made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          ewitab;
92     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
94     real             *ewtab;
95     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m128           dummy_mask,cutoff_mask;
98     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
99     __m128           one     = _mm_set1_ps(1.0);
100     __m128           two     = _mm_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_ps(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
119     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
120     beta2            = _mm_mul_ps(beta,beta);
121     beta3            = _mm_mul_ps(beta,beta2);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
137
138     rswitch_scalar   = fr->rcoulomb_switch;
139     rswitch          = _mm_set1_ps(rswitch_scalar);
140     /* Setup switch parameters */
141     d_scalar         = rcutoff_scalar-rswitch_scalar;
142     d                = _mm_set1_ps(d_scalar);
143     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
144     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
145     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
146     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
147     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_ps();
184         fiy0             = _mm_setzero_ps();
185         fiz0             = _mm_setzero_ps();
186         fix1             = _mm_setzero_ps();
187         fiy1             = _mm_setzero_ps();
188         fiz1             = _mm_setzero_ps();
189         fix2             = _mm_setzero_ps();
190         fiy2             = _mm_setzero_ps();
191         fiz2             = _mm_setzero_ps();
192         fix3             = _mm_setzero_ps();
193         fiy3             = _mm_setzero_ps();
194         fiz3             = _mm_setzero_ps();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_ps();
198         vvdwsum          = _mm_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                               x+j_coord_offsetC,x+j_coord_offsetD,
217                                               &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm_sub_ps(ix0,jx0);
221             dy00             = _mm_sub_ps(iy0,jy0);
222             dz00             = _mm_sub_ps(iz0,jz0);
223             dx10             = _mm_sub_ps(ix1,jx0);
224             dy10             = _mm_sub_ps(iy1,jy0);
225             dz10             = _mm_sub_ps(iz1,jz0);
226             dx20             = _mm_sub_ps(ix2,jx0);
227             dy20             = _mm_sub_ps(iy2,jy0);
228             dz20             = _mm_sub_ps(iz2,jz0);
229             dx30             = _mm_sub_ps(ix3,jx0);
230             dy30             = _mm_sub_ps(iy3,jy0);
231             dz30             = _mm_sub_ps(iz3,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
235             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
236             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
237             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
238
239             rinv00           = gmx_mm_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm_invsqrt_ps(rsq20);
242             rinv30           = gmx_mm_invsqrt_ps(rsq30);
243
244             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
245             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
246             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
247             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
248
249             /* Load parameters for j particles */
250             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
251                                                               charge+jnrC+0,charge+jnrD+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256
257             fjx0             = _mm_setzero_ps();
258             fjy0             = _mm_setzero_ps();
259             fjz0             = _mm_setzero_ps();
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             if (gmx_mm_any_lt(rsq00,rcutoff2))
266             {
267
268             r00              = _mm_mul_ps(rsq00,rinv00);
269
270             /* Compute parameters for interactions between i and j atoms */
271             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
272                                          vdwparam+vdwioffset0+vdwjidx0B,
273                                          vdwparam+vdwioffset0+vdwjidx0C,
274                                          vdwparam+vdwioffset0+vdwjidx0D,
275                                          &c6_00,&c12_00);
276
277             /* LENNARD-JONES DISPERSION/REPULSION */
278
279             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
280             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
281             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
282             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
283             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
284
285             d                = _mm_sub_ps(r00,rswitch);
286             d                = _mm_max_ps(d,_mm_setzero_ps());
287             d2               = _mm_mul_ps(d,d);
288             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
289
290             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
291
292             /* Evaluate switch function */
293             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
294             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
295             vvdw             = _mm_mul_ps(vvdw,sw);
296             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = fvdw;
303
304             fscal            = _mm_and_ps(fscal,cutoff_mask);
305
306              /* Update vectorial force */
307             fix0             = _mm_macc_ps(dx00,fscal,fix0);
308             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
309             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
310
311             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
312             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
313             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_mm_any_lt(rsq10,rcutoff2))
322             {
323
324             r10              = _mm_mul_ps(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_ps(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Analytical PME correction */
332             zeta2            = _mm_mul_ps(beta2,rsq10);
333             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
334             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
335             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
336             felec            = _mm_mul_ps(qq10,felec);
337             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
338             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
339             velec            = _mm_mul_ps(qq10,velec);
340
341             d                = _mm_sub_ps(r10,rswitch);
342             d                = _mm_max_ps(d,_mm_setzero_ps());
343             d2               = _mm_mul_ps(d,d);
344             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
345
346             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
347
348             /* Evaluate switch function */
349             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
350             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
351             velec            = _mm_mul_ps(velec,sw);
352             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_ps(velec,cutoff_mask);
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_ps(fscal,cutoff_mask);
361
362              /* Update vectorial force */
363             fix1             = _mm_macc_ps(dx10,fscal,fix1);
364             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
365             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
366
367             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
368             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
369             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
370
371             }
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm_any_lt(rsq20,rcutoff2))
378             {
379
380             r20              = _mm_mul_ps(rsq20,rinv20);
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq20             = _mm_mul_ps(iq2,jq0);
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Analytical PME correction */
388             zeta2            = _mm_mul_ps(beta2,rsq20);
389             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
390             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
391             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
392             felec            = _mm_mul_ps(qq20,felec);
393             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
394             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
395             velec            = _mm_mul_ps(qq20,velec);
396
397             d                = _mm_sub_ps(r20,rswitch);
398             d                = _mm_max_ps(d,_mm_setzero_ps());
399             d2               = _mm_mul_ps(d,d);
400             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
401
402             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
403
404             /* Evaluate switch function */
405             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
406             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
407             velec            = _mm_mul_ps(velec,sw);
408             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_and_ps(velec,cutoff_mask);
412             velecsum         = _mm_add_ps(velecsum,velec);
413
414             fscal            = felec;
415
416             fscal            = _mm_and_ps(fscal,cutoff_mask);
417
418              /* Update vectorial force */
419             fix2             = _mm_macc_ps(dx20,fscal,fix2);
420             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
421             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
422
423             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
424             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
425             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
426
427             }
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             if (gmx_mm_any_lt(rsq30,rcutoff2))
434             {
435
436             r30              = _mm_mul_ps(rsq30,rinv30);
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq30             = _mm_mul_ps(iq3,jq0);
440
441             /* EWALD ELECTROSTATICS */
442
443             /* Analytical PME correction */
444             zeta2            = _mm_mul_ps(beta2,rsq30);
445             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
446             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
447             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
448             felec            = _mm_mul_ps(qq30,felec);
449             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
450             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
451             velec            = _mm_mul_ps(qq30,velec);
452
453             d                = _mm_sub_ps(r30,rswitch);
454             d                = _mm_max_ps(d,_mm_setzero_ps());
455             d2               = _mm_mul_ps(d,d);
456             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
457
458             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
459
460             /* Evaluate switch function */
461             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
462             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
463             velec            = _mm_mul_ps(velec,sw);
464             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             velec            = _mm_and_ps(velec,cutoff_mask);
468             velecsum         = _mm_add_ps(velecsum,velec);
469
470             fscal            = felec;
471
472             fscal            = _mm_and_ps(fscal,cutoff_mask);
473
474              /* Update vectorial force */
475             fix3             = _mm_macc_ps(dx30,fscal,fix3);
476             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
477             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
478
479             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
480             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
481             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
482
483             }
484
485             fjptrA             = f+j_coord_offsetA;
486             fjptrB             = f+j_coord_offsetB;
487             fjptrC             = f+j_coord_offsetC;
488             fjptrD             = f+j_coord_offsetD;
489
490             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
491
492             /* Inner loop uses 221 flops */
493         }
494
495         if(jidx<j_index_end)
496         {
497
498             /* Get j neighbor index, and coordinate index */
499             jnrlistA         = jjnr[jidx];
500             jnrlistB         = jjnr[jidx+1];
501             jnrlistC         = jjnr[jidx+2];
502             jnrlistD         = jjnr[jidx+3];
503             /* Sign of each element will be negative for non-real atoms.
504              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
505              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
506              */
507             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
508             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
509             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
510             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
511             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
512             j_coord_offsetA  = DIM*jnrA;
513             j_coord_offsetB  = DIM*jnrB;
514             j_coord_offsetC  = DIM*jnrC;
515             j_coord_offsetD  = DIM*jnrD;
516
517             /* load j atom coordinates */
518             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
519                                               x+j_coord_offsetC,x+j_coord_offsetD,
520                                               &jx0,&jy0,&jz0);
521
522             /* Calculate displacement vector */
523             dx00             = _mm_sub_ps(ix0,jx0);
524             dy00             = _mm_sub_ps(iy0,jy0);
525             dz00             = _mm_sub_ps(iz0,jz0);
526             dx10             = _mm_sub_ps(ix1,jx0);
527             dy10             = _mm_sub_ps(iy1,jy0);
528             dz10             = _mm_sub_ps(iz1,jz0);
529             dx20             = _mm_sub_ps(ix2,jx0);
530             dy20             = _mm_sub_ps(iy2,jy0);
531             dz20             = _mm_sub_ps(iz2,jz0);
532             dx30             = _mm_sub_ps(ix3,jx0);
533             dy30             = _mm_sub_ps(iy3,jy0);
534             dz30             = _mm_sub_ps(iz3,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
538             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
539             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
540             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
541
542             rinv00           = gmx_mm_invsqrt_ps(rsq00);
543             rinv10           = gmx_mm_invsqrt_ps(rsq10);
544             rinv20           = gmx_mm_invsqrt_ps(rsq20);
545             rinv30           = gmx_mm_invsqrt_ps(rsq30);
546
547             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
548             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
549             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
550             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
551
552             /* Load parameters for j particles */
553             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
554                                                               charge+jnrC+0,charge+jnrD+0);
555             vdwjidx0A        = 2*vdwtype[jnrA+0];
556             vdwjidx0B        = 2*vdwtype[jnrB+0];
557             vdwjidx0C        = 2*vdwtype[jnrC+0];
558             vdwjidx0D        = 2*vdwtype[jnrD+0];
559
560             fjx0             = _mm_setzero_ps();
561             fjy0             = _mm_setzero_ps();
562             fjz0             = _mm_setzero_ps();
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             if (gmx_mm_any_lt(rsq00,rcutoff2))
569             {
570
571             r00              = _mm_mul_ps(rsq00,rinv00);
572             r00              = _mm_andnot_ps(dummy_mask,r00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
576                                          vdwparam+vdwioffset0+vdwjidx0B,
577                                          vdwparam+vdwioffset0+vdwjidx0C,
578                                          vdwparam+vdwioffset0+vdwjidx0D,
579                                          &c6_00,&c12_00);
580
581             /* LENNARD-JONES DISPERSION/REPULSION */
582
583             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
584             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
585             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
586             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
587             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
588
589             d                = _mm_sub_ps(r00,rswitch);
590             d                = _mm_max_ps(d,_mm_setzero_ps());
591             d2               = _mm_mul_ps(d,d);
592             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
593
594             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
595
596             /* Evaluate switch function */
597             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
598             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
599             vvdw             = _mm_mul_ps(vvdw,sw);
600             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
604             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
605             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
606
607             fscal            = fvdw;
608
609             fscal            = _mm_and_ps(fscal,cutoff_mask);
610
611             fscal            = _mm_andnot_ps(dummy_mask,fscal);
612
613              /* Update vectorial force */
614             fix0             = _mm_macc_ps(dx00,fscal,fix0);
615             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
616             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
617
618             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
619             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
620             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
621
622             }
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm_any_lt(rsq10,rcutoff2))
629             {
630
631             r10              = _mm_mul_ps(rsq10,rinv10);
632             r10              = _mm_andnot_ps(dummy_mask,r10);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq10             = _mm_mul_ps(iq1,jq0);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Analytical PME correction */
640             zeta2            = _mm_mul_ps(beta2,rsq10);
641             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
642             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
643             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
644             felec            = _mm_mul_ps(qq10,felec);
645             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
646             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
647             velec            = _mm_mul_ps(qq10,velec);
648
649             d                = _mm_sub_ps(r10,rswitch);
650             d                = _mm_max_ps(d,_mm_setzero_ps());
651             d2               = _mm_mul_ps(d,d);
652             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
653
654             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
655
656             /* Evaluate switch function */
657             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
658             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
659             velec            = _mm_mul_ps(velec,sw);
660             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm_and_ps(velec,cutoff_mask);
664             velec            = _mm_andnot_ps(dummy_mask,velec);
665             velecsum         = _mm_add_ps(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _mm_and_ps(fscal,cutoff_mask);
670
671             fscal            = _mm_andnot_ps(dummy_mask,fscal);
672
673              /* Update vectorial force */
674             fix1             = _mm_macc_ps(dx10,fscal,fix1);
675             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
676             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
677
678             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
679             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
680             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
681
682             }
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             if (gmx_mm_any_lt(rsq20,rcutoff2))
689             {
690
691             r20              = _mm_mul_ps(rsq20,rinv20);
692             r20              = _mm_andnot_ps(dummy_mask,r20);
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq20             = _mm_mul_ps(iq2,jq0);
696
697             /* EWALD ELECTROSTATICS */
698
699             /* Analytical PME correction */
700             zeta2            = _mm_mul_ps(beta2,rsq20);
701             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
702             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
703             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
704             felec            = _mm_mul_ps(qq20,felec);
705             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
706             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
707             velec            = _mm_mul_ps(qq20,velec);
708
709             d                = _mm_sub_ps(r20,rswitch);
710             d                = _mm_max_ps(d,_mm_setzero_ps());
711             d2               = _mm_mul_ps(d,d);
712             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
713
714             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
715
716             /* Evaluate switch function */
717             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
718             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
719             velec            = _mm_mul_ps(velec,sw);
720             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
721
722             /* Update potential sum for this i atom from the interaction with this j atom. */
723             velec            = _mm_and_ps(velec,cutoff_mask);
724             velec            = _mm_andnot_ps(dummy_mask,velec);
725             velecsum         = _mm_add_ps(velecsum,velec);
726
727             fscal            = felec;
728
729             fscal            = _mm_and_ps(fscal,cutoff_mask);
730
731             fscal            = _mm_andnot_ps(dummy_mask,fscal);
732
733              /* Update vectorial force */
734             fix2             = _mm_macc_ps(dx20,fscal,fix2);
735             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
736             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
737
738             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
739             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
740             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
741
742             }
743
744             /**************************
745              * CALCULATE INTERACTIONS *
746              **************************/
747
748             if (gmx_mm_any_lt(rsq30,rcutoff2))
749             {
750
751             r30              = _mm_mul_ps(rsq30,rinv30);
752             r30              = _mm_andnot_ps(dummy_mask,r30);
753
754             /* Compute parameters for interactions between i and j atoms */
755             qq30             = _mm_mul_ps(iq3,jq0);
756
757             /* EWALD ELECTROSTATICS */
758
759             /* Analytical PME correction */
760             zeta2            = _mm_mul_ps(beta2,rsq30);
761             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
762             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
763             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
764             felec            = _mm_mul_ps(qq30,felec);
765             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
766             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
767             velec            = _mm_mul_ps(qq30,velec);
768
769             d                = _mm_sub_ps(r30,rswitch);
770             d                = _mm_max_ps(d,_mm_setzero_ps());
771             d2               = _mm_mul_ps(d,d);
772             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
773
774             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
775
776             /* Evaluate switch function */
777             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
778             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
779             velec            = _mm_mul_ps(velec,sw);
780             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
781
782             /* Update potential sum for this i atom from the interaction with this j atom. */
783             velec            = _mm_and_ps(velec,cutoff_mask);
784             velec            = _mm_andnot_ps(dummy_mask,velec);
785             velecsum         = _mm_add_ps(velecsum,velec);
786
787             fscal            = felec;
788
789             fscal            = _mm_and_ps(fscal,cutoff_mask);
790
791             fscal            = _mm_andnot_ps(dummy_mask,fscal);
792
793              /* Update vectorial force */
794             fix3             = _mm_macc_ps(dx30,fscal,fix3);
795             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
796             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
797
798             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
799             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
800             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
801
802             }
803
804             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
805             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
806             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
807             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
808
809             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
810
811             /* Inner loop uses 225 flops */
812         }
813
814         /* End of innermost loop */
815
816         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
817                                               f+i_coord_offset,fshift+i_shift_offset);
818
819         ggid                        = gid[iidx];
820         /* Update potential energies */
821         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
822         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
823
824         /* Increment number of inner iterations */
825         inneriter                  += j_index_end - j_index_start;
826
827         /* Outer loop uses 26 flops */
828     }
829
830     /* Increment number of outer iterations */
831     outeriter        += nri;
832
833     /* Update outer/inner flops */
834
835     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*225);
836 }
837 /*
838  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_single
839  * Electrostatics interaction: Ewald
840  * VdW interaction:            LennardJones
841  * Geometry:                   Water4-Particle
842  * Calculate force/pot:        Force
843  */
844 void
845 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_single
846                     (t_nblist * gmx_restrict                nlist,
847                      rvec * gmx_restrict                    xx,
848                      rvec * gmx_restrict                    ff,
849                      t_forcerec * gmx_restrict              fr,
850                      t_mdatoms * gmx_restrict               mdatoms,
851                      nb_kernel_data_t * gmx_restrict        kernel_data,
852                      t_nrnb * gmx_restrict                  nrnb)
853 {
854     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
855      * just 0 for non-waters.
856      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
857      * jnr indices corresponding to data put in the four positions in the SIMD register.
858      */
859     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
860     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
861     int              jnrA,jnrB,jnrC,jnrD;
862     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
863     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
864     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
865     real             rcutoff_scalar;
866     real             *shiftvec,*fshift,*x,*f;
867     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
868     real             scratch[4*DIM];
869     __m128           fscal,rcutoff,rcutoff2,jidxall;
870     int              vdwioffset0;
871     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
872     int              vdwioffset1;
873     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
874     int              vdwioffset2;
875     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
876     int              vdwioffset3;
877     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
878     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
879     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
880     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
881     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
882     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
883     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
884     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
885     real             *charge;
886     int              nvdwtype;
887     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
888     int              *vdwtype;
889     real             *vdwparam;
890     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
891     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
892     __m128i          ewitab;
893     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
894     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
895     real             *ewtab;
896     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
897     real             rswitch_scalar,d_scalar;
898     __m128           dummy_mask,cutoff_mask;
899     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
900     __m128           one     = _mm_set1_ps(1.0);
901     __m128           two     = _mm_set1_ps(2.0);
902     x                = xx[0];
903     f                = ff[0];
904
905     nri              = nlist->nri;
906     iinr             = nlist->iinr;
907     jindex           = nlist->jindex;
908     jjnr             = nlist->jjnr;
909     shiftidx         = nlist->shift;
910     gid              = nlist->gid;
911     shiftvec         = fr->shift_vec[0];
912     fshift           = fr->fshift[0];
913     facel            = _mm_set1_ps(fr->epsfac);
914     charge           = mdatoms->chargeA;
915     nvdwtype         = fr->ntype;
916     vdwparam         = fr->nbfp;
917     vdwtype          = mdatoms->typeA;
918
919     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
920     beta             = _mm_set1_ps(fr->ic->ewaldcoeff);
921     beta2            = _mm_mul_ps(beta,beta);
922     beta3            = _mm_mul_ps(beta,beta2);
923     ewtab            = fr->ic->tabq_coul_FDV0;
924     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
925     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
926
927     /* Setup water-specific parameters */
928     inr              = nlist->iinr[0];
929     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
930     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
931     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
932     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
933
934     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
935     rcutoff_scalar   = fr->rcoulomb;
936     rcutoff          = _mm_set1_ps(rcutoff_scalar);
937     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
938
939     rswitch_scalar   = fr->rcoulomb_switch;
940     rswitch          = _mm_set1_ps(rswitch_scalar);
941     /* Setup switch parameters */
942     d_scalar         = rcutoff_scalar-rswitch_scalar;
943     d                = _mm_set1_ps(d_scalar);
944     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
945     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
946     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
947     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
948     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
949     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
950
951     /* Avoid stupid compiler warnings */
952     jnrA = jnrB = jnrC = jnrD = 0;
953     j_coord_offsetA = 0;
954     j_coord_offsetB = 0;
955     j_coord_offsetC = 0;
956     j_coord_offsetD = 0;
957
958     outeriter        = 0;
959     inneriter        = 0;
960
961     for(iidx=0;iidx<4*DIM;iidx++)
962     {
963         scratch[iidx] = 0.0;
964     }
965
966     /* Start outer loop over neighborlists */
967     for(iidx=0; iidx<nri; iidx++)
968     {
969         /* Load shift vector for this list */
970         i_shift_offset   = DIM*shiftidx[iidx];
971
972         /* Load limits for loop over neighbors */
973         j_index_start    = jindex[iidx];
974         j_index_end      = jindex[iidx+1];
975
976         /* Get outer coordinate index */
977         inr              = iinr[iidx];
978         i_coord_offset   = DIM*inr;
979
980         /* Load i particle coords and add shift vector */
981         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
982                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
983
984         fix0             = _mm_setzero_ps();
985         fiy0             = _mm_setzero_ps();
986         fiz0             = _mm_setzero_ps();
987         fix1             = _mm_setzero_ps();
988         fiy1             = _mm_setzero_ps();
989         fiz1             = _mm_setzero_ps();
990         fix2             = _mm_setzero_ps();
991         fiy2             = _mm_setzero_ps();
992         fiz2             = _mm_setzero_ps();
993         fix3             = _mm_setzero_ps();
994         fiy3             = _mm_setzero_ps();
995         fiz3             = _mm_setzero_ps();
996
997         /* Start inner kernel loop */
998         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
999         {
1000
1001             /* Get j neighbor index, and coordinate index */
1002             jnrA             = jjnr[jidx];
1003             jnrB             = jjnr[jidx+1];
1004             jnrC             = jjnr[jidx+2];
1005             jnrD             = jjnr[jidx+3];
1006             j_coord_offsetA  = DIM*jnrA;
1007             j_coord_offsetB  = DIM*jnrB;
1008             j_coord_offsetC  = DIM*jnrC;
1009             j_coord_offsetD  = DIM*jnrD;
1010
1011             /* load j atom coordinates */
1012             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1013                                               x+j_coord_offsetC,x+j_coord_offsetD,
1014                                               &jx0,&jy0,&jz0);
1015
1016             /* Calculate displacement vector */
1017             dx00             = _mm_sub_ps(ix0,jx0);
1018             dy00             = _mm_sub_ps(iy0,jy0);
1019             dz00             = _mm_sub_ps(iz0,jz0);
1020             dx10             = _mm_sub_ps(ix1,jx0);
1021             dy10             = _mm_sub_ps(iy1,jy0);
1022             dz10             = _mm_sub_ps(iz1,jz0);
1023             dx20             = _mm_sub_ps(ix2,jx0);
1024             dy20             = _mm_sub_ps(iy2,jy0);
1025             dz20             = _mm_sub_ps(iz2,jz0);
1026             dx30             = _mm_sub_ps(ix3,jx0);
1027             dy30             = _mm_sub_ps(iy3,jy0);
1028             dz30             = _mm_sub_ps(iz3,jz0);
1029
1030             /* Calculate squared distance and things based on it */
1031             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1032             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1033             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1034             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1035
1036             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1037             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1038             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1039             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1040
1041             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1042             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1043             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1044             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1045
1046             /* Load parameters for j particles */
1047             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1048                                                               charge+jnrC+0,charge+jnrD+0);
1049             vdwjidx0A        = 2*vdwtype[jnrA+0];
1050             vdwjidx0B        = 2*vdwtype[jnrB+0];
1051             vdwjidx0C        = 2*vdwtype[jnrC+0];
1052             vdwjidx0D        = 2*vdwtype[jnrD+0];
1053
1054             fjx0             = _mm_setzero_ps();
1055             fjy0             = _mm_setzero_ps();
1056             fjz0             = _mm_setzero_ps();
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             if (gmx_mm_any_lt(rsq00,rcutoff2))
1063             {
1064
1065             r00              = _mm_mul_ps(rsq00,rinv00);
1066
1067             /* Compute parameters for interactions between i and j atoms */
1068             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1069                                          vdwparam+vdwioffset0+vdwjidx0B,
1070                                          vdwparam+vdwioffset0+vdwjidx0C,
1071                                          vdwparam+vdwioffset0+vdwjidx0D,
1072                                          &c6_00,&c12_00);
1073
1074             /* LENNARD-JONES DISPERSION/REPULSION */
1075
1076             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1077             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1078             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1079             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1080             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1081
1082             d                = _mm_sub_ps(r00,rswitch);
1083             d                = _mm_max_ps(d,_mm_setzero_ps());
1084             d2               = _mm_mul_ps(d,d);
1085             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1086
1087             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1088
1089             /* Evaluate switch function */
1090             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1091             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1092             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1093
1094             fscal            = fvdw;
1095
1096             fscal            = _mm_and_ps(fscal,cutoff_mask);
1097
1098              /* Update vectorial force */
1099             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1100             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1101             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1102
1103             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1104             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1105             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1106
1107             }
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             if (gmx_mm_any_lt(rsq10,rcutoff2))
1114             {
1115
1116             r10              = _mm_mul_ps(rsq10,rinv10);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq10             = _mm_mul_ps(iq1,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Analytical PME correction */
1124             zeta2            = _mm_mul_ps(beta2,rsq10);
1125             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1126             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1127             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1128             felec            = _mm_mul_ps(qq10,felec);
1129             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1130             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1131             velec            = _mm_mul_ps(qq10,velec);
1132
1133             d                = _mm_sub_ps(r10,rswitch);
1134             d                = _mm_max_ps(d,_mm_setzero_ps());
1135             d2               = _mm_mul_ps(d,d);
1136             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1137
1138             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1139
1140             /* Evaluate switch function */
1141             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1142             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1143             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1144
1145             fscal            = felec;
1146
1147             fscal            = _mm_and_ps(fscal,cutoff_mask);
1148
1149              /* Update vectorial force */
1150             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1151             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1152             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1153
1154             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1155             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1156             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1157
1158             }
1159
1160             /**************************
1161              * CALCULATE INTERACTIONS *
1162              **************************/
1163
1164             if (gmx_mm_any_lt(rsq20,rcutoff2))
1165             {
1166
1167             r20              = _mm_mul_ps(rsq20,rinv20);
1168
1169             /* Compute parameters for interactions between i and j atoms */
1170             qq20             = _mm_mul_ps(iq2,jq0);
1171
1172             /* EWALD ELECTROSTATICS */
1173
1174             /* Analytical PME correction */
1175             zeta2            = _mm_mul_ps(beta2,rsq20);
1176             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1177             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1178             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1179             felec            = _mm_mul_ps(qq20,felec);
1180             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1181             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1182             velec            = _mm_mul_ps(qq20,velec);
1183
1184             d                = _mm_sub_ps(r20,rswitch);
1185             d                = _mm_max_ps(d,_mm_setzero_ps());
1186             d2               = _mm_mul_ps(d,d);
1187             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1188
1189             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1190
1191             /* Evaluate switch function */
1192             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1193             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1194             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1195
1196             fscal            = felec;
1197
1198             fscal            = _mm_and_ps(fscal,cutoff_mask);
1199
1200              /* Update vectorial force */
1201             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1202             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1203             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1204
1205             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1206             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1207             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1208
1209             }
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             if (gmx_mm_any_lt(rsq30,rcutoff2))
1216             {
1217
1218             r30              = _mm_mul_ps(rsq30,rinv30);
1219
1220             /* Compute parameters for interactions between i and j atoms */
1221             qq30             = _mm_mul_ps(iq3,jq0);
1222
1223             /* EWALD ELECTROSTATICS */
1224
1225             /* Analytical PME correction */
1226             zeta2            = _mm_mul_ps(beta2,rsq30);
1227             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1228             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1229             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1230             felec            = _mm_mul_ps(qq30,felec);
1231             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1232             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
1233             velec            = _mm_mul_ps(qq30,velec);
1234
1235             d                = _mm_sub_ps(r30,rswitch);
1236             d                = _mm_max_ps(d,_mm_setzero_ps());
1237             d2               = _mm_mul_ps(d,d);
1238             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1239
1240             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1241
1242             /* Evaluate switch function */
1243             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1244             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1245             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm_and_ps(fscal,cutoff_mask);
1250
1251              /* Update vectorial force */
1252             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1253             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1254             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1255
1256             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1257             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1258             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1259
1260             }
1261
1262             fjptrA             = f+j_coord_offsetA;
1263             fjptrB             = f+j_coord_offsetB;
1264             fjptrC             = f+j_coord_offsetC;
1265             fjptrD             = f+j_coord_offsetD;
1266
1267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1268
1269             /* Inner loop uses 209 flops */
1270         }
1271
1272         if(jidx<j_index_end)
1273         {
1274
1275             /* Get j neighbor index, and coordinate index */
1276             jnrlistA         = jjnr[jidx];
1277             jnrlistB         = jjnr[jidx+1];
1278             jnrlistC         = jjnr[jidx+2];
1279             jnrlistD         = jjnr[jidx+3];
1280             /* Sign of each element will be negative for non-real atoms.
1281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1283              */
1284             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1289             j_coord_offsetA  = DIM*jnrA;
1290             j_coord_offsetB  = DIM*jnrB;
1291             j_coord_offsetC  = DIM*jnrC;
1292             j_coord_offsetD  = DIM*jnrD;
1293
1294             /* load j atom coordinates */
1295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1296                                               x+j_coord_offsetC,x+j_coord_offsetD,
1297                                               &jx0,&jy0,&jz0);
1298
1299             /* Calculate displacement vector */
1300             dx00             = _mm_sub_ps(ix0,jx0);
1301             dy00             = _mm_sub_ps(iy0,jy0);
1302             dz00             = _mm_sub_ps(iz0,jz0);
1303             dx10             = _mm_sub_ps(ix1,jx0);
1304             dy10             = _mm_sub_ps(iy1,jy0);
1305             dz10             = _mm_sub_ps(iz1,jz0);
1306             dx20             = _mm_sub_ps(ix2,jx0);
1307             dy20             = _mm_sub_ps(iy2,jy0);
1308             dz20             = _mm_sub_ps(iz2,jz0);
1309             dx30             = _mm_sub_ps(ix3,jx0);
1310             dy30             = _mm_sub_ps(iy3,jy0);
1311             dz30             = _mm_sub_ps(iz3,jz0);
1312
1313             /* Calculate squared distance and things based on it */
1314             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1315             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1316             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1317             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1318
1319             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1320             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1321             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1322             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1323
1324             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1325             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1326             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1327             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1328
1329             /* Load parameters for j particles */
1330             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1331                                                               charge+jnrC+0,charge+jnrD+0);
1332             vdwjidx0A        = 2*vdwtype[jnrA+0];
1333             vdwjidx0B        = 2*vdwtype[jnrB+0];
1334             vdwjidx0C        = 2*vdwtype[jnrC+0];
1335             vdwjidx0D        = 2*vdwtype[jnrD+0];
1336
1337             fjx0             = _mm_setzero_ps();
1338             fjy0             = _mm_setzero_ps();
1339             fjz0             = _mm_setzero_ps();
1340
1341             /**************************
1342              * CALCULATE INTERACTIONS *
1343              **************************/
1344
1345             if (gmx_mm_any_lt(rsq00,rcutoff2))
1346             {
1347
1348             r00              = _mm_mul_ps(rsq00,rinv00);
1349             r00              = _mm_andnot_ps(dummy_mask,r00);
1350
1351             /* Compute parameters for interactions between i and j atoms */
1352             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1353                                          vdwparam+vdwioffset0+vdwjidx0B,
1354                                          vdwparam+vdwioffset0+vdwjidx0C,
1355                                          vdwparam+vdwioffset0+vdwjidx0D,
1356                                          &c6_00,&c12_00);
1357
1358             /* LENNARD-JONES DISPERSION/REPULSION */
1359
1360             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1361             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1362             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1363             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1364             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1365
1366             d                = _mm_sub_ps(r00,rswitch);
1367             d                = _mm_max_ps(d,_mm_setzero_ps());
1368             d2               = _mm_mul_ps(d,d);
1369             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1370
1371             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1372
1373             /* Evaluate switch function */
1374             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1375             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1376             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1377
1378             fscal            = fvdw;
1379
1380             fscal            = _mm_and_ps(fscal,cutoff_mask);
1381
1382             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1383
1384              /* Update vectorial force */
1385             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1386             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1387             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1388
1389             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1390             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1391             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1392
1393             }
1394
1395             /**************************
1396              * CALCULATE INTERACTIONS *
1397              **************************/
1398
1399             if (gmx_mm_any_lt(rsq10,rcutoff2))
1400             {
1401
1402             r10              = _mm_mul_ps(rsq10,rinv10);
1403             r10              = _mm_andnot_ps(dummy_mask,r10);
1404
1405             /* Compute parameters for interactions between i and j atoms */
1406             qq10             = _mm_mul_ps(iq1,jq0);
1407
1408             /* EWALD ELECTROSTATICS */
1409
1410             /* Analytical PME correction */
1411             zeta2            = _mm_mul_ps(beta2,rsq10);
1412             rinv3            = _mm_mul_ps(rinvsq10,rinv10);
1413             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1414             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1415             felec            = _mm_mul_ps(qq10,felec);
1416             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1417             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv10);
1418             velec            = _mm_mul_ps(qq10,velec);
1419
1420             d                = _mm_sub_ps(r10,rswitch);
1421             d                = _mm_max_ps(d,_mm_setzero_ps());
1422             d2               = _mm_mul_ps(d,d);
1423             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1424
1425             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1426
1427             /* Evaluate switch function */
1428             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1429             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1430             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1431
1432             fscal            = felec;
1433
1434             fscal            = _mm_and_ps(fscal,cutoff_mask);
1435
1436             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1437
1438              /* Update vectorial force */
1439             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1440             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1441             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1442
1443             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1444             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1445             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1446
1447             }
1448
1449             /**************************
1450              * CALCULATE INTERACTIONS *
1451              **************************/
1452
1453             if (gmx_mm_any_lt(rsq20,rcutoff2))
1454             {
1455
1456             r20              = _mm_mul_ps(rsq20,rinv20);
1457             r20              = _mm_andnot_ps(dummy_mask,r20);
1458
1459             /* Compute parameters for interactions between i and j atoms */
1460             qq20             = _mm_mul_ps(iq2,jq0);
1461
1462             /* EWALD ELECTROSTATICS */
1463
1464             /* Analytical PME correction */
1465             zeta2            = _mm_mul_ps(beta2,rsq20);
1466             rinv3            = _mm_mul_ps(rinvsq20,rinv20);
1467             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1468             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1469             felec            = _mm_mul_ps(qq20,felec);
1470             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1471             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv20);
1472             velec            = _mm_mul_ps(qq20,velec);
1473
1474             d                = _mm_sub_ps(r20,rswitch);
1475             d                = _mm_max_ps(d,_mm_setzero_ps());
1476             d2               = _mm_mul_ps(d,d);
1477             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1478
1479             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1480
1481             /* Evaluate switch function */
1482             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1483             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1484             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1485
1486             fscal            = felec;
1487
1488             fscal            = _mm_and_ps(fscal,cutoff_mask);
1489
1490             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1491
1492              /* Update vectorial force */
1493             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1494             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1495             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1496
1497             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1498             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1499             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1500
1501             }
1502
1503             /**************************
1504              * CALCULATE INTERACTIONS *
1505              **************************/
1506
1507             if (gmx_mm_any_lt(rsq30,rcutoff2))
1508             {
1509
1510             r30              = _mm_mul_ps(rsq30,rinv30);
1511             r30              = _mm_andnot_ps(dummy_mask,r30);
1512
1513             /* Compute parameters for interactions between i and j atoms */
1514             qq30             = _mm_mul_ps(iq3,jq0);
1515
1516             /* EWALD ELECTROSTATICS */
1517
1518             /* Analytical PME correction */
1519             zeta2            = _mm_mul_ps(beta2,rsq30);
1520             rinv3            = _mm_mul_ps(rinvsq30,rinv30);
1521             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
1522             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
1523             felec            = _mm_mul_ps(qq30,felec);
1524             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
1525             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv30);
1526             velec            = _mm_mul_ps(qq30,velec);
1527
1528             d                = _mm_sub_ps(r30,rswitch);
1529             d                = _mm_max_ps(d,_mm_setzero_ps());
1530             d2               = _mm_mul_ps(d,d);
1531             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1532
1533             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1534
1535             /* Evaluate switch function */
1536             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1537             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1538             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1539
1540             fscal            = felec;
1541
1542             fscal            = _mm_and_ps(fscal,cutoff_mask);
1543
1544             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1545
1546              /* Update vectorial force */
1547             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1548             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1549             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1550
1551             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1552             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1553             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1554
1555             }
1556
1557             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1558             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1559             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1560             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1561
1562             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1563
1564             /* Inner loop uses 213 flops */
1565         }
1566
1567         /* End of innermost loop */
1568
1569         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1570                                               f+i_coord_offset,fshift+i_shift_offset);
1571
1572         /* Increment number of inner iterations */
1573         inneriter                  += j_index_end - j_index_start;
1574
1575         /* Outer loop uses 24 flops */
1576     }
1577
1578     /* Increment number of outer iterations */
1579     outeriter        += nri;
1580
1581     /* Update outer/inner flops */
1582
1583     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*213);
1584 }