647bb39abdceab628b5c2d324f29305b7839d65c
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          gbitab;
93     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
94     __m128           minushalf = _mm_set1_ps(-0.5);
95     real             *invsqrta,*dvda,*gbtab;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
129
130     invsqrta         = fr->invsqrta;
131     dvda             = fr->dvda;
132     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
133     gbtab            = fr->gbtab.data;
134     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
174         isai0            = _mm_load1_ps(invsqrta+inr+0);
175         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_ps();
179         vgbsum           = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181         dvdasum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm_invsqrt_ps(rsq00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                               charge+jnrC+0,charge+jnrD+0);
215             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
216                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _mm_mul_ps(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm_mul_ps(iq0,jq0);
230             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,
232                                          vdwparam+vdwioffset0+vdwjidx0C,
233                                          vdwparam+vdwioffset0+vdwjidx0D,
234                                          &c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm_mul_ps(r00,vftabscale);
238             vfitab           = _mm_cvttps_epi32(rt);
239 #ifdef __XOP__
240             vfeps            = _mm_frcz_ps(rt);
241 #else
242             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
243 #endif
244             twovfeps         = _mm_add_ps(vfeps,vfeps);
245             vfitab           = _mm_slli_epi32(vfitab,3);
246
247             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
248             isaprod          = _mm_mul_ps(isai0,isaj0);
249             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
250             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
251
252             /* Calculate generalized born table index - this is a separate table from the normal one,
253              * but we use the same procedure by multiplying r with scale and truncating to integer.
254              */
255             rt               = _mm_mul_ps(r00,gbscale);
256             gbitab           = _mm_cvttps_epi32(rt);
257 #ifdef __XOP__
258             gbeps            = _mm_frcz_ps(rt);
259 #else
260             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
261 #endif
262             gbitab           = _mm_slli_epi32(gbitab,2);
263
264             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
265             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
266             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
267             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
268             _MM_TRANSPOSE4_PS(Y,F,G,H);
269             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
270             VV               = _mm_macc_ps(gbeps,Fp,Y);
271             vgb              = _mm_mul_ps(gbqqfactor,VV);
272
273             twogbeps         = _mm_add_ps(gbeps,gbeps);
274             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
275             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
276             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
277             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
278             fjptrA           = dvda+jnrA;
279             fjptrB           = dvda+jnrB;
280             fjptrC           = dvda+jnrC;
281             fjptrD           = dvda+jnrD;
282             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
283             velec            = _mm_mul_ps(qq00,rinv00);
284             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
285
286             /* CUBIC SPLINE TABLE DISPERSION */
287             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
293             VV               = _mm_macc_ps(vfeps,Fp,Y);
294             vvdw6            = _mm_mul_ps(c6_00,VV);
295             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
296             fvdw6            = _mm_mul_ps(c6_00,FF);
297
298             /* CUBIC SPLINE TABLE REPULSION */
299             vfitab           = _mm_add_epi32(vfitab,ifour);
300             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
301             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
302             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
303             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
304             _MM_TRANSPOSE4_PS(Y,F,G,H);
305             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
306             VV               = _mm_macc_ps(vfeps,Fp,Y);
307             vvdw12           = _mm_mul_ps(c12_00,VV);
308             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
309             fvdw12           = _mm_mul_ps(c12_00,FF);
310             vvdw             = _mm_add_ps(vvdw12,vvdw6);
311             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm_add_ps(velecsum,velec);
315             vgbsum           = _mm_add_ps(vgbsum,vgb);
316             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
317
318             fscal            = _mm_add_ps(felec,fvdw);
319
320              /* Update vectorial force */
321             fix0             = _mm_macc_ps(dx00,fscal,fix0);
322             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
323             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
324
325             fjptrA             = f+j_coord_offsetA;
326             fjptrB             = f+j_coord_offsetB;
327             fjptrC             = f+j_coord_offsetC;
328             fjptrD             = f+j_coord_offsetD;
329             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
330                                                    _mm_mul_ps(dx00,fscal),
331                                                    _mm_mul_ps(dy00,fscal),
332                                                    _mm_mul_ps(dz00,fscal));
333
334             /* Inner loop uses 95 flops */
335         }
336
337         if(jidx<j_index_end)
338         {
339
340             /* Get j neighbor index, and coordinate index */
341             jnrlistA         = jjnr[jidx];
342             jnrlistB         = jjnr[jidx+1];
343             jnrlistC         = jjnr[jidx+2];
344             jnrlistD         = jjnr[jidx+3];
345             /* Sign of each element will be negative for non-real atoms.
346              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
347              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
348              */
349             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
350             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
351             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
352             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
353             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
354             j_coord_offsetA  = DIM*jnrA;
355             j_coord_offsetB  = DIM*jnrB;
356             j_coord_offsetC  = DIM*jnrC;
357             j_coord_offsetD  = DIM*jnrD;
358
359             /* load j atom coordinates */
360             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
361                                               x+j_coord_offsetC,x+j_coord_offsetD,
362                                               &jx0,&jy0,&jz0);
363
364             /* Calculate displacement vector */
365             dx00             = _mm_sub_ps(ix0,jx0);
366             dy00             = _mm_sub_ps(iy0,jy0);
367             dz00             = _mm_sub_ps(iz0,jz0);
368
369             /* Calculate squared distance and things based on it */
370             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
371
372             rinv00           = gmx_mm_invsqrt_ps(rsq00);
373
374             /* Load parameters for j particles */
375             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
376                                                               charge+jnrC+0,charge+jnrD+0);
377             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
378                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
379             vdwjidx0A        = 2*vdwtype[jnrA+0];
380             vdwjidx0B        = 2*vdwtype[jnrB+0];
381             vdwjidx0C        = 2*vdwtype[jnrC+0];
382             vdwjidx0D        = 2*vdwtype[jnrD+0];
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r00              = _mm_mul_ps(rsq00,rinv00);
389             r00              = _mm_andnot_ps(dummy_mask,r00);
390
391             /* Compute parameters for interactions between i and j atoms */
392             qq00             = _mm_mul_ps(iq0,jq0);
393             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
394                                          vdwparam+vdwioffset0+vdwjidx0B,
395                                          vdwparam+vdwioffset0+vdwjidx0C,
396                                          vdwparam+vdwioffset0+vdwjidx0D,
397                                          &c6_00,&c12_00);
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = _mm_mul_ps(r00,vftabscale);
401             vfitab           = _mm_cvttps_epi32(rt);
402 #ifdef __XOP__
403             vfeps            = _mm_frcz_ps(rt);
404 #else
405             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
406 #endif
407             twovfeps         = _mm_add_ps(vfeps,vfeps);
408             vfitab           = _mm_slli_epi32(vfitab,3);
409
410             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
411             isaprod          = _mm_mul_ps(isai0,isaj0);
412             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
413             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
414
415             /* Calculate generalized born table index - this is a separate table from the normal one,
416              * but we use the same procedure by multiplying r with scale and truncating to integer.
417              */
418             rt               = _mm_mul_ps(r00,gbscale);
419             gbitab           = _mm_cvttps_epi32(rt);
420 #ifdef __XOP__
421             gbeps            = _mm_frcz_ps(rt);
422 #else
423             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
424 #endif
425             gbitab           = _mm_slli_epi32(gbitab,2);
426
427             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
428             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
429             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
430             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
431             _MM_TRANSPOSE4_PS(Y,F,G,H);
432             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
433             VV               = _mm_macc_ps(gbeps,Fp,Y);
434             vgb              = _mm_mul_ps(gbqqfactor,VV);
435
436             twogbeps         = _mm_add_ps(gbeps,gbeps);
437             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
438             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
439             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
440             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
441             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
442             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
443             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
444             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
445             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
446             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
447             velec            = _mm_mul_ps(qq00,rinv00);
448             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
449
450             /* CUBIC SPLINE TABLE DISPERSION */
451             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
452             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
453             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
454             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
455             _MM_TRANSPOSE4_PS(Y,F,G,H);
456             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
457             VV               = _mm_macc_ps(vfeps,Fp,Y);
458             vvdw6            = _mm_mul_ps(c6_00,VV);
459             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
460             fvdw6            = _mm_mul_ps(c6_00,FF);
461
462             /* CUBIC SPLINE TABLE REPULSION */
463             vfitab           = _mm_add_epi32(vfitab,ifour);
464             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
465             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
466             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
467             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
468             _MM_TRANSPOSE4_PS(Y,F,G,H);
469             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
470             VV               = _mm_macc_ps(vfeps,Fp,Y);
471             vvdw12           = _mm_mul_ps(c12_00,VV);
472             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
473             fvdw12           = _mm_mul_ps(c12_00,FF);
474             vvdw             = _mm_add_ps(vvdw12,vvdw6);
475             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             velec            = _mm_andnot_ps(dummy_mask,velec);
479             velecsum         = _mm_add_ps(velecsum,velec);
480             vgb              = _mm_andnot_ps(dummy_mask,vgb);
481             vgbsum           = _mm_add_ps(vgbsum,vgb);
482             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
483             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
484
485             fscal            = _mm_add_ps(felec,fvdw);
486
487             fscal            = _mm_andnot_ps(dummy_mask,fscal);
488
489              /* Update vectorial force */
490             fix0             = _mm_macc_ps(dx00,fscal,fix0);
491             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
492             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
493
494             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
495             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
496             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
497             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
498             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
499                                                    _mm_mul_ps(dx00,fscal),
500                                                    _mm_mul_ps(dy00,fscal),
501                                                    _mm_mul_ps(dz00,fscal));
502
503             /* Inner loop uses 96 flops */
504         }
505
506         /* End of innermost loop */
507
508         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
509                                               f+i_coord_offset,fshift+i_shift_offset);
510
511         ggid                        = gid[iidx];
512         /* Update potential energies */
513         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
514         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
515         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
516         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
517         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
518
519         /* Increment number of inner iterations */
520         inneriter                  += j_index_end - j_index_start;
521
522         /* Outer loop uses 10 flops */
523     }
524
525     /* Increment number of outer iterations */
526     outeriter        += nri;
527
528     /* Update outer/inner flops */
529
530     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*96);
531 }
532 /*
533  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
534  * Electrostatics interaction: GeneralizedBorn
535  * VdW interaction:            CubicSplineTable
536  * Geometry:                   Particle-Particle
537  * Calculate force/pot:        Force
538  */
539 void
540 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_single
541                     (t_nblist * gmx_restrict                nlist,
542                      rvec * gmx_restrict                    xx,
543                      rvec * gmx_restrict                    ff,
544                      t_forcerec * gmx_restrict              fr,
545                      t_mdatoms * gmx_restrict               mdatoms,
546                      nb_kernel_data_t * gmx_restrict        kernel_data,
547                      t_nrnb * gmx_restrict                  nrnb)
548 {
549     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
550      * just 0 for non-waters.
551      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
552      * jnr indices corresponding to data put in the four positions in the SIMD register.
553      */
554     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
555     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
556     int              jnrA,jnrB,jnrC,jnrD;
557     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
558     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
559     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
560     real             rcutoff_scalar;
561     real             *shiftvec,*fshift,*x,*f;
562     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
563     real             scratch[4*DIM];
564     __m128           fscal,rcutoff,rcutoff2,jidxall;
565     int              vdwioffset0;
566     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
567     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
568     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
569     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
570     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
571     real             *charge;
572     __m128i          gbitab;
573     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
574     __m128           minushalf = _mm_set1_ps(-0.5);
575     real             *invsqrta,*dvda,*gbtab;
576     int              nvdwtype;
577     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
578     int              *vdwtype;
579     real             *vdwparam;
580     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
581     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
582     __m128i          vfitab;
583     __m128i          ifour       = _mm_set1_epi32(4);
584     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
585     real             *vftab;
586     __m128           dummy_mask,cutoff_mask;
587     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
588     __m128           one     = _mm_set1_ps(1.0);
589     __m128           two     = _mm_set1_ps(2.0);
590     x                = xx[0];
591     f                = ff[0];
592
593     nri              = nlist->nri;
594     iinr             = nlist->iinr;
595     jindex           = nlist->jindex;
596     jjnr             = nlist->jjnr;
597     shiftidx         = nlist->shift;
598     gid              = nlist->gid;
599     shiftvec         = fr->shift_vec[0];
600     fshift           = fr->fshift[0];
601     facel            = _mm_set1_ps(fr->epsfac);
602     charge           = mdatoms->chargeA;
603     nvdwtype         = fr->ntype;
604     vdwparam         = fr->nbfp;
605     vdwtype          = mdatoms->typeA;
606
607     vftab            = kernel_data->table_vdw->data;
608     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
609
610     invsqrta         = fr->invsqrta;
611     dvda             = fr->dvda;
612     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
613     gbtab            = fr->gbtab.data;
614     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
615
616     /* Avoid stupid compiler warnings */
617     jnrA = jnrB = jnrC = jnrD = 0;
618     j_coord_offsetA = 0;
619     j_coord_offsetB = 0;
620     j_coord_offsetC = 0;
621     j_coord_offsetD = 0;
622
623     outeriter        = 0;
624     inneriter        = 0;
625
626     for(iidx=0;iidx<4*DIM;iidx++)
627     {
628         scratch[iidx] = 0.0;
629     }
630
631     /* Start outer loop over neighborlists */
632     for(iidx=0; iidx<nri; iidx++)
633     {
634         /* Load shift vector for this list */
635         i_shift_offset   = DIM*shiftidx[iidx];
636
637         /* Load limits for loop over neighbors */
638         j_index_start    = jindex[iidx];
639         j_index_end      = jindex[iidx+1];
640
641         /* Get outer coordinate index */
642         inr              = iinr[iidx];
643         i_coord_offset   = DIM*inr;
644
645         /* Load i particle coords and add shift vector */
646         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
647
648         fix0             = _mm_setzero_ps();
649         fiy0             = _mm_setzero_ps();
650         fiz0             = _mm_setzero_ps();
651
652         /* Load parameters for i particles */
653         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
654         isai0            = _mm_load1_ps(invsqrta+inr+0);
655         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
656
657         dvdasum          = _mm_setzero_ps();
658
659         /* Start inner kernel loop */
660         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
661         {
662
663             /* Get j neighbor index, and coordinate index */
664             jnrA             = jjnr[jidx];
665             jnrB             = jjnr[jidx+1];
666             jnrC             = jjnr[jidx+2];
667             jnrD             = jjnr[jidx+3];
668             j_coord_offsetA  = DIM*jnrA;
669             j_coord_offsetB  = DIM*jnrB;
670             j_coord_offsetC  = DIM*jnrC;
671             j_coord_offsetD  = DIM*jnrD;
672
673             /* load j atom coordinates */
674             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
675                                               x+j_coord_offsetC,x+j_coord_offsetD,
676                                               &jx0,&jy0,&jz0);
677
678             /* Calculate displacement vector */
679             dx00             = _mm_sub_ps(ix0,jx0);
680             dy00             = _mm_sub_ps(iy0,jy0);
681             dz00             = _mm_sub_ps(iz0,jz0);
682
683             /* Calculate squared distance and things based on it */
684             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
685
686             rinv00           = gmx_mm_invsqrt_ps(rsq00);
687
688             /* Load parameters for j particles */
689             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
690                                                               charge+jnrC+0,charge+jnrD+0);
691             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
692                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
693             vdwjidx0A        = 2*vdwtype[jnrA+0];
694             vdwjidx0B        = 2*vdwtype[jnrB+0];
695             vdwjidx0C        = 2*vdwtype[jnrC+0];
696             vdwjidx0D        = 2*vdwtype[jnrD+0];
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             r00              = _mm_mul_ps(rsq00,rinv00);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq00             = _mm_mul_ps(iq0,jq0);
706             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
707                                          vdwparam+vdwioffset0+vdwjidx0B,
708                                          vdwparam+vdwioffset0+vdwjidx0C,
709                                          vdwparam+vdwioffset0+vdwjidx0D,
710                                          &c6_00,&c12_00);
711
712             /* Calculate table index by multiplying r with table scale and truncate to integer */
713             rt               = _mm_mul_ps(r00,vftabscale);
714             vfitab           = _mm_cvttps_epi32(rt);
715 #ifdef __XOP__
716             vfeps            = _mm_frcz_ps(rt);
717 #else
718             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
719 #endif
720             twovfeps         = _mm_add_ps(vfeps,vfeps);
721             vfitab           = _mm_slli_epi32(vfitab,3);
722
723             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
724             isaprod          = _mm_mul_ps(isai0,isaj0);
725             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
726             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
727
728             /* Calculate generalized born table index - this is a separate table from the normal one,
729              * but we use the same procedure by multiplying r with scale and truncating to integer.
730              */
731             rt               = _mm_mul_ps(r00,gbscale);
732             gbitab           = _mm_cvttps_epi32(rt);
733 #ifdef __XOP__
734             gbeps            = _mm_frcz_ps(rt);
735 #else
736             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
737 #endif
738             gbitab           = _mm_slli_epi32(gbitab,2);
739
740             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
741             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
742             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
743             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
744             _MM_TRANSPOSE4_PS(Y,F,G,H);
745             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
746             VV               = _mm_macc_ps(gbeps,Fp,Y);
747             vgb              = _mm_mul_ps(gbqqfactor,VV);
748
749             twogbeps         = _mm_add_ps(gbeps,gbeps);
750             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
751             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
752             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
753             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
754             fjptrA           = dvda+jnrA;
755             fjptrB           = dvda+jnrB;
756             fjptrC           = dvda+jnrC;
757             fjptrD           = dvda+jnrD;
758             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
759             velec            = _mm_mul_ps(qq00,rinv00);
760             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
761
762             /* CUBIC SPLINE TABLE DISPERSION */
763             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
764             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
765             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
766             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
767             _MM_TRANSPOSE4_PS(Y,F,G,H);
768             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
769             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
770             fvdw6            = _mm_mul_ps(c6_00,FF);
771
772             /* CUBIC SPLINE TABLE REPULSION */
773             vfitab           = _mm_add_epi32(vfitab,ifour);
774             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
775             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
776             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
777             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
778             _MM_TRANSPOSE4_PS(Y,F,G,H);
779             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
780             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
781             fvdw12           = _mm_mul_ps(c12_00,FF);
782             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
783
784             fscal            = _mm_add_ps(felec,fvdw);
785
786              /* Update vectorial force */
787             fix0             = _mm_macc_ps(dx00,fscal,fix0);
788             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
789             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
790
791             fjptrA             = f+j_coord_offsetA;
792             fjptrB             = f+j_coord_offsetB;
793             fjptrC             = f+j_coord_offsetC;
794             fjptrD             = f+j_coord_offsetD;
795             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
796                                                    _mm_mul_ps(dx00,fscal),
797                                                    _mm_mul_ps(dy00,fscal),
798                                                    _mm_mul_ps(dz00,fscal));
799
800             /* Inner loop uses 85 flops */
801         }
802
803         if(jidx<j_index_end)
804         {
805
806             /* Get j neighbor index, and coordinate index */
807             jnrlistA         = jjnr[jidx];
808             jnrlistB         = jjnr[jidx+1];
809             jnrlistC         = jjnr[jidx+2];
810             jnrlistD         = jjnr[jidx+3];
811             /* Sign of each element will be negative for non-real atoms.
812              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
813              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
814              */
815             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
816             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
817             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
818             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
819             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
820             j_coord_offsetA  = DIM*jnrA;
821             j_coord_offsetB  = DIM*jnrB;
822             j_coord_offsetC  = DIM*jnrC;
823             j_coord_offsetD  = DIM*jnrD;
824
825             /* load j atom coordinates */
826             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
827                                               x+j_coord_offsetC,x+j_coord_offsetD,
828                                               &jx0,&jy0,&jz0);
829
830             /* Calculate displacement vector */
831             dx00             = _mm_sub_ps(ix0,jx0);
832             dy00             = _mm_sub_ps(iy0,jy0);
833             dz00             = _mm_sub_ps(iz0,jz0);
834
835             /* Calculate squared distance and things based on it */
836             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
837
838             rinv00           = gmx_mm_invsqrt_ps(rsq00);
839
840             /* Load parameters for j particles */
841             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
842                                                               charge+jnrC+0,charge+jnrD+0);
843             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
844                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
845             vdwjidx0A        = 2*vdwtype[jnrA+0];
846             vdwjidx0B        = 2*vdwtype[jnrB+0];
847             vdwjidx0C        = 2*vdwtype[jnrC+0];
848             vdwjidx0D        = 2*vdwtype[jnrD+0];
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             r00              = _mm_mul_ps(rsq00,rinv00);
855             r00              = _mm_andnot_ps(dummy_mask,r00);
856
857             /* Compute parameters for interactions between i and j atoms */
858             qq00             = _mm_mul_ps(iq0,jq0);
859             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
860                                          vdwparam+vdwioffset0+vdwjidx0B,
861                                          vdwparam+vdwioffset0+vdwjidx0C,
862                                          vdwparam+vdwioffset0+vdwjidx0D,
863                                          &c6_00,&c12_00);
864
865             /* Calculate table index by multiplying r with table scale and truncate to integer */
866             rt               = _mm_mul_ps(r00,vftabscale);
867             vfitab           = _mm_cvttps_epi32(rt);
868 #ifdef __XOP__
869             vfeps            = _mm_frcz_ps(rt);
870 #else
871             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
872 #endif
873             twovfeps         = _mm_add_ps(vfeps,vfeps);
874             vfitab           = _mm_slli_epi32(vfitab,3);
875
876             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
877             isaprod          = _mm_mul_ps(isai0,isaj0);
878             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
879             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
880
881             /* Calculate generalized born table index - this is a separate table from the normal one,
882              * but we use the same procedure by multiplying r with scale and truncating to integer.
883              */
884             rt               = _mm_mul_ps(r00,gbscale);
885             gbitab           = _mm_cvttps_epi32(rt);
886 #ifdef __XOP__
887             gbeps            = _mm_frcz_ps(rt);
888 #else
889             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
890 #endif
891             gbitab           = _mm_slli_epi32(gbitab,2);
892
893             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
894             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
895             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
896             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
897             _MM_TRANSPOSE4_PS(Y,F,G,H);
898             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
899             VV               = _mm_macc_ps(gbeps,Fp,Y);
900             vgb              = _mm_mul_ps(gbqqfactor,VV);
901
902             twogbeps         = _mm_add_ps(gbeps,gbeps);
903             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
904             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
905             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r00,vgb));
906             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
907             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
908             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
909             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
910             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
911             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
912             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
913             velec            = _mm_mul_ps(qq00,rinv00);
914             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv00,fgb),rinv00);
915
916             /* CUBIC SPLINE TABLE DISPERSION */
917             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
918             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
919             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
920             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
921             _MM_TRANSPOSE4_PS(Y,F,G,H);
922             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
923             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
924             fvdw6            = _mm_mul_ps(c6_00,FF);
925
926             /* CUBIC SPLINE TABLE REPULSION */
927             vfitab           = _mm_add_epi32(vfitab,ifour);
928             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
929             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
930             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
931             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
932             _MM_TRANSPOSE4_PS(Y,F,G,H);
933             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
934             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
935             fvdw12           = _mm_mul_ps(c12_00,FF);
936             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
937
938             fscal            = _mm_add_ps(felec,fvdw);
939
940             fscal            = _mm_andnot_ps(dummy_mask,fscal);
941
942              /* Update vectorial force */
943             fix0             = _mm_macc_ps(dx00,fscal,fix0);
944             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
945             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
946
947             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
948             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
949             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
950             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
951             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
952                                                    _mm_mul_ps(dx00,fscal),
953                                                    _mm_mul_ps(dy00,fscal),
954                                                    _mm_mul_ps(dz00,fscal));
955
956             /* Inner loop uses 86 flops */
957         }
958
959         /* End of innermost loop */
960
961         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
962                                               f+i_coord_offset,fshift+i_shift_offset);
963
964         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
965         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
966
967         /* Increment number of inner iterations */
968         inneriter                  += j_index_end - j_index_start;
969
970         /* Outer loop uses 7 flops */
971     }
972
973     /* Increment number of outer iterations */
974     outeriter        += nri;
975
976     /* Update outer/inner flops */
977
978     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*86);
979 }