made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
85     real             *vftab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     krf              = _mm_set1_ps(fr->ic->k_rf);
104     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
105     crf              = _mm_set1_ps(fr->ic->c_rf);
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm_setzero_ps();
151         fiy0             = _mm_setzero_ps();
152         fiz0             = _mm_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_ps();
160         vvdwsum          = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
190
191             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
195                                                               charge+jnrC+0,charge+jnrD+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             if (gmx_mm_any_lt(rsq00,rcutoff2))
206             {
207
208             r00              = _mm_mul_ps(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm_mul_ps(iq0,jq0);
212             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
213                                          vdwparam+vdwioffset0+vdwjidx0B,
214                                          vdwparam+vdwioffset0+vdwjidx0C,
215                                          vdwparam+vdwioffset0+vdwjidx0D,
216                                          &c6_00,&c12_00);
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = _mm_mul_ps(r00,vftabscale);
220             vfitab           = _mm_cvttps_epi32(rt);
221 #ifdef __XOP__
222             vfeps            = _mm_frcz_ps(rt);
223 #else
224             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
225 #endif
226             twovfeps         = _mm_add_ps(vfeps,vfeps);
227             vfitab           = _mm_slli_epi32(vfitab,3);
228
229             /* REACTION-FIELD ELECTROSTATICS */
230             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
231             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
232
233             /* CUBIC SPLINE TABLE DISPERSION */
234             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
235             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
236             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
237             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
238             _MM_TRANSPOSE4_PS(Y,F,G,H);
239             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
240             VV               = _mm_macc_ps(vfeps,Fp,Y);
241             vvdw6            = _mm_mul_ps(c6_00,VV);
242             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
243             fvdw6            = _mm_mul_ps(c6_00,FF);
244
245             /* CUBIC SPLINE TABLE REPULSION */
246             vfitab           = _mm_add_epi32(vfitab,ifour);
247             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
248             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
249             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
250             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
251             _MM_TRANSPOSE4_PS(Y,F,G,H);
252             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
253             VV               = _mm_macc_ps(vfeps,Fp,Y);
254             vvdw12           = _mm_mul_ps(c12_00,VV);
255             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
256             fvdw12           = _mm_mul_ps(c12_00,FF);
257             vvdw             = _mm_add_ps(vvdw12,vvdw6);
258             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
259
260             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _mm_and_ps(velec,cutoff_mask);
264             velecsum         = _mm_add_ps(velecsum,velec);
265             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
266             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
267
268             fscal            = _mm_add_ps(felec,fvdw);
269
270             fscal            = _mm_and_ps(fscal,cutoff_mask);
271
272              /* Update vectorial force */
273             fix0             = _mm_macc_ps(dx00,fscal,fix0);
274             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
276
277             fjptrA             = f+j_coord_offsetA;
278             fjptrB             = f+j_coord_offsetB;
279             fjptrC             = f+j_coord_offsetC;
280             fjptrD             = f+j_coord_offsetD;
281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
282                                                    _mm_mul_ps(dx00,fscal),
283                                                    _mm_mul_ps(dy00,fscal),
284                                                    _mm_mul_ps(dz00,fscal));
285
286             }
287
288             /* Inner loop uses 75 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             /* Sign of each element will be negative for non-real atoms.
300              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
301              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
302              */
303             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
304             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
305             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
306             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
307             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
308             j_coord_offsetA  = DIM*jnrA;
309             j_coord_offsetB  = DIM*jnrB;
310             j_coord_offsetC  = DIM*jnrC;
311             j_coord_offsetD  = DIM*jnrD;
312
313             /* load j atom coordinates */
314             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
315                                               x+j_coord_offsetC,x+j_coord_offsetD,
316                                               &jx0,&jy0,&jz0);
317
318             /* Calculate displacement vector */
319             dx00             = _mm_sub_ps(ix0,jx0);
320             dy00             = _mm_sub_ps(iy0,jy0);
321             dz00             = _mm_sub_ps(iz0,jz0);
322
323             /* Calculate squared distance and things based on it */
324             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
325
326             rinv00           = gmx_mm_invsqrt_ps(rsq00);
327
328             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
329
330             /* Load parameters for j particles */
331             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
332                                                               charge+jnrC+0,charge+jnrD+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334             vdwjidx0B        = 2*vdwtype[jnrB+0];
335             vdwjidx0C        = 2*vdwtype[jnrC+0];
336             vdwjidx0D        = 2*vdwtype[jnrD+0];
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq00,rcutoff2))
343             {
344
345             r00              = _mm_mul_ps(rsq00,rinv00);
346             r00              = _mm_andnot_ps(dummy_mask,r00);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq00             = _mm_mul_ps(iq0,jq0);
350             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
351                                          vdwparam+vdwioffset0+vdwjidx0B,
352                                          vdwparam+vdwioffset0+vdwjidx0C,
353                                          vdwparam+vdwioffset0+vdwjidx0D,
354                                          &c6_00,&c12_00);
355
356             /* Calculate table index by multiplying r with table scale and truncate to integer */
357             rt               = _mm_mul_ps(r00,vftabscale);
358             vfitab           = _mm_cvttps_epi32(rt);
359 #ifdef __XOP__
360             vfeps            = _mm_frcz_ps(rt);
361 #else
362             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
363 #endif
364             twovfeps         = _mm_add_ps(vfeps,vfeps);
365             vfitab           = _mm_slli_epi32(vfitab,3);
366
367             /* REACTION-FIELD ELECTROSTATICS */
368             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
369             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
370
371             /* CUBIC SPLINE TABLE DISPERSION */
372             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
373             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
374             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
375             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
376             _MM_TRANSPOSE4_PS(Y,F,G,H);
377             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
378             VV               = _mm_macc_ps(vfeps,Fp,Y);
379             vvdw6            = _mm_mul_ps(c6_00,VV);
380             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
381             fvdw6            = _mm_mul_ps(c6_00,FF);
382
383             /* CUBIC SPLINE TABLE REPULSION */
384             vfitab           = _mm_add_epi32(vfitab,ifour);
385             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
386             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
387             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
388             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
389             _MM_TRANSPOSE4_PS(Y,F,G,H);
390             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
391             VV               = _mm_macc_ps(vfeps,Fp,Y);
392             vvdw12           = _mm_mul_ps(c12_00,VV);
393             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
394             fvdw12           = _mm_mul_ps(c12_00,FF);
395             vvdw             = _mm_add_ps(vvdw12,vvdw6);
396             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
397
398             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _mm_and_ps(velec,cutoff_mask);
402             velec            = _mm_andnot_ps(dummy_mask,velec);
403             velecsum         = _mm_add_ps(velecsum,velec);
404             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
405             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
406             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
407
408             fscal            = _mm_add_ps(felec,fvdw);
409
410             fscal            = _mm_and_ps(fscal,cutoff_mask);
411
412             fscal            = _mm_andnot_ps(dummy_mask,fscal);
413
414              /* Update vectorial force */
415             fix0             = _mm_macc_ps(dx00,fscal,fix0);
416             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
417             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
418
419             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
420             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
421             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
422             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
423             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
424                                                    _mm_mul_ps(dx00,fscal),
425                                                    _mm_mul_ps(dy00,fscal),
426                                                    _mm_mul_ps(dz00,fscal));
427
428             }
429
430             /* Inner loop uses 76 flops */
431         }
432
433         /* End of innermost loop */
434
435         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
436                                               f+i_coord_offset,fshift+i_shift_offset);
437
438         ggid                        = gid[iidx];
439         /* Update potential energies */
440         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
441         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
442
443         /* Increment number of inner iterations */
444         inneriter                  += j_index_end - j_index_start;
445
446         /* Outer loop uses 9 flops */
447     }
448
449     /* Increment number of outer iterations */
450     outeriter        += nri;
451
452     /* Update outer/inner flops */
453
454     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
455 }
456 /*
457  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
458  * Electrostatics interaction: ReactionField
459  * VdW interaction:            CubicSplineTable
460  * Geometry:                   Particle-Particle
461  * Calculate force/pot:        Force
462  */
463 void
464 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
465                     (t_nblist * gmx_restrict                nlist,
466                      rvec * gmx_restrict                    xx,
467                      rvec * gmx_restrict                    ff,
468                      t_forcerec * gmx_restrict              fr,
469                      t_mdatoms * gmx_restrict               mdatoms,
470                      nb_kernel_data_t * gmx_restrict        kernel_data,
471                      t_nrnb * gmx_restrict                  nrnb)
472 {
473     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
474      * just 0 for non-waters.
475      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
476      * jnr indices corresponding to data put in the four positions in the SIMD register.
477      */
478     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
479     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
480     int              jnrA,jnrB,jnrC,jnrD;
481     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
482     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
483     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
484     real             rcutoff_scalar;
485     real             *shiftvec,*fshift,*x,*f;
486     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
487     real             scratch[4*DIM];
488     __m128           fscal,rcutoff,rcutoff2,jidxall;
489     int              vdwioffset0;
490     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
491     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
492     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
493     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
494     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
495     real             *charge;
496     int              nvdwtype;
497     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
498     int              *vdwtype;
499     real             *vdwparam;
500     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
501     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
502     __m128i          vfitab;
503     __m128i          ifour       = _mm_set1_epi32(4);
504     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
505     real             *vftab;
506     __m128           dummy_mask,cutoff_mask;
507     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
508     __m128           one     = _mm_set1_ps(1.0);
509     __m128           two     = _mm_set1_ps(2.0);
510     x                = xx[0];
511     f                = ff[0];
512
513     nri              = nlist->nri;
514     iinr             = nlist->iinr;
515     jindex           = nlist->jindex;
516     jjnr             = nlist->jjnr;
517     shiftidx         = nlist->shift;
518     gid              = nlist->gid;
519     shiftvec         = fr->shift_vec[0];
520     fshift           = fr->fshift[0];
521     facel            = _mm_set1_ps(fr->epsfac);
522     charge           = mdatoms->chargeA;
523     krf              = _mm_set1_ps(fr->ic->k_rf);
524     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
525     crf              = _mm_set1_ps(fr->ic->c_rf);
526     nvdwtype         = fr->ntype;
527     vdwparam         = fr->nbfp;
528     vdwtype          = mdatoms->typeA;
529
530     vftab            = kernel_data->table_vdw->data;
531     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
532
533     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
534     rcutoff_scalar   = fr->rcoulomb;
535     rcutoff          = _mm_set1_ps(rcutoff_scalar);
536     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
537
538     /* Avoid stupid compiler warnings */
539     jnrA = jnrB = jnrC = jnrD = 0;
540     j_coord_offsetA = 0;
541     j_coord_offsetB = 0;
542     j_coord_offsetC = 0;
543     j_coord_offsetD = 0;
544
545     outeriter        = 0;
546     inneriter        = 0;
547
548     for(iidx=0;iidx<4*DIM;iidx++)
549     {
550         scratch[iidx] = 0.0;
551     }
552
553     /* Start outer loop over neighborlists */
554     for(iidx=0; iidx<nri; iidx++)
555     {
556         /* Load shift vector for this list */
557         i_shift_offset   = DIM*shiftidx[iidx];
558
559         /* Load limits for loop over neighbors */
560         j_index_start    = jindex[iidx];
561         j_index_end      = jindex[iidx+1];
562
563         /* Get outer coordinate index */
564         inr              = iinr[iidx];
565         i_coord_offset   = DIM*inr;
566
567         /* Load i particle coords and add shift vector */
568         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
569
570         fix0             = _mm_setzero_ps();
571         fiy0             = _mm_setzero_ps();
572         fiz0             = _mm_setzero_ps();
573
574         /* Load parameters for i particles */
575         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
576         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
577
578         /* Start inner kernel loop */
579         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
580         {
581
582             /* Get j neighbor index, and coordinate index */
583             jnrA             = jjnr[jidx];
584             jnrB             = jjnr[jidx+1];
585             jnrC             = jjnr[jidx+2];
586             jnrD             = jjnr[jidx+3];
587             j_coord_offsetA  = DIM*jnrA;
588             j_coord_offsetB  = DIM*jnrB;
589             j_coord_offsetC  = DIM*jnrC;
590             j_coord_offsetD  = DIM*jnrD;
591
592             /* load j atom coordinates */
593             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
594                                               x+j_coord_offsetC,x+j_coord_offsetD,
595                                               &jx0,&jy0,&jz0);
596
597             /* Calculate displacement vector */
598             dx00             = _mm_sub_ps(ix0,jx0);
599             dy00             = _mm_sub_ps(iy0,jy0);
600             dz00             = _mm_sub_ps(iz0,jz0);
601
602             /* Calculate squared distance and things based on it */
603             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
604
605             rinv00           = gmx_mm_invsqrt_ps(rsq00);
606
607             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
608
609             /* Load parameters for j particles */
610             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
611                                                               charge+jnrC+0,charge+jnrD+0);
612             vdwjidx0A        = 2*vdwtype[jnrA+0];
613             vdwjidx0B        = 2*vdwtype[jnrB+0];
614             vdwjidx0C        = 2*vdwtype[jnrC+0];
615             vdwjidx0D        = 2*vdwtype[jnrD+0];
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm_any_lt(rsq00,rcutoff2))
622             {
623
624             r00              = _mm_mul_ps(rsq00,rinv00);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq00             = _mm_mul_ps(iq0,jq0);
628             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
629                                          vdwparam+vdwioffset0+vdwjidx0B,
630                                          vdwparam+vdwioffset0+vdwjidx0C,
631                                          vdwparam+vdwioffset0+vdwjidx0D,
632                                          &c6_00,&c12_00);
633
634             /* Calculate table index by multiplying r with table scale and truncate to integer */
635             rt               = _mm_mul_ps(r00,vftabscale);
636             vfitab           = _mm_cvttps_epi32(rt);
637 #ifdef __XOP__
638             vfeps            = _mm_frcz_ps(rt);
639 #else
640             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
641 #endif
642             twovfeps         = _mm_add_ps(vfeps,vfeps);
643             vfitab           = _mm_slli_epi32(vfitab,3);
644
645             /* REACTION-FIELD ELECTROSTATICS */
646             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
647
648             /* CUBIC SPLINE TABLE DISPERSION */
649             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
650             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
651             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
652             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
653             _MM_TRANSPOSE4_PS(Y,F,G,H);
654             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
655             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
656             fvdw6            = _mm_mul_ps(c6_00,FF);
657
658             /* CUBIC SPLINE TABLE REPULSION */
659             vfitab           = _mm_add_epi32(vfitab,ifour);
660             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
661             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
662             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
663             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
664             _MM_TRANSPOSE4_PS(Y,F,G,H);
665             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
666             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
667             fvdw12           = _mm_mul_ps(c12_00,FF);
668             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
669
670             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
671
672             fscal            = _mm_add_ps(felec,fvdw);
673
674             fscal            = _mm_and_ps(fscal,cutoff_mask);
675
676              /* Update vectorial force */
677             fix0             = _mm_macc_ps(dx00,fscal,fix0);
678             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
679             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
680
681             fjptrA             = f+j_coord_offsetA;
682             fjptrB             = f+j_coord_offsetB;
683             fjptrC             = f+j_coord_offsetC;
684             fjptrD             = f+j_coord_offsetD;
685             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
686                                                    _mm_mul_ps(dx00,fscal),
687                                                    _mm_mul_ps(dy00,fscal),
688                                                    _mm_mul_ps(dz00,fscal));
689
690             }
691
692             /* Inner loop uses 60 flops */
693         }
694
695         if(jidx<j_index_end)
696         {
697
698             /* Get j neighbor index, and coordinate index */
699             jnrlistA         = jjnr[jidx];
700             jnrlistB         = jjnr[jidx+1];
701             jnrlistC         = jjnr[jidx+2];
702             jnrlistD         = jjnr[jidx+3];
703             /* Sign of each element will be negative for non-real atoms.
704              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
705              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
706              */
707             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
708             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
709             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
710             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
711             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
712             j_coord_offsetA  = DIM*jnrA;
713             j_coord_offsetB  = DIM*jnrB;
714             j_coord_offsetC  = DIM*jnrC;
715             j_coord_offsetD  = DIM*jnrD;
716
717             /* load j atom coordinates */
718             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
719                                               x+j_coord_offsetC,x+j_coord_offsetD,
720                                               &jx0,&jy0,&jz0);
721
722             /* Calculate displacement vector */
723             dx00             = _mm_sub_ps(ix0,jx0);
724             dy00             = _mm_sub_ps(iy0,jy0);
725             dz00             = _mm_sub_ps(iz0,jz0);
726
727             /* Calculate squared distance and things based on it */
728             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
729
730             rinv00           = gmx_mm_invsqrt_ps(rsq00);
731
732             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
733
734             /* Load parameters for j particles */
735             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
736                                                               charge+jnrC+0,charge+jnrD+0);
737             vdwjidx0A        = 2*vdwtype[jnrA+0];
738             vdwjidx0B        = 2*vdwtype[jnrB+0];
739             vdwjidx0C        = 2*vdwtype[jnrC+0];
740             vdwjidx0D        = 2*vdwtype[jnrD+0];
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             if (gmx_mm_any_lt(rsq00,rcutoff2))
747             {
748
749             r00              = _mm_mul_ps(rsq00,rinv00);
750             r00              = _mm_andnot_ps(dummy_mask,r00);
751
752             /* Compute parameters for interactions between i and j atoms */
753             qq00             = _mm_mul_ps(iq0,jq0);
754             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
755                                          vdwparam+vdwioffset0+vdwjidx0B,
756                                          vdwparam+vdwioffset0+vdwjidx0C,
757                                          vdwparam+vdwioffset0+vdwjidx0D,
758                                          &c6_00,&c12_00);
759
760             /* Calculate table index by multiplying r with table scale and truncate to integer */
761             rt               = _mm_mul_ps(r00,vftabscale);
762             vfitab           = _mm_cvttps_epi32(rt);
763 #ifdef __XOP__
764             vfeps            = _mm_frcz_ps(rt);
765 #else
766             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
767 #endif
768             twovfeps         = _mm_add_ps(vfeps,vfeps);
769             vfitab           = _mm_slli_epi32(vfitab,3);
770
771             /* REACTION-FIELD ELECTROSTATICS */
772             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
773
774             /* CUBIC SPLINE TABLE DISPERSION */
775             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
776             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
777             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
778             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
779             _MM_TRANSPOSE4_PS(Y,F,G,H);
780             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
781             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
782             fvdw6            = _mm_mul_ps(c6_00,FF);
783
784             /* CUBIC SPLINE TABLE REPULSION */
785             vfitab           = _mm_add_epi32(vfitab,ifour);
786             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
787             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
788             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
789             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
790             _MM_TRANSPOSE4_PS(Y,F,G,H);
791             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
792             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
793             fvdw12           = _mm_mul_ps(c12_00,FF);
794             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
795
796             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
797
798             fscal            = _mm_add_ps(felec,fvdw);
799
800             fscal            = _mm_and_ps(fscal,cutoff_mask);
801
802             fscal            = _mm_andnot_ps(dummy_mask,fscal);
803
804              /* Update vectorial force */
805             fix0             = _mm_macc_ps(dx00,fscal,fix0);
806             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
807             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
808
809             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
810             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
811             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
812             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
813             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
814                                                    _mm_mul_ps(dx00,fscal),
815                                                    _mm_mul_ps(dy00,fscal),
816                                                    _mm_mul_ps(dz00,fscal));
817
818             }
819
820             /* Inner loop uses 61 flops */
821         }
822
823         /* End of innermost loop */
824
825         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
826                                               f+i_coord_offset,fshift+i_shift_offset);
827
828         /* Increment number of inner iterations */
829         inneriter                  += j_index_end - j_index_start;
830
831         /* Outer loop uses 7 flops */
832     }
833
834     /* Increment number of outer iterations */
835     outeriter        += nri;
836
837     /* Update outer/inner flops */
838
839     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
840 }