972b5daba54a6da54feb6be86a16cb55d9aa4b0b
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
85     real             *vftab;
86     __m128i          ewitab;
87     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
113
114     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
115     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
116     beta2            = _mm_mul_ps(beta,beta);
117     beta3            = _mm_mul_ps(beta,beta2);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               x+j_coord_offsetC,x+j_coord_offsetD,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm_sub_ps(ix0,jx0);
187             dy00             = _mm_sub_ps(iy0,jy0);
188             dz00             = _mm_sub_ps(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm_invsqrt_ps(rsq00);
194
195             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
199                                                               charge+jnrC+0,charge+jnrD+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             r00              = _mm_mul_ps(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_ps(iq0,jq0);
213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
214                                          vdwparam+vdwioffset0+vdwjidx0B,
215                                          vdwparam+vdwioffset0+vdwjidx0C,
216                                          vdwparam+vdwioffset0+vdwjidx0D,
217                                          &c6_00,&c12_00);
218
219             /* Calculate table index by multiplying r with table scale and truncate to integer */
220             rt               = _mm_mul_ps(r00,vftabscale);
221             vfitab           = _mm_cvttps_epi32(rt);
222 #ifdef __XOP__
223             vfeps            = _mm_frcz_ps(rt);
224 #else
225             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
226 #endif
227             twovfeps         = _mm_add_ps(vfeps,vfeps);
228             vfitab           = _mm_slli_epi32(vfitab,3);
229
230             /* EWALD ELECTROSTATICS */
231
232             /* Analytical PME correction */
233             zeta2            = _mm_mul_ps(beta2,rsq00);
234             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
235             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
236             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
237             felec            = _mm_mul_ps(qq00,felec);
238             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
239             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
240             velec            = _mm_mul_ps(qq00,velec);
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
245             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
246             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
247             _MM_TRANSPOSE4_PS(Y,F,G,H);
248             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
249             VV               = _mm_macc_ps(vfeps,Fp,Y);
250             vvdw6            = _mm_mul_ps(c6_00,VV);
251             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
252             fvdw6            = _mm_mul_ps(c6_00,FF);
253
254             /* CUBIC SPLINE TABLE REPULSION */
255             vfitab           = _mm_add_epi32(vfitab,ifour);
256             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
258             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
259             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
260             _MM_TRANSPOSE4_PS(Y,F,G,H);
261             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
262             VV               = _mm_macc_ps(vfeps,Fp,Y);
263             vvdw12           = _mm_mul_ps(c12_00,VV);
264             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
265             fvdw12           = _mm_mul_ps(c12_00,FF);
266             vvdw             = _mm_add_ps(vvdw12,vvdw6);
267             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velecsum         = _mm_add_ps(velecsum,velec);
271             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
272
273             fscal            = _mm_add_ps(felec,fvdw);
274
275              /* Update vectorial force */
276             fix0             = _mm_macc_ps(dx00,fscal,fix0);
277             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
278             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
279
280             fjptrA             = f+j_coord_offsetA;
281             fjptrB             = f+j_coord_offsetB;
282             fjptrC             = f+j_coord_offsetC;
283             fjptrD             = f+j_coord_offsetD;
284             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
285                                                    _mm_mul_ps(dx00,fscal),
286                                                    _mm_mul_ps(dy00,fscal),
287                                                    _mm_mul_ps(dz00,fscal));
288
289             /* Inner loop uses 63 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             /* Get j neighbor index, and coordinate index */
296             jnrlistA         = jjnr[jidx];
297             jnrlistB         = jjnr[jidx+1];
298             jnrlistC         = jjnr[jidx+2];
299             jnrlistD         = jjnr[jidx+3];
300             /* Sign of each element will be negative for non-real atoms.
301              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
303              */
304             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
306             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
307             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
308             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
309             j_coord_offsetA  = DIM*jnrA;
310             j_coord_offsetB  = DIM*jnrB;
311             j_coord_offsetC  = DIM*jnrC;
312             j_coord_offsetD  = DIM*jnrD;
313
314             /* load j atom coordinates */
315             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
316                                               x+j_coord_offsetC,x+j_coord_offsetD,
317                                               &jx0,&jy0,&jz0);
318
319             /* Calculate displacement vector */
320             dx00             = _mm_sub_ps(ix0,jx0);
321             dy00             = _mm_sub_ps(iy0,jy0);
322             dz00             = _mm_sub_ps(iz0,jz0);
323
324             /* Calculate squared distance and things based on it */
325             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
326
327             rinv00           = gmx_mm_invsqrt_ps(rsq00);
328
329             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
330
331             /* Load parameters for j particles */
332             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
333                                                               charge+jnrC+0,charge+jnrD+0);
334             vdwjidx0A        = 2*vdwtype[jnrA+0];
335             vdwjidx0B        = 2*vdwtype[jnrB+0];
336             vdwjidx0C        = 2*vdwtype[jnrC+0];
337             vdwjidx0D        = 2*vdwtype[jnrD+0];
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r00              = _mm_mul_ps(rsq00,rinv00);
344             r00              = _mm_andnot_ps(dummy_mask,r00);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq00             = _mm_mul_ps(iq0,jq0);
348             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
349                                          vdwparam+vdwioffset0+vdwjidx0B,
350                                          vdwparam+vdwioffset0+vdwjidx0C,
351                                          vdwparam+vdwioffset0+vdwjidx0D,
352                                          &c6_00,&c12_00);
353
354             /* Calculate table index by multiplying r with table scale and truncate to integer */
355             rt               = _mm_mul_ps(r00,vftabscale);
356             vfitab           = _mm_cvttps_epi32(rt);
357 #ifdef __XOP__
358             vfeps            = _mm_frcz_ps(rt);
359 #else
360             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
361 #endif
362             twovfeps         = _mm_add_ps(vfeps,vfeps);
363             vfitab           = _mm_slli_epi32(vfitab,3);
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Analytical PME correction */
368             zeta2            = _mm_mul_ps(beta2,rsq00);
369             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
370             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
371             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
372             felec            = _mm_mul_ps(qq00,felec);
373             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
374             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv00);
375             velec            = _mm_mul_ps(qq00,velec);
376
377             /* CUBIC SPLINE TABLE DISPERSION */
378             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
379             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
380             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
381             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
382             _MM_TRANSPOSE4_PS(Y,F,G,H);
383             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
384             VV               = _mm_macc_ps(vfeps,Fp,Y);
385             vvdw6            = _mm_mul_ps(c6_00,VV);
386             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
387             fvdw6            = _mm_mul_ps(c6_00,FF);
388
389             /* CUBIC SPLINE TABLE REPULSION */
390             vfitab           = _mm_add_epi32(vfitab,ifour);
391             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
392             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
393             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
394             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
395             _MM_TRANSPOSE4_PS(Y,F,G,H);
396             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
397             VV               = _mm_macc_ps(vfeps,Fp,Y);
398             vvdw12           = _mm_mul_ps(c12_00,VV);
399             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
400             fvdw12           = _mm_mul_ps(c12_00,FF);
401             vvdw             = _mm_add_ps(vvdw12,vvdw6);
402             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_andnot_ps(dummy_mask,velec);
406             velecsum         = _mm_add_ps(velecsum,velec);
407             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
408             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
409
410             fscal            = _mm_add_ps(felec,fvdw);
411
412             fscal            = _mm_andnot_ps(dummy_mask,fscal);
413
414              /* Update vectorial force */
415             fix0             = _mm_macc_ps(dx00,fscal,fix0);
416             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
417             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
418
419             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
420             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
421             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
422             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
423             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
424                                                    _mm_mul_ps(dx00,fscal),
425                                                    _mm_mul_ps(dy00,fscal),
426                                                    _mm_mul_ps(dz00,fscal));
427
428             /* Inner loop uses 64 flops */
429         }
430
431         /* End of innermost loop */
432
433         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
434                                               f+i_coord_offset,fshift+i_shift_offset);
435
436         ggid                        = gid[iidx];
437         /* Update potential energies */
438         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
439         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
440
441         /* Increment number of inner iterations */
442         inneriter                  += j_index_end - j_index_start;
443
444         /* Outer loop uses 9 flops */
445     }
446
447     /* Increment number of outer iterations */
448     outeriter        += nri;
449
450     /* Update outer/inner flops */
451
452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*64);
453 }
454 /*
455  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
456  * Electrostatics interaction: Ewald
457  * VdW interaction:            CubicSplineTable
458  * Geometry:                   Particle-Particle
459  * Calculate force/pot:        Force
460  */
461 void
462 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_single
463                     (t_nblist * gmx_restrict                nlist,
464                      rvec * gmx_restrict                    xx,
465                      rvec * gmx_restrict                    ff,
466                      t_forcerec * gmx_restrict              fr,
467                      t_mdatoms * gmx_restrict               mdatoms,
468                      nb_kernel_data_t * gmx_restrict        kernel_data,
469                      t_nrnb * gmx_restrict                  nrnb)
470 {
471     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
472      * just 0 for non-waters.
473      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
474      * jnr indices corresponding to data put in the four positions in the SIMD register.
475      */
476     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
477     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
478     int              jnrA,jnrB,jnrC,jnrD;
479     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
480     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
481     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
482     real             rcutoff_scalar;
483     real             *shiftvec,*fshift,*x,*f;
484     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
485     real             scratch[4*DIM];
486     __m128           fscal,rcutoff,rcutoff2,jidxall;
487     int              vdwioffset0;
488     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
489     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
490     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
491     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
492     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
493     real             *charge;
494     int              nvdwtype;
495     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
496     int              *vdwtype;
497     real             *vdwparam;
498     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
499     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
500     __m128i          vfitab;
501     __m128i          ifour       = _mm_set1_epi32(4);
502     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
503     real             *vftab;
504     __m128i          ewitab;
505     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
506     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
507     real             *ewtab;
508     __m128           dummy_mask,cutoff_mask;
509     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
510     __m128           one     = _mm_set1_ps(1.0);
511     __m128           two     = _mm_set1_ps(2.0);
512     x                = xx[0];
513     f                = ff[0];
514
515     nri              = nlist->nri;
516     iinr             = nlist->iinr;
517     jindex           = nlist->jindex;
518     jjnr             = nlist->jjnr;
519     shiftidx         = nlist->shift;
520     gid              = nlist->gid;
521     shiftvec         = fr->shift_vec[0];
522     fshift           = fr->fshift[0];
523     facel            = _mm_set1_ps(fr->epsfac);
524     charge           = mdatoms->chargeA;
525     nvdwtype         = fr->ntype;
526     vdwparam         = fr->nbfp;
527     vdwtype          = mdatoms->typeA;
528
529     vftab            = kernel_data->table_vdw->data;
530     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
531
532     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
533     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
534     beta2            = _mm_mul_ps(beta,beta);
535     beta3            = _mm_mul_ps(beta,beta2);
536     ewtab            = fr->ic->tabq_coul_F;
537     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
538     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
539
540     /* Avoid stupid compiler warnings */
541     jnrA = jnrB = jnrC = jnrD = 0;
542     j_coord_offsetA = 0;
543     j_coord_offsetB = 0;
544     j_coord_offsetC = 0;
545     j_coord_offsetD = 0;
546
547     outeriter        = 0;
548     inneriter        = 0;
549
550     for(iidx=0;iidx<4*DIM;iidx++)
551     {
552         scratch[iidx] = 0.0;
553     }
554
555     /* Start outer loop over neighborlists */
556     for(iidx=0; iidx<nri; iidx++)
557     {
558         /* Load shift vector for this list */
559         i_shift_offset   = DIM*shiftidx[iidx];
560
561         /* Load limits for loop over neighbors */
562         j_index_start    = jindex[iidx];
563         j_index_end      = jindex[iidx+1];
564
565         /* Get outer coordinate index */
566         inr              = iinr[iidx];
567         i_coord_offset   = DIM*inr;
568
569         /* Load i particle coords and add shift vector */
570         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
571
572         fix0             = _mm_setzero_ps();
573         fiy0             = _mm_setzero_ps();
574         fiz0             = _mm_setzero_ps();
575
576         /* Load parameters for i particles */
577         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
578         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
579
580         /* Start inner kernel loop */
581         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
582         {
583
584             /* Get j neighbor index, and coordinate index */
585             jnrA             = jjnr[jidx];
586             jnrB             = jjnr[jidx+1];
587             jnrC             = jjnr[jidx+2];
588             jnrD             = jjnr[jidx+3];
589             j_coord_offsetA  = DIM*jnrA;
590             j_coord_offsetB  = DIM*jnrB;
591             j_coord_offsetC  = DIM*jnrC;
592             j_coord_offsetD  = DIM*jnrD;
593
594             /* load j atom coordinates */
595             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
596                                               x+j_coord_offsetC,x+j_coord_offsetD,
597                                               &jx0,&jy0,&jz0);
598
599             /* Calculate displacement vector */
600             dx00             = _mm_sub_ps(ix0,jx0);
601             dy00             = _mm_sub_ps(iy0,jy0);
602             dz00             = _mm_sub_ps(iz0,jz0);
603
604             /* Calculate squared distance and things based on it */
605             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
606
607             rinv00           = gmx_mm_invsqrt_ps(rsq00);
608
609             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
610
611             /* Load parameters for j particles */
612             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
613                                                               charge+jnrC+0,charge+jnrD+0);
614             vdwjidx0A        = 2*vdwtype[jnrA+0];
615             vdwjidx0B        = 2*vdwtype[jnrB+0];
616             vdwjidx0C        = 2*vdwtype[jnrC+0];
617             vdwjidx0D        = 2*vdwtype[jnrD+0];
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r00              = _mm_mul_ps(rsq00,rinv00);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq00             = _mm_mul_ps(iq0,jq0);
627             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
628                                          vdwparam+vdwioffset0+vdwjidx0B,
629                                          vdwparam+vdwioffset0+vdwjidx0C,
630                                          vdwparam+vdwioffset0+vdwjidx0D,
631                                          &c6_00,&c12_00);
632
633             /* Calculate table index by multiplying r with table scale and truncate to integer */
634             rt               = _mm_mul_ps(r00,vftabscale);
635             vfitab           = _mm_cvttps_epi32(rt);
636 #ifdef __XOP__
637             vfeps            = _mm_frcz_ps(rt);
638 #else
639             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
640 #endif
641             twovfeps         = _mm_add_ps(vfeps,vfeps);
642             vfitab           = _mm_slli_epi32(vfitab,3);
643
644             /* EWALD ELECTROSTATICS */
645
646             /* Analytical PME correction */
647             zeta2            = _mm_mul_ps(beta2,rsq00);
648             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
649             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
650             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
651             felec            = _mm_mul_ps(qq00,felec);
652
653             /* CUBIC SPLINE TABLE DISPERSION */
654             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
655             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
656             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
657             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
658             _MM_TRANSPOSE4_PS(Y,F,G,H);
659             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
660             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
661             fvdw6            = _mm_mul_ps(c6_00,FF);
662
663             /* CUBIC SPLINE TABLE REPULSION */
664             vfitab           = _mm_add_epi32(vfitab,ifour);
665             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
666             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
667             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
668             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
669             _MM_TRANSPOSE4_PS(Y,F,G,H);
670             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
671             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
672             fvdw12           = _mm_mul_ps(c12_00,FF);
673             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
674
675             fscal            = _mm_add_ps(felec,fvdw);
676
677              /* Update vectorial force */
678             fix0             = _mm_macc_ps(dx00,fscal,fix0);
679             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
680             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
681
682             fjptrA             = f+j_coord_offsetA;
683             fjptrB             = f+j_coord_offsetB;
684             fjptrC             = f+j_coord_offsetC;
685             fjptrD             = f+j_coord_offsetD;
686             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
687                                                    _mm_mul_ps(dx00,fscal),
688                                                    _mm_mul_ps(dy00,fscal),
689                                                    _mm_mul_ps(dz00,fscal));
690
691             /* Inner loop uses 54 flops */
692         }
693
694         if(jidx<j_index_end)
695         {
696
697             /* Get j neighbor index, and coordinate index */
698             jnrlistA         = jjnr[jidx];
699             jnrlistB         = jjnr[jidx+1];
700             jnrlistC         = jjnr[jidx+2];
701             jnrlistD         = jjnr[jidx+3];
702             /* Sign of each element will be negative for non-real atoms.
703              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
704              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
705              */
706             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
707             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
708             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
709             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
710             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
711             j_coord_offsetA  = DIM*jnrA;
712             j_coord_offsetB  = DIM*jnrB;
713             j_coord_offsetC  = DIM*jnrC;
714             j_coord_offsetD  = DIM*jnrD;
715
716             /* load j atom coordinates */
717             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
718                                               x+j_coord_offsetC,x+j_coord_offsetD,
719                                               &jx0,&jy0,&jz0);
720
721             /* Calculate displacement vector */
722             dx00             = _mm_sub_ps(ix0,jx0);
723             dy00             = _mm_sub_ps(iy0,jy0);
724             dz00             = _mm_sub_ps(iz0,jz0);
725
726             /* Calculate squared distance and things based on it */
727             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
728
729             rinv00           = gmx_mm_invsqrt_ps(rsq00);
730
731             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
732
733             /* Load parameters for j particles */
734             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
735                                                               charge+jnrC+0,charge+jnrD+0);
736             vdwjidx0A        = 2*vdwtype[jnrA+0];
737             vdwjidx0B        = 2*vdwtype[jnrB+0];
738             vdwjidx0C        = 2*vdwtype[jnrC+0];
739             vdwjidx0D        = 2*vdwtype[jnrD+0];
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             r00              = _mm_mul_ps(rsq00,rinv00);
746             r00              = _mm_andnot_ps(dummy_mask,r00);
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq00             = _mm_mul_ps(iq0,jq0);
750             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
751                                          vdwparam+vdwioffset0+vdwjidx0B,
752                                          vdwparam+vdwioffset0+vdwjidx0C,
753                                          vdwparam+vdwioffset0+vdwjidx0D,
754                                          &c6_00,&c12_00);
755
756             /* Calculate table index by multiplying r with table scale and truncate to integer */
757             rt               = _mm_mul_ps(r00,vftabscale);
758             vfitab           = _mm_cvttps_epi32(rt);
759 #ifdef __XOP__
760             vfeps            = _mm_frcz_ps(rt);
761 #else
762             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
763 #endif
764             twovfeps         = _mm_add_ps(vfeps,vfeps);
765             vfitab           = _mm_slli_epi32(vfitab,3);
766
767             /* EWALD ELECTROSTATICS */
768
769             /* Analytical PME correction */
770             zeta2            = _mm_mul_ps(beta2,rsq00);
771             rinv3            = _mm_mul_ps(rinvsq00,rinv00);
772             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
773             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
774             felec            = _mm_mul_ps(qq00,felec);
775
776             /* CUBIC SPLINE TABLE DISPERSION */
777             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
778             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
779             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
780             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
781             _MM_TRANSPOSE4_PS(Y,F,G,H);
782             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
783             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
784             fvdw6            = _mm_mul_ps(c6_00,FF);
785
786             /* CUBIC SPLINE TABLE REPULSION */
787             vfitab           = _mm_add_epi32(vfitab,ifour);
788             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
789             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
790             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
791             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
792             _MM_TRANSPOSE4_PS(Y,F,G,H);
793             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
794             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
795             fvdw12           = _mm_mul_ps(c12_00,FF);
796             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
797
798             fscal            = _mm_add_ps(felec,fvdw);
799
800             fscal            = _mm_andnot_ps(dummy_mask,fscal);
801
802              /* Update vectorial force */
803             fix0             = _mm_macc_ps(dx00,fscal,fix0);
804             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
805             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
806
807             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
808             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
809             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
810             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
811             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
812                                                    _mm_mul_ps(dx00,fscal),
813                                                    _mm_mul_ps(dy00,fscal),
814                                                    _mm_mul_ps(dz00,fscal));
815
816             /* Inner loop uses 55 flops */
817         }
818
819         /* End of innermost loop */
820
821         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
822                                               f+i_coord_offset,fshift+i_shift_offset);
823
824         /* Increment number of inner iterations */
825         inneriter                  += j_index_end - j_index_start;
826
827         /* Outer loop uses 7 flops */
828     }
829
830     /* Increment number of outer iterations */
831     outeriter        += nri;
832
833     /* Update outer/inner flops */
834
835     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
836 }