17f8a6367e2bfc55f2f1e51461cccbef4777de27
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128           dummy_mask,cutoff_mask;
89     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
90     __m128           one     = _mm_set1_ps(1.0);
91     __m128           two     = _mm_set1_ps(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_ps(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     /* Setup water-specific parameters */
110     inr              = nlist->iinr[0];
111     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
112     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
113     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
114     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     for(iidx=0;iidx<4*DIM;iidx++)
127     {
128         scratch[iidx] = 0.0;
129     }
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
147                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
148
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152         fix1             = _mm_setzero_ps();
153         fiy1             = _mm_setzero_ps();
154         fiz1             = _mm_setzero_ps();
155         fix2             = _mm_setzero_ps();
156         fiy2             = _mm_setzero_ps();
157         fiz2             = _mm_setzero_ps();
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_ps();
161         vvdwsum          = _mm_setzero_ps();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             jnrC             = jjnr[jidx+2];
171             jnrD             = jjnr[jidx+3];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               x+j_coord_offsetC,x+j_coord_offsetD,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_ps(ix0,jx0);
184             dy00             = _mm_sub_ps(iy0,jy0);
185             dz00             = _mm_sub_ps(iz0,jz0);
186             dx10             = _mm_sub_ps(ix1,jx0);
187             dy10             = _mm_sub_ps(iy1,jy0);
188             dz10             = _mm_sub_ps(iz1,jz0);
189             dx20             = _mm_sub_ps(ix2,jx0);
190             dy20             = _mm_sub_ps(iy2,jy0);
191             dz20             = _mm_sub_ps(iz2,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
195             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
196             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
197
198             rinv00           = gmx_mm_invsqrt_ps(rsq00);
199             rinv10           = gmx_mm_invsqrt_ps(rsq10);
200             rinv20           = gmx_mm_invsqrt_ps(rsq20);
201
202             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
203             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
204             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                               charge+jnrC+0,charge+jnrD+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213
214             fjx0             = _mm_setzero_ps();
215             fjy0             = _mm_setzero_ps();
216             fjz0             = _mm_setzero_ps();
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm_mul_ps(iq0,jq0);
224             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,
226                                          vdwparam+vdwioffset0+vdwjidx0C,
227                                          vdwparam+vdwioffset0+vdwjidx0D,
228                                          &c6_00,&c12_00);
229
230             /* COULOMB ELECTROSTATICS */
231             velec            = _mm_mul_ps(qq00,rinv00);
232             felec            = _mm_mul_ps(velec,rinvsq00);
233
234             /* LENNARD-JONES DISPERSION/REPULSION */
235
236             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
237             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
238             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
239             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
240             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
241
242             /* Update potential sum for this i atom from the interaction with this j atom. */
243             velecsum         = _mm_add_ps(velecsum,velec);
244             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
245
246             fscal            = _mm_add_ps(felec,fvdw);
247
248              /* Update vectorial force */
249             fix0             = _mm_macc_ps(dx00,fscal,fix0);
250             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
251             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
252
253             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
254             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
255             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq10             = _mm_mul_ps(iq1,jq0);
263
264             /* COULOMB ELECTROSTATICS */
265             velec            = _mm_mul_ps(qq10,rinv10);
266             felec            = _mm_mul_ps(velec,rinvsq10);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_ps(velecsum,velec);
270
271             fscal            = felec;
272
273              /* Update vectorial force */
274             fix1             = _mm_macc_ps(dx10,fscal,fix1);
275             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
276             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
277
278             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
279             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
280             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq20             = _mm_mul_ps(iq2,jq0);
288
289             /* COULOMB ELECTROSTATICS */
290             velec            = _mm_mul_ps(qq20,rinv20);
291             felec            = _mm_mul_ps(velec,rinvsq20);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm_add_ps(velecsum,velec);
295
296             fscal            = felec;
297
298              /* Update vectorial force */
299             fix2             = _mm_macc_ps(dx20,fscal,fix2);
300             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
301             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
302
303             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
304             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
305             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
306
307             fjptrA             = f+j_coord_offsetA;
308             fjptrB             = f+j_coord_offsetB;
309             fjptrC             = f+j_coord_offsetC;
310             fjptrD             = f+j_coord_offsetD;
311
312             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
313
314             /* Inner loop uses 105 flops */
315         }
316
317         if(jidx<j_index_end)
318         {
319
320             /* Get j neighbor index, and coordinate index */
321             jnrlistA         = jjnr[jidx];
322             jnrlistB         = jjnr[jidx+1];
323             jnrlistC         = jjnr[jidx+2];
324             jnrlistD         = jjnr[jidx+3];
325             /* Sign of each element will be negative for non-real atoms.
326              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
327              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
328              */
329             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
330             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
331             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
332             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
333             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
334             j_coord_offsetA  = DIM*jnrA;
335             j_coord_offsetB  = DIM*jnrB;
336             j_coord_offsetC  = DIM*jnrC;
337             j_coord_offsetD  = DIM*jnrD;
338
339             /* load j atom coordinates */
340             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
341                                               x+j_coord_offsetC,x+j_coord_offsetD,
342                                               &jx0,&jy0,&jz0);
343
344             /* Calculate displacement vector */
345             dx00             = _mm_sub_ps(ix0,jx0);
346             dy00             = _mm_sub_ps(iy0,jy0);
347             dz00             = _mm_sub_ps(iz0,jz0);
348             dx10             = _mm_sub_ps(ix1,jx0);
349             dy10             = _mm_sub_ps(iy1,jy0);
350             dz10             = _mm_sub_ps(iz1,jz0);
351             dx20             = _mm_sub_ps(ix2,jx0);
352             dy20             = _mm_sub_ps(iy2,jy0);
353             dz20             = _mm_sub_ps(iz2,jz0);
354
355             /* Calculate squared distance and things based on it */
356             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
357             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
358             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
359
360             rinv00           = gmx_mm_invsqrt_ps(rsq00);
361             rinv10           = gmx_mm_invsqrt_ps(rsq10);
362             rinv20           = gmx_mm_invsqrt_ps(rsq20);
363
364             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
365             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
366             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
367
368             /* Load parameters for j particles */
369             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
370                                                               charge+jnrC+0,charge+jnrD+0);
371             vdwjidx0A        = 2*vdwtype[jnrA+0];
372             vdwjidx0B        = 2*vdwtype[jnrB+0];
373             vdwjidx0C        = 2*vdwtype[jnrC+0];
374             vdwjidx0D        = 2*vdwtype[jnrD+0];
375
376             fjx0             = _mm_setzero_ps();
377             fjy0             = _mm_setzero_ps();
378             fjz0             = _mm_setzero_ps();
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq00             = _mm_mul_ps(iq0,jq0);
386             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
387                                          vdwparam+vdwioffset0+vdwjidx0B,
388                                          vdwparam+vdwioffset0+vdwjidx0C,
389                                          vdwparam+vdwioffset0+vdwjidx0D,
390                                          &c6_00,&c12_00);
391
392             /* COULOMB ELECTROSTATICS */
393             velec            = _mm_mul_ps(qq00,rinv00);
394             felec            = _mm_mul_ps(velec,rinvsq00);
395
396             /* LENNARD-JONES DISPERSION/REPULSION */
397
398             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
399             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
400             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
401             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
402             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_andnot_ps(dummy_mask,velec);
406             velecsum         = _mm_add_ps(velecsum,velec);
407             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
408             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
409
410             fscal            = _mm_add_ps(felec,fvdw);
411
412             fscal            = _mm_andnot_ps(dummy_mask,fscal);
413
414              /* Update vectorial force */
415             fix0             = _mm_macc_ps(dx00,fscal,fix0);
416             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
417             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
418
419             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
420             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
421             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             /* Compute parameters for interactions between i and j atoms */
428             qq10             = _mm_mul_ps(iq1,jq0);
429
430             /* COULOMB ELECTROSTATICS */
431             velec            = _mm_mul_ps(qq10,rinv10);
432             felec            = _mm_mul_ps(velec,rinvsq10);
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velec            = _mm_andnot_ps(dummy_mask,velec);
436             velecsum         = _mm_add_ps(velecsum,velec);
437
438             fscal            = felec;
439
440             fscal            = _mm_andnot_ps(dummy_mask,fscal);
441
442              /* Update vectorial force */
443             fix1             = _mm_macc_ps(dx10,fscal,fix1);
444             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
445             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
446
447             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
448             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
449             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq20             = _mm_mul_ps(iq2,jq0);
457
458             /* COULOMB ELECTROSTATICS */
459             velec            = _mm_mul_ps(qq20,rinv20);
460             felec            = _mm_mul_ps(velec,rinvsq20);
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm_andnot_ps(dummy_mask,velec);
464             velecsum         = _mm_add_ps(velecsum,velec);
465
466             fscal            = felec;
467
468             fscal            = _mm_andnot_ps(dummy_mask,fscal);
469
470              /* Update vectorial force */
471             fix2             = _mm_macc_ps(dx20,fscal,fix2);
472             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
473             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
474
475             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
476             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
477             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
478
479             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
480             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
481             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
482             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
483
484             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
485
486             /* Inner loop uses 105 flops */
487         }
488
489         /* End of innermost loop */
490
491         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
492                                               f+i_coord_offset,fshift+i_shift_offset);
493
494         ggid                        = gid[iidx];
495         /* Update potential energies */
496         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
497         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
498
499         /* Increment number of inner iterations */
500         inneriter                  += j_index_end - j_index_start;
501
502         /* Outer loop uses 20 flops */
503     }
504
505     /* Increment number of outer iterations */
506     outeriter        += nri;
507
508     /* Update outer/inner flops */
509
510     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*105);
511 }
512 /*
513  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_128_fma_single
514  * Electrostatics interaction: Coulomb
515  * VdW interaction:            LennardJones
516  * Geometry:                   Water3-Particle
517  * Calculate force/pot:        Force
518  */
519 void
520 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_128_fma_single
521                     (t_nblist * gmx_restrict                nlist,
522                      rvec * gmx_restrict                    xx,
523                      rvec * gmx_restrict                    ff,
524                      t_forcerec * gmx_restrict              fr,
525                      t_mdatoms * gmx_restrict               mdatoms,
526                      nb_kernel_data_t * gmx_restrict        kernel_data,
527                      t_nrnb * gmx_restrict                  nrnb)
528 {
529     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
530      * just 0 for non-waters.
531      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
532      * jnr indices corresponding to data put in the four positions in the SIMD register.
533      */
534     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
535     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
536     int              jnrA,jnrB,jnrC,jnrD;
537     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
538     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
539     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
540     real             rcutoff_scalar;
541     real             *shiftvec,*fshift,*x,*f;
542     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
543     real             scratch[4*DIM];
544     __m128           fscal,rcutoff,rcutoff2,jidxall;
545     int              vdwioffset0;
546     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
547     int              vdwioffset1;
548     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
549     int              vdwioffset2;
550     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
551     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
552     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
553     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
554     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
555     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
556     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
557     real             *charge;
558     int              nvdwtype;
559     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
560     int              *vdwtype;
561     real             *vdwparam;
562     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
563     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
564     __m128           dummy_mask,cutoff_mask;
565     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
566     __m128           one     = _mm_set1_ps(1.0);
567     __m128           two     = _mm_set1_ps(2.0);
568     x                = xx[0];
569     f                = ff[0];
570
571     nri              = nlist->nri;
572     iinr             = nlist->iinr;
573     jindex           = nlist->jindex;
574     jjnr             = nlist->jjnr;
575     shiftidx         = nlist->shift;
576     gid              = nlist->gid;
577     shiftvec         = fr->shift_vec[0];
578     fshift           = fr->fshift[0];
579     facel            = _mm_set1_ps(fr->epsfac);
580     charge           = mdatoms->chargeA;
581     nvdwtype         = fr->ntype;
582     vdwparam         = fr->nbfp;
583     vdwtype          = mdatoms->typeA;
584
585     /* Setup water-specific parameters */
586     inr              = nlist->iinr[0];
587     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
588     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
589     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
590     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
591
592     /* Avoid stupid compiler warnings */
593     jnrA = jnrB = jnrC = jnrD = 0;
594     j_coord_offsetA = 0;
595     j_coord_offsetB = 0;
596     j_coord_offsetC = 0;
597     j_coord_offsetD = 0;
598
599     outeriter        = 0;
600     inneriter        = 0;
601
602     for(iidx=0;iidx<4*DIM;iidx++)
603     {
604         scratch[iidx] = 0.0;
605     }
606
607     /* Start outer loop over neighborlists */
608     for(iidx=0; iidx<nri; iidx++)
609     {
610         /* Load shift vector for this list */
611         i_shift_offset   = DIM*shiftidx[iidx];
612
613         /* Load limits for loop over neighbors */
614         j_index_start    = jindex[iidx];
615         j_index_end      = jindex[iidx+1];
616
617         /* Get outer coordinate index */
618         inr              = iinr[iidx];
619         i_coord_offset   = DIM*inr;
620
621         /* Load i particle coords and add shift vector */
622         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
623                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
624
625         fix0             = _mm_setzero_ps();
626         fiy0             = _mm_setzero_ps();
627         fiz0             = _mm_setzero_ps();
628         fix1             = _mm_setzero_ps();
629         fiy1             = _mm_setzero_ps();
630         fiz1             = _mm_setzero_ps();
631         fix2             = _mm_setzero_ps();
632         fiy2             = _mm_setzero_ps();
633         fiz2             = _mm_setzero_ps();
634
635         /* Start inner kernel loop */
636         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
637         {
638
639             /* Get j neighbor index, and coordinate index */
640             jnrA             = jjnr[jidx];
641             jnrB             = jjnr[jidx+1];
642             jnrC             = jjnr[jidx+2];
643             jnrD             = jjnr[jidx+3];
644             j_coord_offsetA  = DIM*jnrA;
645             j_coord_offsetB  = DIM*jnrB;
646             j_coord_offsetC  = DIM*jnrC;
647             j_coord_offsetD  = DIM*jnrD;
648
649             /* load j atom coordinates */
650             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
651                                               x+j_coord_offsetC,x+j_coord_offsetD,
652                                               &jx0,&jy0,&jz0);
653
654             /* Calculate displacement vector */
655             dx00             = _mm_sub_ps(ix0,jx0);
656             dy00             = _mm_sub_ps(iy0,jy0);
657             dz00             = _mm_sub_ps(iz0,jz0);
658             dx10             = _mm_sub_ps(ix1,jx0);
659             dy10             = _mm_sub_ps(iy1,jy0);
660             dz10             = _mm_sub_ps(iz1,jz0);
661             dx20             = _mm_sub_ps(ix2,jx0);
662             dy20             = _mm_sub_ps(iy2,jy0);
663             dz20             = _mm_sub_ps(iz2,jz0);
664
665             /* Calculate squared distance and things based on it */
666             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
667             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
668             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
669
670             rinv00           = gmx_mm_invsqrt_ps(rsq00);
671             rinv10           = gmx_mm_invsqrt_ps(rsq10);
672             rinv20           = gmx_mm_invsqrt_ps(rsq20);
673
674             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
675             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
676             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
677
678             /* Load parameters for j particles */
679             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
680                                                               charge+jnrC+0,charge+jnrD+0);
681             vdwjidx0A        = 2*vdwtype[jnrA+0];
682             vdwjidx0B        = 2*vdwtype[jnrB+0];
683             vdwjidx0C        = 2*vdwtype[jnrC+0];
684             vdwjidx0D        = 2*vdwtype[jnrD+0];
685
686             fjx0             = _mm_setzero_ps();
687             fjy0             = _mm_setzero_ps();
688             fjz0             = _mm_setzero_ps();
689
690             /**************************
691              * CALCULATE INTERACTIONS *
692              **************************/
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq00             = _mm_mul_ps(iq0,jq0);
696             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
697                                          vdwparam+vdwioffset0+vdwjidx0B,
698                                          vdwparam+vdwioffset0+vdwjidx0C,
699                                          vdwparam+vdwioffset0+vdwjidx0D,
700                                          &c6_00,&c12_00);
701
702             /* COULOMB ELECTROSTATICS */
703             velec            = _mm_mul_ps(qq00,rinv00);
704             felec            = _mm_mul_ps(velec,rinvsq00);
705
706             /* LENNARD-JONES DISPERSION/REPULSION */
707
708             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
709             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
710
711             fscal            = _mm_add_ps(felec,fvdw);
712
713              /* Update vectorial force */
714             fix0             = _mm_macc_ps(dx00,fscal,fix0);
715             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
716             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
717
718             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
719             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
720             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
721
722             /**************************
723              * CALCULATE INTERACTIONS *
724              **************************/
725
726             /* Compute parameters for interactions between i and j atoms */
727             qq10             = _mm_mul_ps(iq1,jq0);
728
729             /* COULOMB ELECTROSTATICS */
730             velec            = _mm_mul_ps(qq10,rinv10);
731             felec            = _mm_mul_ps(velec,rinvsq10);
732
733             fscal            = felec;
734
735              /* Update vectorial force */
736             fix1             = _mm_macc_ps(dx10,fscal,fix1);
737             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
738             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
739
740             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
741             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
742             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
743
744             /**************************
745              * CALCULATE INTERACTIONS *
746              **************************/
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq20             = _mm_mul_ps(iq2,jq0);
750
751             /* COULOMB ELECTROSTATICS */
752             velec            = _mm_mul_ps(qq20,rinv20);
753             felec            = _mm_mul_ps(velec,rinvsq20);
754
755             fscal            = felec;
756
757              /* Update vectorial force */
758             fix2             = _mm_macc_ps(dx20,fscal,fix2);
759             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
760             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
761
762             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
763             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
764             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
765
766             fjptrA             = f+j_coord_offsetA;
767             fjptrB             = f+j_coord_offsetB;
768             fjptrC             = f+j_coord_offsetC;
769             fjptrD             = f+j_coord_offsetD;
770
771             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
772
773             /* Inner loop uses 97 flops */
774         }
775
776         if(jidx<j_index_end)
777         {
778
779             /* Get j neighbor index, and coordinate index */
780             jnrlistA         = jjnr[jidx];
781             jnrlistB         = jjnr[jidx+1];
782             jnrlistC         = jjnr[jidx+2];
783             jnrlistD         = jjnr[jidx+3];
784             /* Sign of each element will be negative for non-real atoms.
785              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
786              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
787              */
788             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
789             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
790             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
791             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
792             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
793             j_coord_offsetA  = DIM*jnrA;
794             j_coord_offsetB  = DIM*jnrB;
795             j_coord_offsetC  = DIM*jnrC;
796             j_coord_offsetD  = DIM*jnrD;
797
798             /* load j atom coordinates */
799             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
800                                               x+j_coord_offsetC,x+j_coord_offsetD,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_ps(ix0,jx0);
805             dy00             = _mm_sub_ps(iy0,jy0);
806             dz00             = _mm_sub_ps(iz0,jz0);
807             dx10             = _mm_sub_ps(ix1,jx0);
808             dy10             = _mm_sub_ps(iy1,jy0);
809             dz10             = _mm_sub_ps(iz1,jz0);
810             dx20             = _mm_sub_ps(ix2,jx0);
811             dy20             = _mm_sub_ps(iy2,jy0);
812             dz20             = _mm_sub_ps(iz2,jz0);
813
814             /* Calculate squared distance and things based on it */
815             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
816             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
817             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
818
819             rinv00           = gmx_mm_invsqrt_ps(rsq00);
820             rinv10           = gmx_mm_invsqrt_ps(rsq10);
821             rinv20           = gmx_mm_invsqrt_ps(rsq20);
822
823             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
824             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
825             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
826
827             /* Load parameters for j particles */
828             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
829                                                               charge+jnrC+0,charge+jnrD+0);
830             vdwjidx0A        = 2*vdwtype[jnrA+0];
831             vdwjidx0B        = 2*vdwtype[jnrB+0];
832             vdwjidx0C        = 2*vdwtype[jnrC+0];
833             vdwjidx0D        = 2*vdwtype[jnrD+0];
834
835             fjx0             = _mm_setzero_ps();
836             fjy0             = _mm_setzero_ps();
837             fjz0             = _mm_setzero_ps();
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             /* Compute parameters for interactions between i and j atoms */
844             qq00             = _mm_mul_ps(iq0,jq0);
845             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
846                                          vdwparam+vdwioffset0+vdwjidx0B,
847                                          vdwparam+vdwioffset0+vdwjidx0C,
848                                          vdwparam+vdwioffset0+vdwjidx0D,
849                                          &c6_00,&c12_00);
850
851             /* COULOMB ELECTROSTATICS */
852             velec            = _mm_mul_ps(qq00,rinv00);
853             felec            = _mm_mul_ps(velec,rinvsq00);
854
855             /* LENNARD-JONES DISPERSION/REPULSION */
856
857             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
858             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
859
860             fscal            = _mm_add_ps(felec,fvdw);
861
862             fscal            = _mm_andnot_ps(dummy_mask,fscal);
863
864              /* Update vectorial force */
865             fix0             = _mm_macc_ps(dx00,fscal,fix0);
866             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
867             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
868
869             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
870             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
871             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq10             = _mm_mul_ps(iq1,jq0);
879
880             /* COULOMB ELECTROSTATICS */
881             velec            = _mm_mul_ps(qq10,rinv10);
882             felec            = _mm_mul_ps(velec,rinvsq10);
883
884             fscal            = felec;
885
886             fscal            = _mm_andnot_ps(dummy_mask,fscal);
887
888              /* Update vectorial force */
889             fix1             = _mm_macc_ps(dx10,fscal,fix1);
890             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
891             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
892
893             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
894             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
895             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq20             = _mm_mul_ps(iq2,jq0);
903
904             /* COULOMB ELECTROSTATICS */
905             velec            = _mm_mul_ps(qq20,rinv20);
906             felec            = _mm_mul_ps(velec,rinvsq20);
907
908             fscal            = felec;
909
910             fscal            = _mm_andnot_ps(dummy_mask,fscal);
911
912              /* Update vectorial force */
913             fix2             = _mm_macc_ps(dx20,fscal,fix2);
914             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
915             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
916
917             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
918             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
919             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
920
921             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
922             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
923             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
924             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
925
926             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
927
928             /* Inner loop uses 97 flops */
929         }
930
931         /* End of innermost loop */
932
933         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
934                                               f+i_coord_offset,fshift+i_shift_offset);
935
936         /* Increment number of inner iterations */
937         inneriter                  += j_index_end - j_index_start;
938
939         /* Outer loop uses 18 flops */
940     }
941
942     /* Increment number of outer iterations */
943     outeriter        += nri;
944
945     /* Update outer/inner flops */
946
947     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
948 }