9fbcad1c3c916a064dbe2e4cdb6b82700ff59831
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
91     real             *ewtab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
114     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
115     beta2            = _mm_mul_ps(beta,beta);
116     beta3            = _mm_mul_ps(beta,beta2);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164         fix1             = _mm_setzero_ps();
165         fiy1             = _mm_setzero_ps();
166         fiz1             = _mm_setzero_ps();
167         fix2             = _mm_setzero_ps();
168         fiy2             = _mm_setzero_ps();
169         fiz2             = _mm_setzero_ps();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vvdwsum          = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               x+j_coord_offsetC,x+j_coord_offsetD,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_ps(ix0,jx0);
196             dy00             = _mm_sub_ps(iy0,jy0);
197             dz00             = _mm_sub_ps(iz0,jz0);
198             dx10             = _mm_sub_ps(ix1,jx0);
199             dy10             = _mm_sub_ps(iy1,jy0);
200             dz10             = _mm_sub_ps(iz1,jz0);
201             dx20             = _mm_sub_ps(ix2,jx0);
202             dy20             = _mm_sub_ps(iy2,jy0);
203             dz20             = _mm_sub_ps(iz2,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
207             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
208             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
209
210             rinv00           = gmx_mm_invsqrt_ps(rsq00);
211             rinv10           = gmx_mm_invsqrt_ps(rsq10);
212             rinv20           = gmx_mm_invsqrt_ps(rsq20);
213
214             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
215             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
216             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
220                                                               charge+jnrC+0,charge+jnrD+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223             vdwjidx0C        = 2*vdwtype[jnrC+0];
224             vdwjidx0D        = 2*vdwtype[jnrD+0];
225
226             fjx0             = _mm_setzero_ps();
227             fjy0             = _mm_setzero_ps();
228             fjz0             = _mm_setzero_ps();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             r00              = _mm_mul_ps(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_ps(iq0,jq0);
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Analytical PME correction */
247             zeta2            = _mm_mul_ps(beta2,rsq00);
248             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
249             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
250             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
251             felec            = _mm_mul_ps(qq00,felec);
252             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
253             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
254             velec            = _mm_mul_ps(qq00,velec);
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
260             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
262             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm_add_ps(velecsum,velec);
266             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
267
268             fscal            = _mm_add_ps(felec,fvdw);
269
270              /* Update vectorial force */
271             fix0             = _mm_macc_ps(dx00,fscal,fix0);
272             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
273             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
274
275             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
276             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
277             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r10              = _mm_mul_ps(rsq10,rinv10);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_ps(iq1,jq0);
287
288             /* EWALD ELECTROSTATICS */
289
290             /* Analytical PME correction */
291             zeta2            = _mm_mul_ps(beta2,rsq10);
292             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
293             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
294             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
295             felec            = _mm_mul_ps(qq10,felec);
296             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
297             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
298             velec            = _mm_mul_ps(qq10,velec);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302
303             fscal            = felec;
304
305              /* Update vectorial force */
306             fix1             = _mm_macc_ps(dx10,fscal,fix1);
307             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
308             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
309
310             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r20              = _mm_mul_ps(rsq20,rinv20);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq20             = _mm_mul_ps(iq2,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Analytical PME correction */
326             zeta2            = _mm_mul_ps(beta2,rsq20);
327             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
328             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
329             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
330             felec            = _mm_mul_ps(qq20,felec);
331             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
332             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
333             velec            = _mm_mul_ps(qq20,velec);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340              /* Update vectorial force */
341             fix2             = _mm_macc_ps(dx20,fscal,fix2);
342             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
343             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
344
345             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
346             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
347             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
348
349             fjptrA             = f+j_coord_offsetA;
350             fjptrB             = f+j_coord_offsetB;
351             fjptrC             = f+j_coord_offsetC;
352             fjptrD             = f+j_coord_offsetD;
353
354             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
355
356             /* Inner loop uses 99 flops */
357         }
358
359         if(jidx<j_index_end)
360         {
361
362             /* Get j neighbor index, and coordinate index */
363             jnrlistA         = jjnr[jidx];
364             jnrlistB         = jjnr[jidx+1];
365             jnrlistC         = jjnr[jidx+2];
366             jnrlistD         = jjnr[jidx+3];
367             /* Sign of each element will be negative for non-real atoms.
368              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
369              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
370              */
371             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
372             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
373             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
374             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
375             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
376             j_coord_offsetA  = DIM*jnrA;
377             j_coord_offsetB  = DIM*jnrB;
378             j_coord_offsetC  = DIM*jnrC;
379             j_coord_offsetD  = DIM*jnrD;
380
381             /* load j atom coordinates */
382             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
383                                               x+j_coord_offsetC,x+j_coord_offsetD,
384                                               &jx0,&jy0,&jz0);
385
386             /* Calculate displacement vector */
387             dx00             = _mm_sub_ps(ix0,jx0);
388             dy00             = _mm_sub_ps(iy0,jy0);
389             dz00             = _mm_sub_ps(iz0,jz0);
390             dx10             = _mm_sub_ps(ix1,jx0);
391             dy10             = _mm_sub_ps(iy1,jy0);
392             dz10             = _mm_sub_ps(iz1,jz0);
393             dx20             = _mm_sub_ps(ix2,jx0);
394             dy20             = _mm_sub_ps(iy2,jy0);
395             dz20             = _mm_sub_ps(iz2,jz0);
396
397             /* Calculate squared distance and things based on it */
398             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
399             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
400             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
401
402             rinv00           = gmx_mm_invsqrt_ps(rsq00);
403             rinv10           = gmx_mm_invsqrt_ps(rsq10);
404             rinv20           = gmx_mm_invsqrt_ps(rsq20);
405
406             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
407             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
408             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
409
410             /* Load parameters for j particles */
411             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
412                                                               charge+jnrC+0,charge+jnrD+0);
413             vdwjidx0A        = 2*vdwtype[jnrA+0];
414             vdwjidx0B        = 2*vdwtype[jnrB+0];
415             vdwjidx0C        = 2*vdwtype[jnrC+0];
416             vdwjidx0D        = 2*vdwtype[jnrD+0];
417
418             fjx0             = _mm_setzero_ps();
419             fjy0             = _mm_setzero_ps();
420             fjz0             = _mm_setzero_ps();
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r00              = _mm_mul_ps(rsq00,rinv00);
427             r00              = _mm_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm_mul_ps(iq0,jq0);
431             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
432                                          vdwparam+vdwioffset0+vdwjidx0B,
433                                          vdwparam+vdwioffset0+vdwjidx0C,
434                                          vdwparam+vdwioffset0+vdwjidx0D,
435                                          &c6_00,&c12_00);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Analytical PME correction */
440             zeta2            = _mm_mul_ps(beta2,rsq00);
441             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
442             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
443             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
444             felec            = _mm_mul_ps(qq00,felec);
445             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
446             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
447             velec            = _mm_mul_ps(qq00,velec);
448
449             /* LENNARD-JONES DISPERSION/REPULSION */
450
451             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
452             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
453             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
454             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
455             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
456
457             /* Update potential sum for this i atom from the interaction with this j atom. */
458             velec            = _mm_andnot_ps(dummy_mask,velec);
459             velecsum         = _mm_add_ps(velecsum,velec);
460             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
461             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
462
463             fscal            = _mm_add_ps(felec,fvdw);
464
465             fscal            = _mm_andnot_ps(dummy_mask,fscal);
466
467              /* Update vectorial force */
468             fix0             = _mm_macc_ps(dx00,fscal,fix0);
469             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
470             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
471
472             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
473             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
474             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r10              = _mm_mul_ps(rsq10,rinv10);
481             r10              = _mm_andnot_ps(dummy_mask,r10);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq10             = _mm_mul_ps(iq1,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Analytical PME correction */
489             zeta2            = _mm_mul_ps(beta2,rsq10);
490             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
491             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
492             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
493             felec            = _mm_mul_ps(qq10,felec);
494             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
495             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
496             velec            = _mm_mul_ps(qq10,velec);
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             velec            = _mm_andnot_ps(dummy_mask,velec);
500             velecsum         = _mm_add_ps(velecsum,velec);
501
502             fscal            = felec;
503
504             fscal            = _mm_andnot_ps(dummy_mask,fscal);
505
506              /* Update vectorial force */
507             fix1             = _mm_macc_ps(dx10,fscal,fix1);
508             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
509             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
510
511             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
512             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
513             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r20              = _mm_mul_ps(rsq20,rinv20);
520             r20              = _mm_andnot_ps(dummy_mask,r20);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq20             = _mm_mul_ps(iq2,jq0);
524
525             /* EWALD ELECTROSTATICS */
526
527             /* Analytical PME correction */
528             zeta2            = _mm_mul_ps(beta2,rsq20);
529             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
530             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
531             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
532             felec            = _mm_mul_ps(qq20,felec);
533             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
534             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
535             velec            = _mm_mul_ps(qq20,velec);
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545              /* Update vectorial force */
546             fix2             = _mm_macc_ps(dx20,fscal,fix2);
547             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
548             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
549
550             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
551             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
552             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
553
554             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
555             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
556             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
557             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
558
559             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
560
561             /* Inner loop uses 102 flops */
562         }
563
564         /* End of innermost loop */
565
566         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
567                                               f+i_coord_offset,fshift+i_shift_offset);
568
569         ggid                        = gid[iidx];
570         /* Update potential energies */
571         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
572         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
573
574         /* Increment number of inner iterations */
575         inneriter                  += j_index_end - j_index_start;
576
577         /* Outer loop uses 20 flops */
578     }
579
580     /* Increment number of outer iterations */
581     outeriter        += nri;
582
583     /* Update outer/inner flops */
584
585     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*102);
586 }
587 /*
588  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_single
589  * Electrostatics interaction: Ewald
590  * VdW interaction:            LennardJones
591  * Geometry:                   Water3-Particle
592  * Calculate force/pot:        Force
593  */
594 void
595 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_single
596                     (t_nblist * gmx_restrict                nlist,
597                      rvec * gmx_restrict                    xx,
598                      rvec * gmx_restrict                    ff,
599                      t_forcerec * gmx_restrict              fr,
600                      t_mdatoms * gmx_restrict               mdatoms,
601                      nb_kernel_data_t * gmx_restrict        kernel_data,
602                      t_nrnb * gmx_restrict                  nrnb)
603 {
604     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
605      * just 0 for non-waters.
606      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
607      * jnr indices corresponding to data put in the four positions in the SIMD register.
608      */
609     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
610     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
611     int              jnrA,jnrB,jnrC,jnrD;
612     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
613     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
614     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
615     real             rcutoff_scalar;
616     real             *shiftvec,*fshift,*x,*f;
617     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
618     real             scratch[4*DIM];
619     __m128           fscal,rcutoff,rcutoff2,jidxall;
620     int              vdwioffset0;
621     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
622     int              vdwioffset1;
623     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
624     int              vdwioffset2;
625     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
626     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
627     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
628     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
629     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
630     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
631     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
632     real             *charge;
633     int              nvdwtype;
634     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
635     int              *vdwtype;
636     real             *vdwparam;
637     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
638     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
639     __m128i          ewitab;
640     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
641     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
642     real             *ewtab;
643     __m128           dummy_mask,cutoff_mask;
644     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
645     __m128           one     = _mm_set1_ps(1.0);
646     __m128           two     = _mm_set1_ps(2.0);
647     x                = xx[0];
648     f                = ff[0];
649
650     nri              = nlist->nri;
651     iinr             = nlist->iinr;
652     jindex           = nlist->jindex;
653     jjnr             = nlist->jjnr;
654     shiftidx         = nlist->shift;
655     gid              = nlist->gid;
656     shiftvec         = fr->shift_vec[0];
657     fshift           = fr->fshift[0];
658     facel            = _mm_set1_ps(fr->epsfac);
659     charge           = mdatoms->chargeA;
660     nvdwtype         = fr->ntype;
661     vdwparam         = fr->nbfp;
662     vdwtype          = mdatoms->typeA;
663
664     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
665     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
666     beta2            = _mm_mul_ps(beta,beta);
667     beta3            = _mm_mul_ps(beta,beta2);
668     ewtab            = fr->ic->tabq_coul_F;
669     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
670     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
671
672     /* Setup water-specific parameters */
673     inr              = nlist->iinr[0];
674     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
675     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
676     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
677     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
678
679     /* Avoid stupid compiler warnings */
680     jnrA = jnrB = jnrC = jnrD = 0;
681     j_coord_offsetA = 0;
682     j_coord_offsetB = 0;
683     j_coord_offsetC = 0;
684     j_coord_offsetD = 0;
685
686     outeriter        = 0;
687     inneriter        = 0;
688
689     for(iidx=0;iidx<4*DIM;iidx++)
690     {
691         scratch[iidx] = 0.0;
692     }
693
694     /* Start outer loop over neighborlists */
695     for(iidx=0; iidx<nri; iidx++)
696     {
697         /* Load shift vector for this list */
698         i_shift_offset   = DIM*shiftidx[iidx];
699
700         /* Load limits for loop over neighbors */
701         j_index_start    = jindex[iidx];
702         j_index_end      = jindex[iidx+1];
703
704         /* Get outer coordinate index */
705         inr              = iinr[iidx];
706         i_coord_offset   = DIM*inr;
707
708         /* Load i particle coords and add shift vector */
709         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
710                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
711
712         fix0             = _mm_setzero_ps();
713         fiy0             = _mm_setzero_ps();
714         fiz0             = _mm_setzero_ps();
715         fix1             = _mm_setzero_ps();
716         fiy1             = _mm_setzero_ps();
717         fiz1             = _mm_setzero_ps();
718         fix2             = _mm_setzero_ps();
719         fiy2             = _mm_setzero_ps();
720         fiz2             = _mm_setzero_ps();
721
722         /* Start inner kernel loop */
723         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
724         {
725
726             /* Get j neighbor index, and coordinate index */
727             jnrA             = jjnr[jidx];
728             jnrB             = jjnr[jidx+1];
729             jnrC             = jjnr[jidx+2];
730             jnrD             = jjnr[jidx+3];
731             j_coord_offsetA  = DIM*jnrA;
732             j_coord_offsetB  = DIM*jnrB;
733             j_coord_offsetC  = DIM*jnrC;
734             j_coord_offsetD  = DIM*jnrD;
735
736             /* load j atom coordinates */
737             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
738                                               x+j_coord_offsetC,x+j_coord_offsetD,
739                                               &jx0,&jy0,&jz0);
740
741             /* Calculate displacement vector */
742             dx00             = _mm_sub_ps(ix0,jx0);
743             dy00             = _mm_sub_ps(iy0,jy0);
744             dz00             = _mm_sub_ps(iz0,jz0);
745             dx10             = _mm_sub_ps(ix1,jx0);
746             dy10             = _mm_sub_ps(iy1,jy0);
747             dz10             = _mm_sub_ps(iz1,jz0);
748             dx20             = _mm_sub_ps(ix2,jx0);
749             dy20             = _mm_sub_ps(iy2,jy0);
750             dz20             = _mm_sub_ps(iz2,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
754             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
755             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
756
757             rinv00           = gmx_mm_invsqrt_ps(rsq00);
758             rinv10           = gmx_mm_invsqrt_ps(rsq10);
759             rinv20           = gmx_mm_invsqrt_ps(rsq20);
760
761             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
762             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
763             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
764
765             /* Load parameters for j particles */
766             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
767                                                               charge+jnrC+0,charge+jnrD+0);
768             vdwjidx0A        = 2*vdwtype[jnrA+0];
769             vdwjidx0B        = 2*vdwtype[jnrB+0];
770             vdwjidx0C        = 2*vdwtype[jnrC+0];
771             vdwjidx0D        = 2*vdwtype[jnrD+0];
772
773             fjx0             = _mm_setzero_ps();
774             fjy0             = _mm_setzero_ps();
775             fjz0             = _mm_setzero_ps();
776
777             /**************************
778              * CALCULATE INTERACTIONS *
779              **************************/
780
781             r00              = _mm_mul_ps(rsq00,rinv00);
782
783             /* Compute parameters for interactions between i and j atoms */
784             qq00             = _mm_mul_ps(iq0,jq0);
785             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
786                                          vdwparam+vdwioffset0+vdwjidx0B,
787                                          vdwparam+vdwioffset0+vdwjidx0C,
788                                          vdwparam+vdwioffset0+vdwjidx0D,
789                                          &c6_00,&c12_00);
790
791             /* EWALD ELECTROSTATICS */
792
793             /* Analytical PME correction */
794             zeta2            = _mm_mul_ps(beta2,rsq00);
795             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
796             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
797             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
798             felec            = _mm_mul_ps(qq00,felec);
799
800             /* LENNARD-JONES DISPERSION/REPULSION */
801
802             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
803             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
804
805             fscal            = _mm_add_ps(felec,fvdw);
806
807              /* Update vectorial force */
808             fix0             = _mm_macc_ps(dx00,fscal,fix0);
809             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
810             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
811
812             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
813             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
814             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             r10              = _mm_mul_ps(rsq10,rinv10);
821
822             /* Compute parameters for interactions between i and j atoms */
823             qq10             = _mm_mul_ps(iq1,jq0);
824
825             /* EWALD ELECTROSTATICS */
826
827             /* Analytical PME correction */
828             zeta2            = _mm_mul_ps(beta2,rsq10);
829             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
830             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
831             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
832             felec            = _mm_mul_ps(qq10,felec);
833
834             fscal            = felec;
835
836              /* Update vectorial force */
837             fix1             = _mm_macc_ps(dx10,fscal,fix1);
838             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
839             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
840
841             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
842             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
843             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             r20              = _mm_mul_ps(rsq20,rinv20);
850
851             /* Compute parameters for interactions between i and j atoms */
852             qq20             = _mm_mul_ps(iq2,jq0);
853
854             /* EWALD ELECTROSTATICS */
855
856             /* Analytical PME correction */
857             zeta2            = _mm_mul_ps(beta2,rsq20);
858             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
859             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
860             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
861             felec            = _mm_mul_ps(qq20,felec);
862
863             fscal            = felec;
864
865              /* Update vectorial force */
866             fix2             = _mm_macc_ps(dx20,fscal,fix2);
867             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
868             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
869
870             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
871             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
872             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
873
874             fjptrA             = f+j_coord_offsetA;
875             fjptrB             = f+j_coord_offsetB;
876             fjptrC             = f+j_coord_offsetC;
877             fjptrD             = f+j_coord_offsetD;
878
879             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
880
881             /* Inner loop uses 91 flops */
882         }
883
884         if(jidx<j_index_end)
885         {
886
887             /* Get j neighbor index, and coordinate index */
888             jnrlistA         = jjnr[jidx];
889             jnrlistB         = jjnr[jidx+1];
890             jnrlistC         = jjnr[jidx+2];
891             jnrlistD         = jjnr[jidx+3];
892             /* Sign of each element will be negative for non-real atoms.
893              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
894              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
895              */
896             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
897             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
898             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
899             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
900             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
901             j_coord_offsetA  = DIM*jnrA;
902             j_coord_offsetB  = DIM*jnrB;
903             j_coord_offsetC  = DIM*jnrC;
904             j_coord_offsetD  = DIM*jnrD;
905
906             /* load j atom coordinates */
907             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
908                                               x+j_coord_offsetC,x+j_coord_offsetD,
909                                               &jx0,&jy0,&jz0);
910
911             /* Calculate displacement vector */
912             dx00             = _mm_sub_ps(ix0,jx0);
913             dy00             = _mm_sub_ps(iy0,jy0);
914             dz00             = _mm_sub_ps(iz0,jz0);
915             dx10             = _mm_sub_ps(ix1,jx0);
916             dy10             = _mm_sub_ps(iy1,jy0);
917             dz10             = _mm_sub_ps(iz1,jz0);
918             dx20             = _mm_sub_ps(ix2,jx0);
919             dy20             = _mm_sub_ps(iy2,jy0);
920             dz20             = _mm_sub_ps(iz2,jz0);
921
922             /* Calculate squared distance and things based on it */
923             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
924             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
925             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
926
927             rinv00           = gmx_mm_invsqrt_ps(rsq00);
928             rinv10           = gmx_mm_invsqrt_ps(rsq10);
929             rinv20           = gmx_mm_invsqrt_ps(rsq20);
930
931             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
932             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
933             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
934
935             /* Load parameters for j particles */
936             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
937                                                               charge+jnrC+0,charge+jnrD+0);
938             vdwjidx0A        = 2*vdwtype[jnrA+0];
939             vdwjidx0B        = 2*vdwtype[jnrB+0];
940             vdwjidx0C        = 2*vdwtype[jnrC+0];
941             vdwjidx0D        = 2*vdwtype[jnrD+0];
942
943             fjx0             = _mm_setzero_ps();
944             fjy0             = _mm_setzero_ps();
945             fjz0             = _mm_setzero_ps();
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r00              = _mm_mul_ps(rsq00,rinv00);
952             r00              = _mm_andnot_ps(dummy_mask,r00);
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq00             = _mm_mul_ps(iq0,jq0);
956             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
957                                          vdwparam+vdwioffset0+vdwjidx0B,
958                                          vdwparam+vdwioffset0+vdwjidx0C,
959                                          vdwparam+vdwioffset0+vdwjidx0D,
960                                          &c6_00,&c12_00);
961
962             /* EWALD ELECTROSTATICS */
963
964             /* Analytical PME correction */
965             zeta2            = _mm_mul_ps(beta2,rsq00);
966             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
967             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
968             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
969             felec            = _mm_mul_ps(qq00,felec);
970
971             /* LENNARD-JONES DISPERSION/REPULSION */
972
973             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
974             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
975
976             fscal            = _mm_add_ps(felec,fvdw);
977
978             fscal            = _mm_andnot_ps(dummy_mask,fscal);
979
980              /* Update vectorial force */
981             fix0             = _mm_macc_ps(dx00,fscal,fix0);
982             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
983             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
984
985             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
986             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
987             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
988
989             /**************************
990              * CALCULATE INTERACTIONS *
991              **************************/
992
993             r10              = _mm_mul_ps(rsq10,rinv10);
994             r10              = _mm_andnot_ps(dummy_mask,r10);
995
996             /* Compute parameters for interactions between i and j atoms */
997             qq10             = _mm_mul_ps(iq1,jq0);
998
999             /* EWALD ELECTROSTATICS */
1000
1001             /* Analytical PME correction */
1002             zeta2            = _mm_mul_ps(beta2,rsq10);
1003             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1004             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1005             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1006             felec            = _mm_mul_ps(qq10,felec);
1007
1008             fscal            = felec;
1009
1010             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1011
1012              /* Update vectorial force */
1013             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1014             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1015             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1016
1017             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1018             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1019             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r20              = _mm_mul_ps(rsq20,rinv20);
1026             r20              = _mm_andnot_ps(dummy_mask,r20);
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq20             = _mm_mul_ps(iq2,jq0);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Analytical PME correction */
1034             zeta2            = _mm_mul_ps(beta2,rsq20);
1035             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1036             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1037             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1038             felec            = _mm_mul_ps(qq20,felec);
1039
1040             fscal            = felec;
1041
1042             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1043
1044              /* Update vectorial force */
1045             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1046             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1047             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1048
1049             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1050             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1051             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1052
1053             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1054             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1055             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1056             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1057
1058             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1059
1060             /* Inner loop uses 94 flops */
1061         }
1062
1063         /* End of innermost loop */
1064
1065         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1066                                               f+i_coord_offset,fshift+i_shift_offset);
1067
1068         /* Increment number of inner iterations */
1069         inneriter                  += j_index_end - j_index_start;
1070
1071         /* Outer loop uses 18 flops */
1072     }
1073
1074     /* Increment number of outer iterations */
1075     outeriter        += nri;
1076
1077     /* Update outer/inner flops */
1078
1079     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*94);
1080 }