made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     int              nvdwtype;
75     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
76     int              *vdwtype;
77     real             *vdwparam;
78     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
79     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
80     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
81     real             rswitch_scalar,d_scalar;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     nvdwtype         = fr->ntype;
98     vdwparam         = fr->nbfp;
99     vdwtype          = mdatoms->typeA;
100
101     rcutoff_scalar   = fr->rvdw;
102     rcutoff          = _mm_set1_ps(rcutoff_scalar);
103     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
104
105     rswitch_scalar   = fr->rvdw_switch;
106     rswitch          = _mm_set1_ps(rswitch_scalar);
107     /* Setup switch parameters */
108     d_scalar         = rcutoff_scalar-rswitch_scalar;
109     d                = _mm_set1_ps(d_scalar);
110     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
111     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
112     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
113     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
114     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
115     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152
153         /* Load parameters for i particles */
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         vvdwsum          = _mm_setzero_ps();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170             j_coord_offsetC  = DIM*jnrC;
171             j_coord_offsetD  = DIM*jnrD;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               x+j_coord_offsetC,x+j_coord_offsetD,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_ps(ix0,jx0);
180             dy00             = _mm_sub_ps(iy0,jy0);
181             dz00             = _mm_sub_ps(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm_invsqrt_ps(rsq00);
187
188             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             vdwjidx0A        = 2*vdwtype[jnrA+0];
192             vdwjidx0B        = 2*vdwtype[jnrB+0];
193             vdwjidx0C        = 2*vdwtype[jnrC+0];
194             vdwjidx0D        = 2*vdwtype[jnrD+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_mm_any_lt(rsq00,rcutoff2))
201             {
202
203             r00              = _mm_mul_ps(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,
208                                          vdwparam+vdwioffset0+vdwjidx0C,
209                                          vdwparam+vdwioffset0+vdwjidx0D,
210                                          &c6_00,&c12_00);
211
212             /* LENNARD-JONES DISPERSION/REPULSION */
213
214             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
215             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
216             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
217             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
218             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
219
220             d                = _mm_sub_ps(r00,rswitch);
221             d                = _mm_max_ps(d,_mm_setzero_ps());
222             d2               = _mm_mul_ps(d,d);
223             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
224
225             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
226
227             /* Evaluate switch function */
228             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
229             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
230             vvdw             = _mm_mul_ps(vvdw,sw);
231             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
235             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
236
237             fscal            = fvdw;
238
239             fscal            = _mm_and_ps(fscal,cutoff_mask);
240
241              /* Update vectorial force */
242             fix0             = _mm_macc_ps(dx00,fscal,fix0);
243             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
244             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
245
246             fjptrA             = f+j_coord_offsetA;
247             fjptrB             = f+j_coord_offsetB;
248             fjptrC             = f+j_coord_offsetC;
249             fjptrD             = f+j_coord_offsetD;
250             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
251                                                    _mm_mul_ps(dx00,fscal),
252                                                    _mm_mul_ps(dy00,fscal),
253                                                    _mm_mul_ps(dz00,fscal));
254
255             }
256
257             /* Inner loop uses 62 flops */
258         }
259
260         if(jidx<j_index_end)
261         {
262
263             /* Get j neighbor index, and coordinate index */
264             jnrlistA         = jjnr[jidx];
265             jnrlistB         = jjnr[jidx+1];
266             jnrlistC         = jjnr[jidx+2];
267             jnrlistD         = jjnr[jidx+3];
268             /* Sign of each element will be negative for non-real atoms.
269              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
270              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
271              */
272             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
273             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
274             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
275             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
276             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
277             j_coord_offsetA  = DIM*jnrA;
278             j_coord_offsetB  = DIM*jnrB;
279             j_coord_offsetC  = DIM*jnrC;
280             j_coord_offsetD  = DIM*jnrD;
281
282             /* load j atom coordinates */
283             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
284                                               x+j_coord_offsetC,x+j_coord_offsetD,
285                                               &jx0,&jy0,&jz0);
286
287             /* Calculate displacement vector */
288             dx00             = _mm_sub_ps(ix0,jx0);
289             dy00             = _mm_sub_ps(iy0,jy0);
290             dz00             = _mm_sub_ps(iz0,jz0);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
294
295             rinv00           = gmx_mm_invsqrt_ps(rsq00);
296
297             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
298
299             /* Load parameters for j particles */
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301             vdwjidx0B        = 2*vdwtype[jnrB+0];
302             vdwjidx0C        = 2*vdwtype[jnrC+0];
303             vdwjidx0D        = 2*vdwtype[jnrD+0];
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq00,rcutoff2))
310             {
311
312             r00              = _mm_mul_ps(rsq00,rinv00);
313             r00              = _mm_andnot_ps(dummy_mask,r00);
314
315             /* Compute parameters for interactions between i and j atoms */
316             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
317                                          vdwparam+vdwioffset0+vdwjidx0B,
318                                          vdwparam+vdwioffset0+vdwjidx0C,
319                                          vdwparam+vdwioffset0+vdwjidx0D,
320                                          &c6_00,&c12_00);
321
322             /* LENNARD-JONES DISPERSION/REPULSION */
323
324             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
326             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
327             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
328             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
329
330             d                = _mm_sub_ps(r00,rswitch);
331             d                = _mm_max_ps(d,_mm_setzero_ps());
332             d2               = _mm_mul_ps(d,d);
333             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
334
335             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
336
337             /* Evaluate switch function */
338             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
339             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
340             vvdw             = _mm_mul_ps(vvdw,sw);
341             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
345             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
346             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
347
348             fscal            = fvdw;
349
350             fscal            = _mm_and_ps(fscal,cutoff_mask);
351
352             fscal            = _mm_andnot_ps(dummy_mask,fscal);
353
354              /* Update vectorial force */
355             fix0             = _mm_macc_ps(dx00,fscal,fix0);
356             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
357             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
358
359             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
360             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
361             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
362             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
363             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
364                                                    _mm_mul_ps(dx00,fscal),
365                                                    _mm_mul_ps(dy00,fscal),
366                                                    _mm_mul_ps(dz00,fscal));
367
368             }
369
370             /* Inner loop uses 63 flops */
371         }
372
373         /* End of innermost loop */
374
375         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
376                                               f+i_coord_offset,fshift+i_shift_offset);
377
378         ggid                        = gid[iidx];
379         /* Update potential energies */
380         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
381
382         /* Increment number of inner iterations */
383         inneriter                  += j_index_end - j_index_start;
384
385         /* Outer loop uses 7 flops */
386     }
387
388     /* Increment number of outer iterations */
389     outeriter        += nri;
390
391     /* Update outer/inner flops */
392
393     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
394 }
395 /*
396  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_128_fma_single
397  * Electrostatics interaction: None
398  * VdW interaction:            LennardJones
399  * Geometry:                   Particle-Particle
400  * Calculate force/pot:        Force
401  */
402 void
403 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_128_fma_single
404                     (t_nblist * gmx_restrict                nlist,
405                      rvec * gmx_restrict                    xx,
406                      rvec * gmx_restrict                    ff,
407                      t_forcerec * gmx_restrict              fr,
408                      t_mdatoms * gmx_restrict               mdatoms,
409                      nb_kernel_data_t * gmx_restrict        kernel_data,
410                      t_nrnb * gmx_restrict                  nrnb)
411 {
412     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
413      * just 0 for non-waters.
414      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
415      * jnr indices corresponding to data put in the four positions in the SIMD register.
416      */
417     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
418     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
419     int              jnrA,jnrB,jnrC,jnrD;
420     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
421     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
422     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
423     real             rcutoff_scalar;
424     real             *shiftvec,*fshift,*x,*f;
425     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
426     real             scratch[4*DIM];
427     __m128           fscal,rcutoff,rcutoff2,jidxall;
428     int              vdwioffset0;
429     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
430     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
431     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
432     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
433     int              nvdwtype;
434     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
435     int              *vdwtype;
436     real             *vdwparam;
437     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
438     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
439     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
440     real             rswitch_scalar,d_scalar;
441     __m128           dummy_mask,cutoff_mask;
442     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
443     __m128           one     = _mm_set1_ps(1.0);
444     __m128           two     = _mm_set1_ps(2.0);
445     x                = xx[0];
446     f                = ff[0];
447
448     nri              = nlist->nri;
449     iinr             = nlist->iinr;
450     jindex           = nlist->jindex;
451     jjnr             = nlist->jjnr;
452     shiftidx         = nlist->shift;
453     gid              = nlist->gid;
454     shiftvec         = fr->shift_vec[0];
455     fshift           = fr->fshift[0];
456     nvdwtype         = fr->ntype;
457     vdwparam         = fr->nbfp;
458     vdwtype          = mdatoms->typeA;
459
460     rcutoff_scalar   = fr->rvdw;
461     rcutoff          = _mm_set1_ps(rcutoff_scalar);
462     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
463
464     rswitch_scalar   = fr->rvdw_switch;
465     rswitch          = _mm_set1_ps(rswitch_scalar);
466     /* Setup switch parameters */
467     d_scalar         = rcutoff_scalar-rswitch_scalar;
468     d                = _mm_set1_ps(d_scalar);
469     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
470     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
471     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
472     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
473     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
474     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
475
476     /* Avoid stupid compiler warnings */
477     jnrA = jnrB = jnrC = jnrD = 0;
478     j_coord_offsetA = 0;
479     j_coord_offsetB = 0;
480     j_coord_offsetC = 0;
481     j_coord_offsetD = 0;
482
483     outeriter        = 0;
484     inneriter        = 0;
485
486     for(iidx=0;iidx<4*DIM;iidx++)
487     {
488         scratch[iidx] = 0.0;
489     }
490
491     /* Start outer loop over neighborlists */
492     for(iidx=0; iidx<nri; iidx++)
493     {
494         /* Load shift vector for this list */
495         i_shift_offset   = DIM*shiftidx[iidx];
496
497         /* Load limits for loop over neighbors */
498         j_index_start    = jindex[iidx];
499         j_index_end      = jindex[iidx+1];
500
501         /* Get outer coordinate index */
502         inr              = iinr[iidx];
503         i_coord_offset   = DIM*inr;
504
505         /* Load i particle coords and add shift vector */
506         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
507
508         fix0             = _mm_setzero_ps();
509         fiy0             = _mm_setzero_ps();
510         fiz0             = _mm_setzero_ps();
511
512         /* Load parameters for i particles */
513         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
514
515         /* Start inner kernel loop */
516         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
517         {
518
519             /* Get j neighbor index, and coordinate index */
520             jnrA             = jjnr[jidx];
521             jnrB             = jjnr[jidx+1];
522             jnrC             = jjnr[jidx+2];
523             jnrD             = jjnr[jidx+3];
524             j_coord_offsetA  = DIM*jnrA;
525             j_coord_offsetB  = DIM*jnrB;
526             j_coord_offsetC  = DIM*jnrC;
527             j_coord_offsetD  = DIM*jnrD;
528
529             /* load j atom coordinates */
530             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
531                                               x+j_coord_offsetC,x+j_coord_offsetD,
532                                               &jx0,&jy0,&jz0);
533
534             /* Calculate displacement vector */
535             dx00             = _mm_sub_ps(ix0,jx0);
536             dy00             = _mm_sub_ps(iy0,jy0);
537             dz00             = _mm_sub_ps(iz0,jz0);
538
539             /* Calculate squared distance and things based on it */
540             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
541
542             rinv00           = gmx_mm_invsqrt_ps(rsq00);
543
544             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
545
546             /* Load parameters for j particles */
547             vdwjidx0A        = 2*vdwtype[jnrA+0];
548             vdwjidx0B        = 2*vdwtype[jnrB+0];
549             vdwjidx0C        = 2*vdwtype[jnrC+0];
550             vdwjidx0D        = 2*vdwtype[jnrD+0];
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             if (gmx_mm_any_lt(rsq00,rcutoff2))
557             {
558
559             r00              = _mm_mul_ps(rsq00,rinv00);
560
561             /* Compute parameters for interactions between i and j atoms */
562             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
563                                          vdwparam+vdwioffset0+vdwjidx0B,
564                                          vdwparam+vdwioffset0+vdwjidx0C,
565                                          vdwparam+vdwioffset0+vdwjidx0D,
566                                          &c6_00,&c12_00);
567
568             /* LENNARD-JONES DISPERSION/REPULSION */
569
570             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
571             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
572             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
573             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
574             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
575
576             d                = _mm_sub_ps(r00,rswitch);
577             d                = _mm_max_ps(d,_mm_setzero_ps());
578             d2               = _mm_mul_ps(d,d);
579             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
580
581             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
582
583             /* Evaluate switch function */
584             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
585             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
586             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
587
588             fscal            = fvdw;
589
590             fscal            = _mm_and_ps(fscal,cutoff_mask);
591
592              /* Update vectorial force */
593             fix0             = _mm_macc_ps(dx00,fscal,fix0);
594             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
595             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
596
597             fjptrA             = f+j_coord_offsetA;
598             fjptrB             = f+j_coord_offsetB;
599             fjptrC             = f+j_coord_offsetC;
600             fjptrD             = f+j_coord_offsetD;
601             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
602                                                    _mm_mul_ps(dx00,fscal),
603                                                    _mm_mul_ps(dy00,fscal),
604                                                    _mm_mul_ps(dz00,fscal));
605
606             }
607
608             /* Inner loop uses 59 flops */
609         }
610
611         if(jidx<j_index_end)
612         {
613
614             /* Get j neighbor index, and coordinate index */
615             jnrlistA         = jjnr[jidx];
616             jnrlistB         = jjnr[jidx+1];
617             jnrlistC         = jjnr[jidx+2];
618             jnrlistD         = jjnr[jidx+3];
619             /* Sign of each element will be negative for non-real atoms.
620              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
621              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
622              */
623             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
624             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
625             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
626             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
627             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
628             j_coord_offsetA  = DIM*jnrA;
629             j_coord_offsetB  = DIM*jnrB;
630             j_coord_offsetC  = DIM*jnrC;
631             j_coord_offsetD  = DIM*jnrD;
632
633             /* load j atom coordinates */
634             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
635                                               x+j_coord_offsetC,x+j_coord_offsetD,
636                                               &jx0,&jy0,&jz0);
637
638             /* Calculate displacement vector */
639             dx00             = _mm_sub_ps(ix0,jx0);
640             dy00             = _mm_sub_ps(iy0,jy0);
641             dz00             = _mm_sub_ps(iz0,jz0);
642
643             /* Calculate squared distance and things based on it */
644             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
645
646             rinv00           = gmx_mm_invsqrt_ps(rsq00);
647
648             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
649
650             /* Load parameters for j particles */
651             vdwjidx0A        = 2*vdwtype[jnrA+0];
652             vdwjidx0B        = 2*vdwtype[jnrB+0];
653             vdwjidx0C        = 2*vdwtype[jnrC+0];
654             vdwjidx0D        = 2*vdwtype[jnrD+0];
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm_any_lt(rsq00,rcutoff2))
661             {
662
663             r00              = _mm_mul_ps(rsq00,rinv00);
664             r00              = _mm_andnot_ps(dummy_mask,r00);
665
666             /* Compute parameters for interactions between i and j atoms */
667             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
668                                          vdwparam+vdwioffset0+vdwjidx0B,
669                                          vdwparam+vdwioffset0+vdwjidx0C,
670                                          vdwparam+vdwioffset0+vdwjidx0D,
671                                          &c6_00,&c12_00);
672
673             /* LENNARD-JONES DISPERSION/REPULSION */
674
675             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
676             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
677             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
678             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
679             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
680
681             d                = _mm_sub_ps(r00,rswitch);
682             d                = _mm_max_ps(d,_mm_setzero_ps());
683             d2               = _mm_mul_ps(d,d);
684             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
685
686             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
687
688             /* Evaluate switch function */
689             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
690             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
691             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
692
693             fscal            = fvdw;
694
695             fscal            = _mm_and_ps(fscal,cutoff_mask);
696
697             fscal            = _mm_andnot_ps(dummy_mask,fscal);
698
699              /* Update vectorial force */
700             fix0             = _mm_macc_ps(dx00,fscal,fix0);
701             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
702             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
703
704             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
705             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
706             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
707             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
708             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
709                                                    _mm_mul_ps(dx00,fscal),
710                                                    _mm_mul_ps(dy00,fscal),
711                                                    _mm_mul_ps(dz00,fscal));
712
713             }
714
715             /* Inner loop uses 60 flops */
716         }
717
718         /* End of innermost loop */
719
720         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
721                                               f+i_coord_offset,fshift+i_shift_offset);
722
723         /* Increment number of inner iterations */
724         inneriter                  += j_index_end - j_index_start;
725
726         /* Outer loop uses 6 flops */
727     }
728
729     /* Increment number of outer iterations */
730     outeriter        += nri;
731
732     /* Update outer/inner flops */
733
734     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*60);
735 }