made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
85     real             *vftab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_ps();
143         fiy0             = _mm_setzero_ps();
144         fiz0             = _mm_setzero_ps();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_ps();
152         vvdwsum          = _mm_setzero_ps();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165             j_coord_offsetC  = DIM*jnrC;
166             j_coord_offsetD  = DIM*jnrD;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               x+j_coord_offsetC,x+j_coord_offsetD,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_ps(ix0,jx0);
175             dy00             = _mm_sub_ps(iy0,jy0);
176             dz00             = _mm_sub_ps(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_ps(rsq00);
182
183             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
187                                                               charge+jnrC+0,charge+jnrD+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190             vdwjidx0C        = 2*vdwtype[jnrC+0];
191             vdwjidx0D        = 2*vdwtype[jnrD+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             r00              = _mm_mul_ps(rsq00,rinv00);
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_ps(iq0,jq0);
201             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
202                                          vdwparam+vdwioffset0+vdwjidx0B,
203                                          vdwparam+vdwioffset0+vdwjidx0C,
204                                          vdwparam+vdwioffset0+vdwjidx0D,
205                                          &c6_00,&c12_00);
206
207             /* Calculate table index by multiplying r with table scale and truncate to integer */
208             rt               = _mm_mul_ps(r00,vftabscale);
209             vfitab           = _mm_cvttps_epi32(rt);
210 #ifdef __XOP__
211             vfeps            = _mm_frcz_ps(rt);
212 #else
213             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
214 #endif
215             twovfeps         = _mm_add_ps(vfeps,vfeps);
216             vfitab           = _mm_slli_epi32(vfitab,3);
217
218             /* COULOMB ELECTROSTATICS */
219             velec            = _mm_mul_ps(qq00,rinv00);
220             felec            = _mm_mul_ps(velec,rinvsq00);
221
222             /* CUBIC SPLINE TABLE DISPERSION */
223             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
224             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
225             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
226             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
227             _MM_TRANSPOSE4_PS(Y,F,G,H);
228             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
229             VV               = _mm_macc_ps(vfeps,Fp,Y);
230             vvdw6            = _mm_mul_ps(c6_00,VV);
231             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
232             fvdw6            = _mm_mul_ps(c6_00,FF);
233
234             /* CUBIC SPLINE TABLE REPULSION */
235             vfitab           = _mm_add_epi32(vfitab,ifour);
236             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
237             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
238             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
239             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
240             _MM_TRANSPOSE4_PS(Y,F,G,H);
241             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
242             VV               = _mm_macc_ps(vfeps,Fp,Y);
243             vvdw12           = _mm_mul_ps(c12_00,VV);
244             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
245             fvdw12           = _mm_mul_ps(c12_00,FF);
246             vvdw             = _mm_add_ps(vvdw12,vvdw6);
247             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm_add_ps(velecsum,velec);
251             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
252
253             fscal            = _mm_add_ps(felec,fvdw);
254
255              /* Update vectorial force */
256             fix0             = _mm_macc_ps(dx00,fscal,fix0);
257             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
258             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
259
260             fjptrA             = f+j_coord_offsetA;
261             fjptrB             = f+j_coord_offsetB;
262             fjptrC             = f+j_coord_offsetC;
263             fjptrD             = f+j_coord_offsetD;
264             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
265                                                    _mm_mul_ps(dx00,fscal),
266                                                    _mm_mul_ps(dy00,fscal),
267                                                    _mm_mul_ps(dz00,fscal));
268
269             /* Inner loop uses 66 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             /* Get j neighbor index, and coordinate index */
276             jnrlistA         = jjnr[jidx];
277             jnrlistB         = jjnr[jidx+1];
278             jnrlistC         = jjnr[jidx+2];
279             jnrlistD         = jjnr[jidx+3];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
283              */
284             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
289             j_coord_offsetA  = DIM*jnrA;
290             j_coord_offsetB  = DIM*jnrB;
291             j_coord_offsetC  = DIM*jnrC;
292             j_coord_offsetD  = DIM*jnrD;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
296                                               x+j_coord_offsetC,x+j_coord_offsetD,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_ps(ix0,jx0);
301             dy00             = _mm_sub_ps(iy0,jy0);
302             dz00             = _mm_sub_ps(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
306
307             rinv00           = gmx_mm_invsqrt_ps(rsq00);
308
309             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
310
311             /* Load parameters for j particles */
312             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
313                                                               charge+jnrC+0,charge+jnrD+0);
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315             vdwjidx0B        = 2*vdwtype[jnrB+0];
316             vdwjidx0C        = 2*vdwtype[jnrC+0];
317             vdwjidx0D        = 2*vdwtype[jnrD+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm_mul_ps(rsq00,rinv00);
324             r00              = _mm_andnot_ps(dummy_mask,r00);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq00             = _mm_mul_ps(iq0,jq0);
328             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
329                                          vdwparam+vdwioffset0+vdwjidx0B,
330                                          vdwparam+vdwioffset0+vdwjidx0C,
331                                          vdwparam+vdwioffset0+vdwjidx0D,
332                                          &c6_00,&c12_00);
333
334             /* Calculate table index by multiplying r with table scale and truncate to integer */
335             rt               = _mm_mul_ps(r00,vftabscale);
336             vfitab           = _mm_cvttps_epi32(rt);
337 #ifdef __XOP__
338             vfeps            = _mm_frcz_ps(rt);
339 #else
340             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
341 #endif
342             twovfeps         = _mm_add_ps(vfeps,vfeps);
343             vfitab           = _mm_slli_epi32(vfitab,3);
344
345             /* COULOMB ELECTROSTATICS */
346             velec            = _mm_mul_ps(qq00,rinv00);
347             felec            = _mm_mul_ps(velec,rinvsq00);
348
349             /* CUBIC SPLINE TABLE DISPERSION */
350             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
351             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
352             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
353             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
354             _MM_TRANSPOSE4_PS(Y,F,G,H);
355             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
356             VV               = _mm_macc_ps(vfeps,Fp,Y);
357             vvdw6            = _mm_mul_ps(c6_00,VV);
358             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
359             fvdw6            = _mm_mul_ps(c6_00,FF);
360
361             /* CUBIC SPLINE TABLE REPULSION */
362             vfitab           = _mm_add_epi32(vfitab,ifour);
363             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
364             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
365             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
366             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
367             _MM_TRANSPOSE4_PS(Y,F,G,H);
368             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
369             VV               = _mm_macc_ps(vfeps,Fp,Y);
370             vvdw12           = _mm_mul_ps(c12_00,VV);
371             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
372             fvdw12           = _mm_mul_ps(c12_00,FF);
373             vvdw             = _mm_add_ps(vvdw12,vvdw6);
374             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velec            = _mm_andnot_ps(dummy_mask,velec);
378             velecsum         = _mm_add_ps(velecsum,velec);
379             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
380             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
381
382             fscal            = _mm_add_ps(felec,fvdw);
383
384             fscal            = _mm_andnot_ps(dummy_mask,fscal);
385
386              /* Update vectorial force */
387             fix0             = _mm_macc_ps(dx00,fscal,fix0);
388             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
389             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
390
391             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
392             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
393             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
394             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
395             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
396                                                    _mm_mul_ps(dx00,fscal),
397                                                    _mm_mul_ps(dy00,fscal),
398                                                    _mm_mul_ps(dz00,fscal));
399
400             /* Inner loop uses 67 flops */
401         }
402
403         /* End of innermost loop */
404
405         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
406                                               f+i_coord_offset,fshift+i_shift_offset);
407
408         ggid                        = gid[iidx];
409         /* Update potential energies */
410         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
411         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
412
413         /* Increment number of inner iterations */
414         inneriter                  += j_index_end - j_index_start;
415
416         /* Outer loop uses 9 flops */
417     }
418
419     /* Increment number of outer iterations */
420     outeriter        += nri;
421
422     /* Update outer/inner flops */
423
424     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
425 }
426 /*
427  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_single
428  * Electrostatics interaction: Coulomb
429  * VdW interaction:            CubicSplineTable
430  * Geometry:                   Particle-Particle
431  * Calculate force/pot:        Force
432  */
433 void
434 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_single
435                     (t_nblist * gmx_restrict                nlist,
436                      rvec * gmx_restrict                    xx,
437                      rvec * gmx_restrict                    ff,
438                      t_forcerec * gmx_restrict              fr,
439                      t_mdatoms * gmx_restrict               mdatoms,
440                      nb_kernel_data_t * gmx_restrict        kernel_data,
441                      t_nrnb * gmx_restrict                  nrnb)
442 {
443     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
444      * just 0 for non-waters.
445      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
446      * jnr indices corresponding to data put in the four positions in the SIMD register.
447      */
448     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
449     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
450     int              jnrA,jnrB,jnrC,jnrD;
451     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
452     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
453     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
454     real             rcutoff_scalar;
455     real             *shiftvec,*fshift,*x,*f;
456     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
457     real             scratch[4*DIM];
458     __m128           fscal,rcutoff,rcutoff2,jidxall;
459     int              vdwioffset0;
460     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
461     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
462     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
463     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
464     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
465     real             *charge;
466     int              nvdwtype;
467     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
468     int              *vdwtype;
469     real             *vdwparam;
470     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
471     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
472     __m128i          vfitab;
473     __m128i          ifour       = _mm_set1_epi32(4);
474     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
475     real             *vftab;
476     __m128           dummy_mask,cutoff_mask;
477     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
478     __m128           one     = _mm_set1_ps(1.0);
479     __m128           two     = _mm_set1_ps(2.0);
480     x                = xx[0];
481     f                = ff[0];
482
483     nri              = nlist->nri;
484     iinr             = nlist->iinr;
485     jindex           = nlist->jindex;
486     jjnr             = nlist->jjnr;
487     shiftidx         = nlist->shift;
488     gid              = nlist->gid;
489     shiftvec         = fr->shift_vec[0];
490     fshift           = fr->fshift[0];
491     facel            = _mm_set1_ps(fr->epsfac);
492     charge           = mdatoms->chargeA;
493     nvdwtype         = fr->ntype;
494     vdwparam         = fr->nbfp;
495     vdwtype          = mdatoms->typeA;
496
497     vftab            = kernel_data->table_vdw->data;
498     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
499
500     /* Avoid stupid compiler warnings */
501     jnrA = jnrB = jnrC = jnrD = 0;
502     j_coord_offsetA = 0;
503     j_coord_offsetB = 0;
504     j_coord_offsetC = 0;
505     j_coord_offsetD = 0;
506
507     outeriter        = 0;
508     inneriter        = 0;
509
510     for(iidx=0;iidx<4*DIM;iidx++)
511     {
512         scratch[iidx] = 0.0;
513     }
514
515     /* Start outer loop over neighborlists */
516     for(iidx=0; iidx<nri; iidx++)
517     {
518         /* Load shift vector for this list */
519         i_shift_offset   = DIM*shiftidx[iidx];
520
521         /* Load limits for loop over neighbors */
522         j_index_start    = jindex[iidx];
523         j_index_end      = jindex[iidx+1];
524
525         /* Get outer coordinate index */
526         inr              = iinr[iidx];
527         i_coord_offset   = DIM*inr;
528
529         /* Load i particle coords and add shift vector */
530         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
531
532         fix0             = _mm_setzero_ps();
533         fiy0             = _mm_setzero_ps();
534         fiz0             = _mm_setzero_ps();
535
536         /* Load parameters for i particles */
537         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
538         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
539
540         /* Start inner kernel loop */
541         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
542         {
543
544             /* Get j neighbor index, and coordinate index */
545             jnrA             = jjnr[jidx];
546             jnrB             = jjnr[jidx+1];
547             jnrC             = jjnr[jidx+2];
548             jnrD             = jjnr[jidx+3];
549             j_coord_offsetA  = DIM*jnrA;
550             j_coord_offsetB  = DIM*jnrB;
551             j_coord_offsetC  = DIM*jnrC;
552             j_coord_offsetD  = DIM*jnrD;
553
554             /* load j atom coordinates */
555             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
556                                               x+j_coord_offsetC,x+j_coord_offsetD,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm_sub_ps(ix0,jx0);
561             dy00             = _mm_sub_ps(iy0,jy0);
562             dz00             = _mm_sub_ps(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
566
567             rinv00           = gmx_mm_invsqrt_ps(rsq00);
568
569             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
570
571             /* Load parameters for j particles */
572             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
573                                                               charge+jnrC+0,charge+jnrD+0);
574             vdwjidx0A        = 2*vdwtype[jnrA+0];
575             vdwjidx0B        = 2*vdwtype[jnrB+0];
576             vdwjidx0C        = 2*vdwtype[jnrC+0];
577             vdwjidx0D        = 2*vdwtype[jnrD+0];
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r00              = _mm_mul_ps(rsq00,rinv00);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq00             = _mm_mul_ps(iq0,jq0);
587             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
588                                          vdwparam+vdwioffset0+vdwjidx0B,
589                                          vdwparam+vdwioffset0+vdwjidx0C,
590                                          vdwparam+vdwioffset0+vdwjidx0D,
591                                          &c6_00,&c12_00);
592
593             /* Calculate table index by multiplying r with table scale and truncate to integer */
594             rt               = _mm_mul_ps(r00,vftabscale);
595             vfitab           = _mm_cvttps_epi32(rt);
596 #ifdef __XOP__
597             vfeps            = _mm_frcz_ps(rt);
598 #else
599             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
600 #endif
601             twovfeps         = _mm_add_ps(vfeps,vfeps);
602             vfitab           = _mm_slli_epi32(vfitab,3);
603
604             /* COULOMB ELECTROSTATICS */
605             velec            = _mm_mul_ps(qq00,rinv00);
606             felec            = _mm_mul_ps(velec,rinvsq00);
607
608             /* CUBIC SPLINE TABLE DISPERSION */
609             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
610             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
611             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
612             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
613             _MM_TRANSPOSE4_PS(Y,F,G,H);
614             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
615             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
616             fvdw6            = _mm_mul_ps(c6_00,FF);
617
618             /* CUBIC SPLINE TABLE REPULSION */
619             vfitab           = _mm_add_epi32(vfitab,ifour);
620             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
621             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
622             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
623             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
624             _MM_TRANSPOSE4_PS(Y,F,G,H);
625             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
626             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
627             fvdw12           = _mm_mul_ps(c12_00,FF);
628             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
629
630             fscal            = _mm_add_ps(felec,fvdw);
631
632              /* Update vectorial force */
633             fix0             = _mm_macc_ps(dx00,fscal,fix0);
634             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
635             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
636
637             fjptrA             = f+j_coord_offsetA;
638             fjptrB             = f+j_coord_offsetB;
639             fjptrC             = f+j_coord_offsetC;
640             fjptrD             = f+j_coord_offsetD;
641             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
642                                                    _mm_mul_ps(dx00,fscal),
643                                                    _mm_mul_ps(dy00,fscal),
644                                                    _mm_mul_ps(dz00,fscal));
645
646             /* Inner loop uses 57 flops */
647         }
648
649         if(jidx<j_index_end)
650         {
651
652             /* Get j neighbor index, and coordinate index */
653             jnrlistA         = jjnr[jidx];
654             jnrlistB         = jjnr[jidx+1];
655             jnrlistC         = jjnr[jidx+2];
656             jnrlistD         = jjnr[jidx+3];
657             /* Sign of each element will be negative for non-real atoms.
658              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
659              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
660              */
661             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
662             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
663             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
664             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
665             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
666             j_coord_offsetA  = DIM*jnrA;
667             j_coord_offsetB  = DIM*jnrB;
668             j_coord_offsetC  = DIM*jnrC;
669             j_coord_offsetD  = DIM*jnrD;
670
671             /* load j atom coordinates */
672             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
673                                               x+j_coord_offsetC,x+j_coord_offsetD,
674                                               &jx0,&jy0,&jz0);
675
676             /* Calculate displacement vector */
677             dx00             = _mm_sub_ps(ix0,jx0);
678             dy00             = _mm_sub_ps(iy0,jy0);
679             dz00             = _mm_sub_ps(iz0,jz0);
680
681             /* Calculate squared distance and things based on it */
682             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
683
684             rinv00           = gmx_mm_invsqrt_ps(rsq00);
685
686             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
687
688             /* Load parameters for j particles */
689             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
690                                                               charge+jnrC+0,charge+jnrD+0);
691             vdwjidx0A        = 2*vdwtype[jnrA+0];
692             vdwjidx0B        = 2*vdwtype[jnrB+0];
693             vdwjidx0C        = 2*vdwtype[jnrC+0];
694             vdwjidx0D        = 2*vdwtype[jnrD+0];
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             r00              = _mm_mul_ps(rsq00,rinv00);
701             r00              = _mm_andnot_ps(dummy_mask,r00);
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq00             = _mm_mul_ps(iq0,jq0);
705             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
706                                          vdwparam+vdwioffset0+vdwjidx0B,
707                                          vdwparam+vdwioffset0+vdwjidx0C,
708                                          vdwparam+vdwioffset0+vdwjidx0D,
709                                          &c6_00,&c12_00);
710
711             /* Calculate table index by multiplying r with table scale and truncate to integer */
712             rt               = _mm_mul_ps(r00,vftabscale);
713             vfitab           = _mm_cvttps_epi32(rt);
714 #ifdef __XOP__
715             vfeps            = _mm_frcz_ps(rt);
716 #else
717             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
718 #endif
719             twovfeps         = _mm_add_ps(vfeps,vfeps);
720             vfitab           = _mm_slli_epi32(vfitab,3);
721
722             /* COULOMB ELECTROSTATICS */
723             velec            = _mm_mul_ps(qq00,rinv00);
724             felec            = _mm_mul_ps(velec,rinvsq00);
725
726             /* CUBIC SPLINE TABLE DISPERSION */
727             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
728             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
729             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
730             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
731             _MM_TRANSPOSE4_PS(Y,F,G,H);
732             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
733             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
734             fvdw6            = _mm_mul_ps(c6_00,FF);
735
736             /* CUBIC SPLINE TABLE REPULSION */
737             vfitab           = _mm_add_epi32(vfitab,ifour);
738             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
739             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
740             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
741             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
742             _MM_TRANSPOSE4_PS(Y,F,G,H);
743             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
744             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
745             fvdw12           = _mm_mul_ps(c12_00,FF);
746             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
747
748             fscal            = _mm_add_ps(felec,fvdw);
749
750             fscal            = _mm_andnot_ps(dummy_mask,fscal);
751
752              /* Update vectorial force */
753             fix0             = _mm_macc_ps(dx00,fscal,fix0);
754             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
755             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
756
757             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
758             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
759             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
760             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
761             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
762                                                    _mm_mul_ps(dx00,fscal),
763                                                    _mm_mul_ps(dy00,fscal),
764                                                    _mm_mul_ps(dz00,fscal));
765
766             /* Inner loop uses 58 flops */
767         }
768
769         /* End of innermost loop */
770
771         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
772                                               f+i_coord_offset,fshift+i_shift_offset);
773
774         /* Increment number of inner iterations */
775         inneriter                  += j_index_end - j_index_start;
776
777         /* Outer loop uses 7 flops */
778     }
779
780     /* Increment number of outer iterations */
781     outeriter        += nri;
782
783     /* Update outer/inner flops */
784
785     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
786 }