648                                                    _mm_mul_ps(dy00,fscal),
649                                                    _mm_mul_ps(dz00,fscal));
650
651             }
652
653             /* Inner loop uses 64 flops */
654         }
655
656         if(jidx<j_index_end)
657         {
658
659             /* Get j neighbor index, and coordinate index */
660             jnrlistA         = jjnr[jidx];
661             jnrlistB         = jjnr[jidx+1];
662             jnrlistC         = jjnr[jidx+2];
663             jnrlistD         = jjnr[jidx+3];
664             /* Sign of each element will be negative for non-real atoms.
665              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
666              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
667              */
668             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
669             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
670             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
671             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
672             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
673             j_coord_offsetA  = DIM*jnrA;
674             j_coord_offsetB  = DIM*jnrB;
675             j_coord_offsetC  = DIM*jnrC;
676             j_coord_offsetD  = DIM*jnrD;
677
678             /* load j atom coordinates */
679             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
680                                               x+j_coord_offsetC,x+j_coord_offsetD,
681                                               &jx0,&jy0,&jz0);
682
683             /* Calculate displacement vector */
684             dx00             = _mm_sub_ps(ix0,jx0);
685             dy00             = _mm_sub_ps(iy0,jy0);
686             dz00             = _mm_sub_ps(iz0,jz0);
687
688             /* Calculate squared distance and things based on it */
689             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
690
691             rinv00           = gmx_mm_invsqrt_ps(rsq00);
692
693             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
694
695             /* Load parameters for j particles */
696             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
697                                                               charge+jnrC+0,charge+jnrD+0);
698             vdwjidx0A        = 2*vdwtype[jnrA+0];
699             vdwjidx0B        = 2*vdwtype[jnrB+0];
700             vdwjidx0C        = 2*vdwtype[jnrC+0];
701             vdwjidx0D        = 2*vdwtype[jnrD+0];
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (gmx_mm_any_lt(rsq00,rcutoff2))
708             {
709
710             r00              = _mm_mul_ps(rsq00,rinv00);
711             r00              = _mm_andnot_ps(dummy_mask,r00);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq00             = _mm_mul_ps(iq0,jq0);
715             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
716                                          vdwparam+vdwioffset0+vdwjidx0B,
717                                          vdwparam+vdwioffset0+vdwjidx0C,
718                                          vdwparam+vdwioffset0+vdwjidx0D,
719                                          &c6_00,&c12_00);
720
721             /* REACTION-FIELD ELECTROSTATICS */
722             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
723
724             /* LENNARD-JONES DISPERSION/REPULSION */
725
726             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
727             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
728             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
729             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
730             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
731
732             d                = _mm_sub_ps(r00,rswitch);
733             d                = _mm_max_ps(d,_mm_setzero_ps());
734             d2               = _mm_mul_ps(d,d);
735             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
736
737             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
738
739             /* Evaluate switch function */
740             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
741             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
742             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
743
744             fscal            = _mm_add_ps(felec,fvdw);
745
746             fscal            = _mm_and_ps(fscal,cutoff_mask);
747
748             fscal            = _mm_andnot_ps(dummy_mask,fscal);
749
750              /* Update vectorial force */
751             fix0             = _mm_macc_ps(dx00,fscal,fix0);
752             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
753             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
754
755             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
756             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
757             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
758             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
759             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
760                                                    _mm_mul_ps(dx00,fscal),
761                                                    _mm_mul_ps(dy00,fscal),
762                                                    _mm_mul_ps(dz00,fscal));
763
764             }
765
766             /* Inner loop uses 65 flops */
767         }
768
769         /* End of innermost loop */
770
771         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
772                                               f+i_coord_offset,fshift+i_shift_offset);
773
774         /* Increment number of inner iterations */
775         inneriter                  += j_index_end - j_index_start;
776
777         /* Outer loop uses 7 flops */
778     }
779
780     /* Increment number of outer iterations */
781     outeriter        += nri;
782
783     /* Update outer/inner flops */
784
785     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
786 }