b36881288d3eeec3c0138536d5522636cfa1088e
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168         fix3             = _mm_setzero_ps();
169         fiy3             = _mm_setzero_ps();
170         fiz3             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205             dx30             = _mm_sub_ps(ix3,jx0);
206             dy30             = _mm_sub_ps(iy3,jy0);
207             dz30             = _mm_sub_ps(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218             rinv30           = gmx_mm_invsqrt_ps(rsq30);
219
220             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
221             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
222             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226                                                               charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             fjx0             = _mm_setzero_ps();
233             fjy0             = _mm_setzero_ps();
234             fjz0             = _mm_setzero_ps();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             r00              = _mm_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,
245                                          vdwparam+vdwioffset0+vdwjidx0C,
246                                          vdwparam+vdwioffset0+vdwjidx0D,
247                                          &c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm_mul_ps(r00,vftabscale);
251             vfitab           = _mm_cvttps_epi32(rt);
252 #ifdef __XOP__
253             vfeps            = _mm_frcz_ps(rt);
254 #else
255             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
256 #endif
257             twovfeps         = _mm_add_ps(vfeps,vfeps);
258             vfitab           = _mm_slli_epi32(vfitab,3);
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
263             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
264             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
265             _MM_TRANSPOSE4_PS(Y,F,G,H);
266             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
267             VV               = _mm_macc_ps(vfeps,Fp,Y);
268             vvdw6            = _mm_mul_ps(c6_00,VV);
269             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
270             fvdw6            = _mm_mul_ps(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
280             VV               = _mm_macc_ps(vfeps,Fp,Y);
281             vvdw12           = _mm_mul_ps(c12_00,VV);
282             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
283             fvdw12           = _mm_mul_ps(c12_00,FF);
284             vvdw             = _mm_add_ps(vvdw12,vvdw6);
285             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292              /* Update vectorial force */
293             fix0             = _mm_macc_ps(dx00,fscal,fix0);
294             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
295             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
296
297             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
298             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
299             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* COULOMB ELECTROSTATICS */
309             velec            = _mm_mul_ps(qq10,rinv10);
310             felec            = _mm_mul_ps(velec,rinvsq10);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317              /* Update vectorial force */
318             fix1             = _mm_macc_ps(dx10,fscal,fix1);
319             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
320             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
321
322             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
323             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
324             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq20             = _mm_mul_ps(iq2,jq0);
332
333             /* COULOMB ELECTROSTATICS */
334             velec            = _mm_mul_ps(qq20,rinv20);
335             felec            = _mm_mul_ps(velec,rinvsq20);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342              /* Update vectorial force */
343             fix2             = _mm_macc_ps(dx20,fscal,fix2);
344             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
345             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
346
347             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
348             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
349             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq30             = _mm_mul_ps(iq3,jq0);
357
358             /* COULOMB ELECTROSTATICS */
359             velec            = _mm_mul_ps(qq30,rinv30);
360             felec            = _mm_mul_ps(velec,rinvsq30);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velecsum         = _mm_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367              /* Update vectorial force */
368             fix3             = _mm_macc_ps(dx30,fscal,fix3);
369             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
370             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
371
372             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
373             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
374             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
375
376             fjptrA             = f+j_coord_offsetA;
377             fjptrB             = f+j_coord_offsetB;
378             fjptrC             = f+j_coord_offsetC;
379             fjptrD             = f+j_coord_offsetD;
380
381             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 152 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             /* Get j neighbor index, and coordinate index */
390             jnrlistA         = jjnr[jidx];
391             jnrlistB         = jjnr[jidx+1];
392             jnrlistC         = jjnr[jidx+2];
393             jnrlistD         = jjnr[jidx+3];
394             /* Sign of each element will be negative for non-real atoms.
395              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
396              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
397              */
398             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
399             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
400             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
401             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
402             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
403             j_coord_offsetA  = DIM*jnrA;
404             j_coord_offsetB  = DIM*jnrB;
405             j_coord_offsetC  = DIM*jnrC;
406             j_coord_offsetD  = DIM*jnrD;
407
408             /* load j atom coordinates */
409             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
410                                               x+j_coord_offsetC,x+j_coord_offsetD,
411                                               &jx0,&jy0,&jz0);
412
413             /* Calculate displacement vector */
414             dx00             = _mm_sub_ps(ix0,jx0);
415             dy00             = _mm_sub_ps(iy0,jy0);
416             dz00             = _mm_sub_ps(iz0,jz0);
417             dx10             = _mm_sub_ps(ix1,jx0);
418             dy10             = _mm_sub_ps(iy1,jy0);
419             dz10             = _mm_sub_ps(iz1,jz0);
420             dx20             = _mm_sub_ps(ix2,jx0);
421             dy20             = _mm_sub_ps(iy2,jy0);
422             dz20             = _mm_sub_ps(iz2,jz0);
423             dx30             = _mm_sub_ps(ix3,jx0);
424             dy30             = _mm_sub_ps(iy3,jy0);
425             dz30             = _mm_sub_ps(iz3,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
429             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
430             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
431             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
432
433             rinv00           = gmx_mm_invsqrt_ps(rsq00);
434             rinv10           = gmx_mm_invsqrt_ps(rsq10);
435             rinv20           = gmx_mm_invsqrt_ps(rsq20);
436             rinv30           = gmx_mm_invsqrt_ps(rsq30);
437
438             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
439             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
440             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
444                                                               charge+jnrC+0,charge+jnrD+0);
445             vdwjidx0A        = 2*vdwtype[jnrA+0];
446             vdwjidx0B        = 2*vdwtype[jnrB+0];
447             vdwjidx0C        = 2*vdwtype[jnrC+0];
448             vdwjidx0D        = 2*vdwtype[jnrD+0];
449
450             fjx0             = _mm_setzero_ps();
451             fjy0             = _mm_setzero_ps();
452             fjz0             = _mm_setzero_ps();
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             r00              = _mm_mul_ps(rsq00,rinv00);
459             r00              = _mm_andnot_ps(dummy_mask,r00);
460
461             /* Compute parameters for interactions between i and j atoms */
462             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
463                                          vdwparam+vdwioffset0+vdwjidx0B,
464                                          vdwparam+vdwioffset0+vdwjidx0C,
465                                          vdwparam+vdwioffset0+vdwjidx0D,
466                                          &c6_00,&c12_00);
467
468             /* Calculate table index by multiplying r with table scale and truncate to integer */
469             rt               = _mm_mul_ps(r00,vftabscale);
470             vfitab           = _mm_cvttps_epi32(rt);
471 #ifdef __XOP__
472             vfeps            = _mm_frcz_ps(rt);
473 #else
474             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
475 #endif
476             twovfeps         = _mm_add_ps(vfeps,vfeps);
477             vfitab           = _mm_slli_epi32(vfitab,3);
478
479             /* CUBIC SPLINE TABLE DISPERSION */
480             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
481             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
482             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
483             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
484             _MM_TRANSPOSE4_PS(Y,F,G,H);
485             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
486             VV               = _mm_macc_ps(vfeps,Fp,Y);
487             vvdw6            = _mm_mul_ps(c6_00,VV);
488             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
489             fvdw6            = _mm_mul_ps(c6_00,FF);
490
491             /* CUBIC SPLINE TABLE REPULSION */
492             vfitab           = _mm_add_epi32(vfitab,ifour);
493             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
494             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
495             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
496             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
497             _MM_TRANSPOSE4_PS(Y,F,G,H);
498             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
499             VV               = _mm_macc_ps(vfeps,Fp,Y);
500             vvdw12           = _mm_mul_ps(c12_00,VV);
501             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
502             fvdw12           = _mm_mul_ps(c12_00,FF);
503             vvdw             = _mm_add_ps(vvdw12,vvdw6);
504             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = fvdw;
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514              /* Update vectorial force */
515             fix0             = _mm_macc_ps(dx00,fscal,fix0);
516             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
517             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
518
519             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
520             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
521             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             /* Compute parameters for interactions between i and j atoms */
528             qq10             = _mm_mul_ps(iq1,jq0);
529
530             /* COULOMB ELECTROSTATICS */
531             velec            = _mm_mul_ps(qq10,rinv10);
532             felec            = _mm_mul_ps(velec,rinvsq10);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_andnot_ps(dummy_mask,velec);
536             velecsum         = _mm_add_ps(velecsum,velec);
537
538             fscal            = felec;
539
540             fscal            = _mm_andnot_ps(dummy_mask,fscal);
541
542              /* Update vectorial force */
543             fix1             = _mm_macc_ps(dx10,fscal,fix1);
544             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
545             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
546
547             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
548             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
549             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq20             = _mm_mul_ps(iq2,jq0);
557
558             /* COULOMB ELECTROSTATICS */
559             velec            = _mm_mul_ps(qq20,rinv20);
560             felec            = _mm_mul_ps(velec,rinvsq20);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm_andnot_ps(dummy_mask,velec);
564             velecsum         = _mm_add_ps(velecsum,velec);
565
566             fscal            = felec;
567
568             fscal            = _mm_andnot_ps(dummy_mask,fscal);
569
570              /* Update vectorial force */
571             fix2             = _mm_macc_ps(dx20,fscal,fix2);
572             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
573             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
574
575             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
576             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
577             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq30             = _mm_mul_ps(iq3,jq0);
585
586             /* COULOMB ELECTROSTATICS */
587             velec            = _mm_mul_ps(qq30,rinv30);
588             felec            = _mm_mul_ps(velec,rinvsq30);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_andnot_ps(dummy_mask,velec);
592             velecsum         = _mm_add_ps(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_andnot_ps(dummy_mask,fscal);
597
598              /* Update vectorial force */
599             fix3             = _mm_macc_ps(dx30,fscal,fix3);
600             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
601             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
602
603             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
604             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
605             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
606
607             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
608             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
609             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
610             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
611
612             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
613
614             /* Inner loop uses 153 flops */
615         }
616
617         /* End of innermost loop */
618
619         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
620                                               f+i_coord_offset,fshift+i_shift_offset);
621
622         ggid                        = gid[iidx];
623         /* Update potential energies */
624         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
625         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
626
627         /* Increment number of inner iterations */
628         inneriter                  += j_index_end - j_index_start;
629
630         /* Outer loop uses 26 flops */
631     }
632
633     /* Increment number of outer iterations */
634     outeriter        += nri;
635
636     /* Update outer/inner flops */
637
638     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153);
639 }
640 /*
641  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_single
642  * Electrostatics interaction: Coulomb
643  * VdW interaction:            CubicSplineTable
644  * Geometry:                   Water4-Particle
645  * Calculate force/pot:        Force
646  */
647 void
648 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_single
649                     (t_nblist * gmx_restrict                nlist,
650                      rvec * gmx_restrict                    xx,
651                      rvec * gmx_restrict                    ff,
652                      t_forcerec * gmx_restrict              fr,
653                      t_mdatoms * gmx_restrict               mdatoms,
654                      nb_kernel_data_t * gmx_restrict        kernel_data,
655                      t_nrnb * gmx_restrict                  nrnb)
656 {
657     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
658      * just 0 for non-waters.
659      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
660      * jnr indices corresponding to data put in the four positions in the SIMD register.
661      */
662     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
663     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
664     int              jnrA,jnrB,jnrC,jnrD;
665     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
666     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
667     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
668     real             rcutoff_scalar;
669     real             *shiftvec,*fshift,*x,*f;
670     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
671     real             scratch[4*DIM];
672     __m128           fscal,rcutoff,rcutoff2,jidxall;
673     int              vdwioffset0;
674     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
675     int              vdwioffset1;
676     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
677     int              vdwioffset2;
678     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
679     int              vdwioffset3;
680     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
681     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
682     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
683     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
684     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
685     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
686     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
687     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
688     real             *charge;
689     int              nvdwtype;
690     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
691     int              *vdwtype;
692     real             *vdwparam;
693     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
694     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
695     __m128i          vfitab;
696     __m128i          ifour       = _mm_set1_epi32(4);
697     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
698     real             *vftab;
699     __m128           dummy_mask,cutoff_mask;
700     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
701     __m128           one     = _mm_set1_ps(1.0);
702     __m128           two     = _mm_set1_ps(2.0);
703     x                = xx[0];
704     f                = ff[0];
705
706     nri              = nlist->nri;
707     iinr             = nlist->iinr;
708     jindex           = nlist->jindex;
709     jjnr             = nlist->jjnr;
710     shiftidx         = nlist->shift;
711     gid              = nlist->gid;
712     shiftvec         = fr->shift_vec[0];
713     fshift           = fr->fshift[0];
714     facel            = _mm_set1_ps(fr->epsfac);
715     charge           = mdatoms->chargeA;
716     nvdwtype         = fr->ntype;
717     vdwparam         = fr->nbfp;
718     vdwtype          = mdatoms->typeA;
719
720     vftab            = kernel_data->table_vdw->data;
721     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
722
723     /* Setup water-specific parameters */
724     inr              = nlist->iinr[0];
725     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
726     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
727     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
728     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
729
730     /* Avoid stupid compiler warnings */
731     jnrA = jnrB = jnrC = jnrD = 0;
732     j_coord_offsetA = 0;
733     j_coord_offsetB = 0;
734     j_coord_offsetC = 0;
735     j_coord_offsetD = 0;
736
737     outeriter        = 0;
738     inneriter        = 0;
739
740     for(iidx=0;iidx<4*DIM;iidx++)
741     {
742         scratch[iidx] = 0.0;
743     }
744
745     /* Start outer loop over neighborlists */
746     for(iidx=0; iidx<nri; iidx++)
747     {
748         /* Load shift vector for this list */
749         i_shift_offset   = DIM*shiftidx[iidx];
750
751         /* Load limits for loop over neighbors */
752         j_index_start    = jindex[iidx];
753         j_index_end      = jindex[iidx+1];
754
755         /* Get outer coordinate index */
756         inr              = iinr[iidx];
757         i_coord_offset   = DIM*inr;
758
759         /* Load i particle coords and add shift vector */
760         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
761                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
762
763         fix0             = _mm_setzero_ps();
764         fiy0             = _mm_setzero_ps();
765         fiz0             = _mm_setzero_ps();
766         fix1             = _mm_setzero_ps();
767         fiy1             = _mm_setzero_ps();
768         fiz1             = _mm_setzero_ps();
769         fix2             = _mm_setzero_ps();
770         fiy2             = _mm_setzero_ps();
771         fiz2             = _mm_setzero_ps();
772         fix3             = _mm_setzero_ps();
773         fiy3             = _mm_setzero_ps();
774         fiz3             = _mm_setzero_ps();
775
776         /* Start inner kernel loop */
777         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
778         {
779
780             /* Get j neighbor index, and coordinate index */
781             jnrA             = jjnr[jidx];
782             jnrB             = jjnr[jidx+1];
783             jnrC             = jjnr[jidx+2];
784             jnrD             = jjnr[jidx+3];
785             j_coord_offsetA  = DIM*jnrA;
786             j_coord_offsetB  = DIM*jnrB;
787             j_coord_offsetC  = DIM*jnrC;
788             j_coord_offsetD  = DIM*jnrD;
789
790             /* load j atom coordinates */
791             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
792                                               x+j_coord_offsetC,x+j_coord_offsetD,
793                                               &jx0,&jy0,&jz0);
794
795             /* Calculate displacement vector */
796             dx00             = _mm_sub_ps(ix0,jx0);
797             dy00             = _mm_sub_ps(iy0,jy0);
798             dz00             = _mm_sub_ps(iz0,jz0);
799             dx10             = _mm_sub_ps(ix1,jx0);
800             dy10             = _mm_sub_ps(iy1,jy0);
801             dz10             = _mm_sub_ps(iz1,jz0);
802             dx20             = _mm_sub_ps(ix2,jx0);
803             dy20             = _mm_sub_ps(iy2,jy0);
804             dz20             = _mm_sub_ps(iz2,jz0);
805             dx30             = _mm_sub_ps(ix3,jx0);
806             dy30             = _mm_sub_ps(iy3,jy0);
807             dz30             = _mm_sub_ps(iz3,jz0);
808
809             /* Calculate squared distance and things based on it */
810             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
811             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
812             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
813             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
814
815             rinv00           = gmx_mm_invsqrt_ps(rsq00);
816             rinv10           = gmx_mm_invsqrt_ps(rsq10);
817             rinv20           = gmx_mm_invsqrt_ps(rsq20);
818             rinv30           = gmx_mm_invsqrt_ps(rsq30);
819
820             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
821             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
822             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
823
824             /* Load parameters for j particles */
825             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
826                                                               charge+jnrC+0,charge+jnrD+0);
827             vdwjidx0A        = 2*vdwtype[jnrA+0];
828             vdwjidx0B        = 2*vdwtype[jnrB+0];
829             vdwjidx0C        = 2*vdwtype[jnrC+0];
830             vdwjidx0D        = 2*vdwtype[jnrD+0];
831
832             fjx0             = _mm_setzero_ps();
833             fjy0             = _mm_setzero_ps();
834             fjz0             = _mm_setzero_ps();
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             r00              = _mm_mul_ps(rsq00,rinv00);
841
842             /* Compute parameters for interactions between i and j atoms */
843             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
844                                          vdwparam+vdwioffset0+vdwjidx0B,
845                                          vdwparam+vdwioffset0+vdwjidx0C,
846                                          vdwparam+vdwioffset0+vdwjidx0D,
847                                          &c6_00,&c12_00);
848
849             /* Calculate table index by multiplying r with table scale and truncate to integer */
850             rt               = _mm_mul_ps(r00,vftabscale);
851             vfitab           = _mm_cvttps_epi32(rt);
852 #ifdef __XOP__
853             vfeps            = _mm_frcz_ps(rt);
854 #else
855             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
856 #endif
857             twovfeps         = _mm_add_ps(vfeps,vfeps);
858             vfitab           = _mm_slli_epi32(vfitab,3);
859
860             /* CUBIC SPLINE TABLE DISPERSION */
861             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
862             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
863             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
864             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
865             _MM_TRANSPOSE4_PS(Y,F,G,H);
866             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
867             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
868             fvdw6            = _mm_mul_ps(c6_00,FF);
869
870             /* CUBIC SPLINE TABLE REPULSION */
871             vfitab           = _mm_add_epi32(vfitab,ifour);
872             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
873             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
874             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
875             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
876             _MM_TRANSPOSE4_PS(Y,F,G,H);
877             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
878             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
879             fvdw12           = _mm_mul_ps(c12_00,FF);
880             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
881
882             fscal            = fvdw;
883
884              /* Update vectorial force */
885             fix0             = _mm_macc_ps(dx00,fscal,fix0);
886             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
887             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
888
889             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
890             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
891             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             /* Compute parameters for interactions between i and j atoms */
898             qq10             = _mm_mul_ps(iq1,jq0);
899
900             /* COULOMB ELECTROSTATICS */
901             velec            = _mm_mul_ps(qq10,rinv10);
902             felec            = _mm_mul_ps(velec,rinvsq10);
903
904             fscal            = felec;
905
906              /* Update vectorial force */
907             fix1             = _mm_macc_ps(dx10,fscal,fix1);
908             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
909             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
910
911             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
912             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
913             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq20             = _mm_mul_ps(iq2,jq0);
921
922             /* COULOMB ELECTROSTATICS */
923             velec            = _mm_mul_ps(qq20,rinv20);
924             felec            = _mm_mul_ps(velec,rinvsq20);
925
926             fscal            = felec;
927
928              /* Update vectorial force */
929             fix2             = _mm_macc_ps(dx20,fscal,fix2);
930             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
931             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
932
933             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
934             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
935             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq30             = _mm_mul_ps(iq3,jq0);
943
944             /* COULOMB ELECTROSTATICS */
945             velec            = _mm_mul_ps(qq30,rinv30);
946             felec            = _mm_mul_ps(velec,rinvsq30);
947
948             fscal            = felec;
949
950              /* Update vectorial force */
951             fix3             = _mm_macc_ps(dx30,fscal,fix3);
952             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
953             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
954
955             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
956             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
957             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
958
959             fjptrA             = f+j_coord_offsetA;
960             fjptrB             = f+j_coord_offsetB;
961             fjptrC             = f+j_coord_offsetC;
962             fjptrD             = f+j_coord_offsetD;
963
964             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
965
966             /* Inner loop uses 141 flops */
967         }
968
969         if(jidx<j_index_end)
970         {
971
972             /* Get j neighbor index, and coordinate index */
973             jnrlistA         = jjnr[jidx];
974             jnrlistB         = jjnr[jidx+1];
975             jnrlistC         = jjnr[jidx+2];
976             jnrlistD         = jjnr[jidx+3];
977             /* Sign of each element will be negative for non-real atoms.
978              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
979              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
980              */
981             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
982             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
983             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
984             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
985             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
986             j_coord_offsetA  = DIM*jnrA;
987             j_coord_offsetB  = DIM*jnrB;
988             j_coord_offsetC  = DIM*jnrC;
989             j_coord_offsetD  = DIM*jnrD;
990
991             /* load j atom coordinates */
992             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
993                                               x+j_coord_offsetC,x+j_coord_offsetD,
994                                               &jx0,&jy0,&jz0);
995
996             /* Calculate displacement vector */
997             dx00             = _mm_sub_ps(ix0,jx0);
998             dy00             = _mm_sub_ps(iy0,jy0);
999             dz00             = _mm_sub_ps(iz0,jz0);
1000             dx10             = _mm_sub_ps(ix1,jx0);
1001             dy10             = _mm_sub_ps(iy1,jy0);
1002             dz10             = _mm_sub_ps(iz1,jz0);
1003             dx20             = _mm_sub_ps(ix2,jx0);
1004             dy20             = _mm_sub_ps(iy2,jy0);
1005             dz20             = _mm_sub_ps(iz2,jz0);
1006             dx30             = _mm_sub_ps(ix3,jx0);
1007             dy30             = _mm_sub_ps(iy3,jy0);
1008             dz30             = _mm_sub_ps(iz3,jz0);
1009
1010             /* Calculate squared distance and things based on it */
1011             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1012             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1013             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1014             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1015
1016             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1017             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1018             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1019             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1020
1021             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1022             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1023             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1024
1025             /* Load parameters for j particles */
1026             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1027                                                               charge+jnrC+0,charge+jnrD+0);
1028             vdwjidx0A        = 2*vdwtype[jnrA+0];
1029             vdwjidx0B        = 2*vdwtype[jnrB+0];
1030             vdwjidx0C        = 2*vdwtype[jnrC+0];
1031             vdwjidx0D        = 2*vdwtype[jnrD+0];
1032
1033             fjx0             = _mm_setzero_ps();
1034             fjy0             = _mm_setzero_ps();
1035             fjz0             = _mm_setzero_ps();
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r00              = _mm_mul_ps(rsq00,rinv00);
1042             r00              = _mm_andnot_ps(dummy_mask,r00);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1046                                          vdwparam+vdwioffset0+vdwjidx0B,
1047                                          vdwparam+vdwioffset0+vdwjidx0C,
1048                                          vdwparam+vdwioffset0+vdwjidx0D,
1049                                          &c6_00,&c12_00);
1050
1051             /* Calculate table index by multiplying r with table scale and truncate to integer */
1052             rt               = _mm_mul_ps(r00,vftabscale);
1053             vfitab           = _mm_cvttps_epi32(rt);
1054 #ifdef __XOP__
1055             vfeps            = _mm_frcz_ps(rt);
1056 #else
1057             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1058 #endif
1059             twovfeps         = _mm_add_ps(vfeps,vfeps);
1060             vfitab           = _mm_slli_epi32(vfitab,3);
1061
1062             /* CUBIC SPLINE TABLE DISPERSION */
1063             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1064             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1065             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1066             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1067             _MM_TRANSPOSE4_PS(Y,F,G,H);
1068             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1069             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1070             fvdw6            = _mm_mul_ps(c6_00,FF);
1071
1072             /* CUBIC SPLINE TABLE REPULSION */
1073             vfitab           = _mm_add_epi32(vfitab,ifour);
1074             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1075             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1076             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1077             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1078             _MM_TRANSPOSE4_PS(Y,F,G,H);
1079             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1080             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1081             fvdw12           = _mm_mul_ps(c12_00,FF);
1082             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1083
1084             fscal            = fvdw;
1085
1086             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1087
1088              /* Update vectorial force */
1089             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1090             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1091             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1092
1093             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1094             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1095             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq10             = _mm_mul_ps(iq1,jq0);
1103
1104             /* COULOMB ELECTROSTATICS */
1105             velec            = _mm_mul_ps(qq10,rinv10);
1106             felec            = _mm_mul_ps(velec,rinvsq10);
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1111
1112              /* Update vectorial force */
1113             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1114             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1115             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1116
1117             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1118             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1119             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             /* Compute parameters for interactions between i and j atoms */
1126             qq20             = _mm_mul_ps(iq2,jq0);
1127
1128             /* COULOMB ELECTROSTATICS */
1129             velec            = _mm_mul_ps(qq20,rinv20);
1130             felec            = _mm_mul_ps(velec,rinvsq20);
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1135
1136              /* Update vectorial force */
1137             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1138             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1139             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1140
1141             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1142             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1143             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             /* Compute parameters for interactions between i and j atoms */
1150             qq30             = _mm_mul_ps(iq3,jq0);
1151
1152             /* COULOMB ELECTROSTATICS */
1153             velec            = _mm_mul_ps(qq30,rinv30);
1154             felec            = _mm_mul_ps(velec,rinvsq30);
1155
1156             fscal            = felec;
1157
1158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1159
1160              /* Update vectorial force */
1161             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1162             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1163             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1164
1165             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1166             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1167             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1168
1169             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1170             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1171             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1172             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1173
1174             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1175
1176             /* Inner loop uses 142 flops */
1177         }
1178
1179         /* End of innermost loop */
1180
1181         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1182                                               f+i_coord_offset,fshift+i_shift_offset);
1183
1184         /* Increment number of inner iterations */
1185         inneriter                  += j_index_end - j_index_start;
1186
1187         /* Outer loop uses 24 flops */
1188     }
1189
1190     /* Increment number of outer iterations */
1191     outeriter        += nri;
1192
1193     /* Update outer/inner flops */
1194
1195     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1196 }