06797b62da776678684ef8437d6bdb1da48ee14d
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_elec->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168         fix3             = _mm_setzero_ps();
169         fiy3             = _mm_setzero_ps();
170         fiz3             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205             dx30             = _mm_sub_ps(ix3,jx0);
206             dy30             = _mm_sub_ps(iy3,jy0);
207             dz30             = _mm_sub_ps(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
214
215             rinv10           = gmx_mm_invsqrt_ps(rsq10);
216             rinv20           = gmx_mm_invsqrt_ps(rsq20);
217             rinv30           = gmx_mm_invsqrt_ps(rsq30);
218
219             rinvsq00         = gmx_mm_inv_ps(rsq00);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             fjx0             = _mm_setzero_ps();
230             fjy0             = _mm_setzero_ps();
231             fjz0             = _mm_setzero_ps();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
248             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
249             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
250             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
254
255             fscal            = fvdw;
256
257              /* Update vectorial force */
258             fix0             = _mm_macc_ps(dx00,fscal,fix0);
259             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
260             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
261
262             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
263             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
264             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r10              = _mm_mul_ps(rsq10,rinv10);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq10             = _mm_mul_ps(iq1,jq0);
274
275             /* Calculate table index by multiplying r with table scale and truncate to integer */
276             rt               = _mm_mul_ps(r10,vftabscale);
277             vfitab           = _mm_cvttps_epi32(rt);
278 #ifdef __XOP__
279             vfeps            = _mm_frcz_ps(rt);
280 #else
281             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
282 #endif
283             twovfeps         = _mm_add_ps(vfeps,vfeps);
284             vfitab           = _mm_slli_epi32(vfitab,2);
285
286             /* CUBIC SPLINE TABLE ELECTROSTATICS */
287             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
293             VV               = _mm_macc_ps(vfeps,Fp,Y);
294             velec            = _mm_mul_ps(qq10,VV);
295             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
296             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_ps(velecsum,velec);
300
301             fscal            = felec;
302
303              /* Update vectorial force */
304             fix1             = _mm_macc_ps(dx10,fscal,fix1);
305             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
306             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
307
308             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
309             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
310             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r20              = _mm_mul_ps(rsq20,rinv20);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq20             = _mm_mul_ps(iq2,jq0);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_ps(r20,vftabscale);
323             vfitab           = _mm_cvttps_epi32(rt);
324 #ifdef __XOP__
325             vfeps            = _mm_frcz_ps(rt);
326 #else
327             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
328 #endif
329             twovfeps         = _mm_add_ps(vfeps,vfeps);
330             vfitab           = _mm_slli_epi32(vfitab,2);
331
332             /* CUBIC SPLINE TABLE ELECTROSTATICS */
333             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
334             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
335             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
336             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
337             _MM_TRANSPOSE4_PS(Y,F,G,H);
338             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
339             VV               = _mm_macc_ps(vfeps,Fp,Y);
340             velec            = _mm_mul_ps(qq20,VV);
341             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
342             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349              /* Update vectorial force */
350             fix2             = _mm_macc_ps(dx20,fscal,fix2);
351             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
352             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
353
354             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
355             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
356             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r30              = _mm_mul_ps(rsq30,rinv30);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq30             = _mm_mul_ps(iq3,jq0);
366
367             /* Calculate table index by multiplying r with table scale and truncate to integer */
368             rt               = _mm_mul_ps(r30,vftabscale);
369             vfitab           = _mm_cvttps_epi32(rt);
370 #ifdef __XOP__
371             vfeps            = _mm_frcz_ps(rt);
372 #else
373             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
374 #endif
375             twovfeps         = _mm_add_ps(vfeps,vfeps);
376             vfitab           = _mm_slli_epi32(vfitab,2);
377
378             /* CUBIC SPLINE TABLE ELECTROSTATICS */
379             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
380             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
381             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
382             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
383             _MM_TRANSPOSE4_PS(Y,F,G,H);
384             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
385             VV               = _mm_macc_ps(vfeps,Fp,Y);
386             velec            = _mm_mul_ps(qq30,VV);
387             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
388             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395              /* Update vectorial force */
396             fix3             = _mm_macc_ps(dx30,fscal,fix3);
397             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
398             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
399
400             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
401             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
402             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
403
404             fjptrA             = f+j_coord_offsetA;
405             fjptrB             = f+j_coord_offsetB;
406             fjptrC             = f+j_coord_offsetC;
407             fjptrD             = f+j_coord_offsetD;
408
409             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
410
411             /* Inner loop uses 173 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             /* Get j neighbor index, and coordinate index */
418             jnrlistA         = jjnr[jidx];
419             jnrlistB         = jjnr[jidx+1];
420             jnrlistC         = jjnr[jidx+2];
421             jnrlistD         = jjnr[jidx+3];
422             /* Sign of each element will be negative for non-real atoms.
423              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
424              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
425              */
426             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
427             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
428             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
429             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
430             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
431             j_coord_offsetA  = DIM*jnrA;
432             j_coord_offsetB  = DIM*jnrB;
433             j_coord_offsetC  = DIM*jnrC;
434             j_coord_offsetD  = DIM*jnrD;
435
436             /* load j atom coordinates */
437             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
438                                               x+j_coord_offsetC,x+j_coord_offsetD,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_ps(ix0,jx0);
443             dy00             = _mm_sub_ps(iy0,jy0);
444             dz00             = _mm_sub_ps(iz0,jz0);
445             dx10             = _mm_sub_ps(ix1,jx0);
446             dy10             = _mm_sub_ps(iy1,jy0);
447             dz10             = _mm_sub_ps(iz1,jz0);
448             dx20             = _mm_sub_ps(ix2,jx0);
449             dy20             = _mm_sub_ps(iy2,jy0);
450             dz20             = _mm_sub_ps(iz2,jz0);
451             dx30             = _mm_sub_ps(ix3,jx0);
452             dy30             = _mm_sub_ps(iy3,jy0);
453             dz30             = _mm_sub_ps(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
457             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
458             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
459             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
460
461             rinv10           = gmx_mm_invsqrt_ps(rsq10);
462             rinv20           = gmx_mm_invsqrt_ps(rsq20);
463             rinv30           = gmx_mm_invsqrt_ps(rsq30);
464
465             rinvsq00         = gmx_mm_inv_ps(rsq00);
466
467             /* Load parameters for j particles */
468             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
469                                                               charge+jnrC+0,charge+jnrD+0);
470             vdwjidx0A        = 2*vdwtype[jnrA+0];
471             vdwjidx0B        = 2*vdwtype[jnrB+0];
472             vdwjidx0C        = 2*vdwtype[jnrC+0];
473             vdwjidx0D        = 2*vdwtype[jnrD+0];
474
475             fjx0             = _mm_setzero_ps();
476             fjy0             = _mm_setzero_ps();
477             fjz0             = _mm_setzero_ps();
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             /* Compute parameters for interactions between i and j atoms */
484             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
485                                          vdwparam+vdwioffset0+vdwjidx0B,
486                                          vdwparam+vdwioffset0+vdwjidx0C,
487                                          vdwparam+vdwioffset0+vdwjidx0D,
488                                          &c6_00,&c12_00);
489
490             /* LENNARD-JONES DISPERSION/REPULSION */
491
492             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
493             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
494             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
495             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
496             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
500             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
501
502             fscal            = fvdw;
503
504             fscal            = _mm_andnot_ps(dummy_mask,fscal);
505
506              /* Update vectorial force */
507             fix0             = _mm_macc_ps(dx00,fscal,fix0);
508             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
509             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
510
511             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
512             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
513             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r10              = _mm_mul_ps(rsq10,rinv10);
520             r10              = _mm_andnot_ps(dummy_mask,r10);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq10             = _mm_mul_ps(iq1,jq0);
524
525             /* Calculate table index by multiplying r with table scale and truncate to integer */
526             rt               = _mm_mul_ps(r10,vftabscale);
527             vfitab           = _mm_cvttps_epi32(rt);
528 #ifdef __XOP__
529             vfeps            = _mm_frcz_ps(rt);
530 #else
531             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
532 #endif
533             twovfeps         = _mm_add_ps(vfeps,vfeps);
534             vfitab           = _mm_slli_epi32(vfitab,2);
535
536             /* CUBIC SPLINE TABLE ELECTROSTATICS */
537             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
538             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
539             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
540             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
541             _MM_TRANSPOSE4_PS(Y,F,G,H);
542             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
543             VV               = _mm_macc_ps(vfeps,Fp,Y);
544             velec            = _mm_mul_ps(qq10,VV);
545             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
546             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_andnot_ps(dummy_mask,velec);
550             velecsum         = _mm_add_ps(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_andnot_ps(dummy_mask,fscal);
555
556              /* Update vectorial force */
557             fix1             = _mm_macc_ps(dx10,fscal,fix1);
558             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
559             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
560
561             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
562             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
563             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             r20              = _mm_mul_ps(rsq20,rinv20);
570             r20              = _mm_andnot_ps(dummy_mask,r20);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm_mul_ps(iq2,jq0);
574
575             /* Calculate table index by multiplying r with table scale and truncate to integer */
576             rt               = _mm_mul_ps(r20,vftabscale);
577             vfitab           = _mm_cvttps_epi32(rt);
578 #ifdef __XOP__
579             vfeps            = _mm_frcz_ps(rt);
580 #else
581             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
582 #endif
583             twovfeps         = _mm_add_ps(vfeps,vfeps);
584             vfitab           = _mm_slli_epi32(vfitab,2);
585
586             /* CUBIC SPLINE TABLE ELECTROSTATICS */
587             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
588             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
589             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
590             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
591             _MM_TRANSPOSE4_PS(Y,F,G,H);
592             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
593             VV               = _mm_macc_ps(vfeps,Fp,Y);
594             velec            = _mm_mul_ps(qq20,VV);
595             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
596             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velec            = _mm_andnot_ps(dummy_mask,velec);
600             velecsum         = _mm_add_ps(velecsum,velec);
601
602             fscal            = felec;
603
604             fscal            = _mm_andnot_ps(dummy_mask,fscal);
605
606              /* Update vectorial force */
607             fix2             = _mm_macc_ps(dx20,fscal,fix2);
608             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
609             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
610
611             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
612             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
613             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             r30              = _mm_mul_ps(rsq30,rinv30);
620             r30              = _mm_andnot_ps(dummy_mask,r30);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq30             = _mm_mul_ps(iq3,jq0);
624
625             /* Calculate table index by multiplying r with table scale and truncate to integer */
626             rt               = _mm_mul_ps(r30,vftabscale);
627             vfitab           = _mm_cvttps_epi32(rt);
628 #ifdef __XOP__
629             vfeps            = _mm_frcz_ps(rt);
630 #else
631             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
632 #endif
633             twovfeps         = _mm_add_ps(vfeps,vfeps);
634             vfitab           = _mm_slli_epi32(vfitab,2);
635
636             /* CUBIC SPLINE TABLE ELECTROSTATICS */
637             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
638             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
639             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
640             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
641             _MM_TRANSPOSE4_PS(Y,F,G,H);
642             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
643             VV               = _mm_macc_ps(vfeps,Fp,Y);
644             velec            = _mm_mul_ps(qq30,VV);
645             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
646             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_andnot_ps(dummy_mask,velec);
650             velecsum         = _mm_add_ps(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm_andnot_ps(dummy_mask,fscal);
655
656              /* Update vectorial force */
657             fix3             = _mm_macc_ps(dx30,fscal,fix3);
658             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
659             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
660
661             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
662             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
663             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
664
665             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
666             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
667             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
668             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
669
670             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
671
672             /* Inner loop uses 176 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
678                                               f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
683         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 26 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*176);
697 }
698 /*
699  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_single
700  * Electrostatics interaction: CubicSplineTable
701  * VdW interaction:            LennardJones
702  * Geometry:                   Water4-Particle
703  * Calculate force/pot:        Force
704  */
705 void
706 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_single
707                     (t_nblist * gmx_restrict                nlist,
708                      rvec * gmx_restrict                    xx,
709                      rvec * gmx_restrict                    ff,
710                      t_forcerec * gmx_restrict              fr,
711                      t_mdatoms * gmx_restrict               mdatoms,
712                      nb_kernel_data_t * gmx_restrict        kernel_data,
713                      t_nrnb * gmx_restrict                  nrnb)
714 {
715     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
716      * just 0 for non-waters.
717      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
718      * jnr indices corresponding to data put in the four positions in the SIMD register.
719      */
720     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
721     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
722     int              jnrA,jnrB,jnrC,jnrD;
723     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
724     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
725     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
726     real             rcutoff_scalar;
727     real             *shiftvec,*fshift,*x,*f;
728     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
729     real             scratch[4*DIM];
730     __m128           fscal,rcutoff,rcutoff2,jidxall;
731     int              vdwioffset0;
732     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
733     int              vdwioffset1;
734     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
735     int              vdwioffset2;
736     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
737     int              vdwioffset3;
738     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
739     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
740     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
742     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
743     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
744     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
745     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
746     real             *charge;
747     int              nvdwtype;
748     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
749     int              *vdwtype;
750     real             *vdwparam;
751     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
752     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
753     __m128i          vfitab;
754     __m128i          ifour       = _mm_set1_epi32(4);
755     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
756     real             *vftab;
757     __m128           dummy_mask,cutoff_mask;
758     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
759     __m128           one     = _mm_set1_ps(1.0);
760     __m128           two     = _mm_set1_ps(2.0);
761     x                = xx[0];
762     f                = ff[0];
763
764     nri              = nlist->nri;
765     iinr             = nlist->iinr;
766     jindex           = nlist->jindex;
767     jjnr             = nlist->jjnr;
768     shiftidx         = nlist->shift;
769     gid              = nlist->gid;
770     shiftvec         = fr->shift_vec[0];
771     fshift           = fr->fshift[0];
772     facel            = _mm_set1_ps(fr->epsfac);
773     charge           = mdatoms->chargeA;
774     nvdwtype         = fr->ntype;
775     vdwparam         = fr->nbfp;
776     vdwtype          = mdatoms->typeA;
777
778     vftab            = kernel_data->table_elec->data;
779     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
780
781     /* Setup water-specific parameters */
782     inr              = nlist->iinr[0];
783     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
784     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
785     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
786     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
787
788     /* Avoid stupid compiler warnings */
789     jnrA = jnrB = jnrC = jnrD = 0;
790     j_coord_offsetA = 0;
791     j_coord_offsetB = 0;
792     j_coord_offsetC = 0;
793     j_coord_offsetD = 0;
794
795     outeriter        = 0;
796     inneriter        = 0;
797
798     for(iidx=0;iidx<4*DIM;iidx++)
799     {
800         scratch[iidx] = 0.0;
801     }
802
803     /* Start outer loop over neighborlists */
804     for(iidx=0; iidx<nri; iidx++)
805     {
806         /* Load shift vector for this list */
807         i_shift_offset   = DIM*shiftidx[iidx];
808
809         /* Load limits for loop over neighbors */
810         j_index_start    = jindex[iidx];
811         j_index_end      = jindex[iidx+1];
812
813         /* Get outer coordinate index */
814         inr              = iinr[iidx];
815         i_coord_offset   = DIM*inr;
816
817         /* Load i particle coords and add shift vector */
818         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
819                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
820
821         fix0             = _mm_setzero_ps();
822         fiy0             = _mm_setzero_ps();
823         fiz0             = _mm_setzero_ps();
824         fix1             = _mm_setzero_ps();
825         fiy1             = _mm_setzero_ps();
826         fiz1             = _mm_setzero_ps();
827         fix2             = _mm_setzero_ps();
828         fiy2             = _mm_setzero_ps();
829         fiz2             = _mm_setzero_ps();
830         fix3             = _mm_setzero_ps();
831         fiy3             = _mm_setzero_ps();
832         fiz3             = _mm_setzero_ps();
833
834         /* Start inner kernel loop */
835         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
836         {
837
838             /* Get j neighbor index, and coordinate index */
839             jnrA             = jjnr[jidx];
840             jnrB             = jjnr[jidx+1];
841             jnrC             = jjnr[jidx+2];
842             jnrD             = jjnr[jidx+3];
843             j_coord_offsetA  = DIM*jnrA;
844             j_coord_offsetB  = DIM*jnrB;
845             j_coord_offsetC  = DIM*jnrC;
846             j_coord_offsetD  = DIM*jnrD;
847
848             /* load j atom coordinates */
849             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
850                                               x+j_coord_offsetC,x+j_coord_offsetD,
851                                               &jx0,&jy0,&jz0);
852
853             /* Calculate displacement vector */
854             dx00             = _mm_sub_ps(ix0,jx0);
855             dy00             = _mm_sub_ps(iy0,jy0);
856             dz00             = _mm_sub_ps(iz0,jz0);
857             dx10             = _mm_sub_ps(ix1,jx0);
858             dy10             = _mm_sub_ps(iy1,jy0);
859             dz10             = _mm_sub_ps(iz1,jz0);
860             dx20             = _mm_sub_ps(ix2,jx0);
861             dy20             = _mm_sub_ps(iy2,jy0);
862             dz20             = _mm_sub_ps(iz2,jz0);
863             dx30             = _mm_sub_ps(ix3,jx0);
864             dy30             = _mm_sub_ps(iy3,jy0);
865             dz30             = _mm_sub_ps(iz3,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
871             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
872
873             rinv10           = gmx_mm_invsqrt_ps(rsq10);
874             rinv20           = gmx_mm_invsqrt_ps(rsq20);
875             rinv30           = gmx_mm_invsqrt_ps(rsq30);
876
877             rinvsq00         = gmx_mm_inv_ps(rsq00);
878
879             /* Load parameters for j particles */
880             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
881                                                               charge+jnrC+0,charge+jnrD+0);
882             vdwjidx0A        = 2*vdwtype[jnrA+0];
883             vdwjidx0B        = 2*vdwtype[jnrB+0];
884             vdwjidx0C        = 2*vdwtype[jnrC+0];
885             vdwjidx0D        = 2*vdwtype[jnrD+0];
886
887             fjx0             = _mm_setzero_ps();
888             fjy0             = _mm_setzero_ps();
889             fjz0             = _mm_setzero_ps();
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             /* Compute parameters for interactions between i and j atoms */
896             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
897                                          vdwparam+vdwioffset0+vdwjidx0B,
898                                          vdwparam+vdwioffset0+vdwjidx0C,
899                                          vdwparam+vdwioffset0+vdwjidx0D,
900                                          &c6_00,&c12_00);
901
902             /* LENNARD-JONES DISPERSION/REPULSION */
903
904             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
905             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
906
907             fscal            = fvdw;
908
909              /* Update vectorial force */
910             fix0             = _mm_macc_ps(dx00,fscal,fix0);
911             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
912             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
913
914             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
915             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
916             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r10              = _mm_mul_ps(rsq10,rinv10);
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq10             = _mm_mul_ps(iq1,jq0);
926
927             /* Calculate table index by multiplying r with table scale and truncate to integer */
928             rt               = _mm_mul_ps(r10,vftabscale);
929             vfitab           = _mm_cvttps_epi32(rt);
930 #ifdef __XOP__
931             vfeps            = _mm_frcz_ps(rt);
932 #else
933             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
934 #endif
935             twovfeps         = _mm_add_ps(vfeps,vfeps);
936             vfitab           = _mm_slli_epi32(vfitab,2);
937
938             /* CUBIC SPLINE TABLE ELECTROSTATICS */
939             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
940             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
941             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
942             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
943             _MM_TRANSPOSE4_PS(Y,F,G,H);
944             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
945             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
946             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
947
948             fscal            = felec;
949
950              /* Update vectorial force */
951             fix1             = _mm_macc_ps(dx10,fscal,fix1);
952             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
953             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
954
955             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
956             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
957             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r20              = _mm_mul_ps(rsq20,rinv20);
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq20             = _mm_mul_ps(iq2,jq0);
967
968             /* Calculate table index by multiplying r with table scale and truncate to integer */
969             rt               = _mm_mul_ps(r20,vftabscale);
970             vfitab           = _mm_cvttps_epi32(rt);
971 #ifdef __XOP__
972             vfeps            = _mm_frcz_ps(rt);
973 #else
974             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
975 #endif
976             twovfeps         = _mm_add_ps(vfeps,vfeps);
977             vfitab           = _mm_slli_epi32(vfitab,2);
978
979             /* CUBIC SPLINE TABLE ELECTROSTATICS */
980             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
981             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
982             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
983             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
984             _MM_TRANSPOSE4_PS(Y,F,G,H);
985             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
986             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
987             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
988
989             fscal            = felec;
990
991              /* Update vectorial force */
992             fix2             = _mm_macc_ps(dx20,fscal,fix2);
993             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
994             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
995
996             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
997             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
998             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r30              = _mm_mul_ps(rsq30,rinv30);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq30             = _mm_mul_ps(iq3,jq0);
1008
1009             /* Calculate table index by multiplying r with table scale and truncate to integer */
1010             rt               = _mm_mul_ps(r30,vftabscale);
1011             vfitab           = _mm_cvttps_epi32(rt);
1012 #ifdef __XOP__
1013             vfeps            = _mm_frcz_ps(rt);
1014 #else
1015             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1016 #endif
1017             twovfeps         = _mm_add_ps(vfeps,vfeps);
1018             vfitab           = _mm_slli_epi32(vfitab,2);
1019
1020             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1021             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1022             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1023             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1024             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1025             _MM_TRANSPOSE4_PS(Y,F,G,H);
1026             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1027             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1028             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1029
1030             fscal            = felec;
1031
1032              /* Update vectorial force */
1033             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1034             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1035             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1036
1037             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1038             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1039             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1040
1041             fjptrA             = f+j_coord_offsetA;
1042             fjptrB             = f+j_coord_offsetB;
1043             fjptrC             = f+j_coord_offsetC;
1044             fjptrD             = f+j_coord_offsetD;
1045
1046             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1047
1048             /* Inner loop uses 156 flops */
1049         }
1050
1051         if(jidx<j_index_end)
1052         {
1053
1054             /* Get j neighbor index, and coordinate index */
1055             jnrlistA         = jjnr[jidx];
1056             jnrlistB         = jjnr[jidx+1];
1057             jnrlistC         = jjnr[jidx+2];
1058             jnrlistD         = jjnr[jidx+3];
1059             /* Sign of each element will be negative for non-real atoms.
1060              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1061              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1062              */
1063             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1064             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1065             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1066             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1067             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1068             j_coord_offsetA  = DIM*jnrA;
1069             j_coord_offsetB  = DIM*jnrB;
1070             j_coord_offsetC  = DIM*jnrC;
1071             j_coord_offsetD  = DIM*jnrD;
1072
1073             /* load j atom coordinates */
1074             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1075                                               x+j_coord_offsetC,x+j_coord_offsetD,
1076                                               &jx0,&jy0,&jz0);
1077
1078             /* Calculate displacement vector */
1079             dx00             = _mm_sub_ps(ix0,jx0);
1080             dy00             = _mm_sub_ps(iy0,jy0);
1081             dz00             = _mm_sub_ps(iz0,jz0);
1082             dx10             = _mm_sub_ps(ix1,jx0);
1083             dy10             = _mm_sub_ps(iy1,jy0);
1084             dz10             = _mm_sub_ps(iz1,jz0);
1085             dx20             = _mm_sub_ps(ix2,jx0);
1086             dy20             = _mm_sub_ps(iy2,jy0);
1087             dz20             = _mm_sub_ps(iz2,jz0);
1088             dx30             = _mm_sub_ps(ix3,jx0);
1089             dy30             = _mm_sub_ps(iy3,jy0);
1090             dz30             = _mm_sub_ps(iz3,jz0);
1091
1092             /* Calculate squared distance and things based on it */
1093             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1094             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1095             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1096             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1097
1098             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1099             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1100             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1101
1102             rinvsq00         = gmx_mm_inv_ps(rsq00);
1103
1104             /* Load parameters for j particles */
1105             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1106                                                               charge+jnrC+0,charge+jnrD+0);
1107             vdwjidx0A        = 2*vdwtype[jnrA+0];
1108             vdwjidx0B        = 2*vdwtype[jnrB+0];
1109             vdwjidx0C        = 2*vdwtype[jnrC+0];
1110             vdwjidx0D        = 2*vdwtype[jnrD+0];
1111
1112             fjx0             = _mm_setzero_ps();
1113             fjy0             = _mm_setzero_ps();
1114             fjz0             = _mm_setzero_ps();
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1122                                          vdwparam+vdwioffset0+vdwjidx0B,
1123                                          vdwparam+vdwioffset0+vdwjidx0C,
1124                                          vdwparam+vdwioffset0+vdwjidx0D,
1125                                          &c6_00,&c12_00);
1126
1127             /* LENNARD-JONES DISPERSION/REPULSION */
1128
1129             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1130             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1131
1132             fscal            = fvdw;
1133
1134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1135
1136              /* Update vectorial force */
1137             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1138             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1139             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1140
1141             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1142             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1143             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1144
1145             /**************************
1146              * CALCULATE INTERACTIONS *
1147              **************************/
1148
1149             r10              = _mm_mul_ps(rsq10,rinv10);
1150             r10              = _mm_andnot_ps(dummy_mask,r10);
1151
1152             /* Compute parameters for interactions between i and j atoms */
1153             qq10             = _mm_mul_ps(iq1,jq0);
1154
1155             /* Calculate table index by multiplying r with table scale and truncate to integer */
1156             rt               = _mm_mul_ps(r10,vftabscale);
1157             vfitab           = _mm_cvttps_epi32(rt);
1158 #ifdef __XOP__
1159             vfeps            = _mm_frcz_ps(rt);
1160 #else
1161             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1162 #endif
1163             twovfeps         = _mm_add_ps(vfeps,vfeps);
1164             vfitab           = _mm_slli_epi32(vfitab,2);
1165
1166             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1167             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1168             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1169             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1170             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1171             _MM_TRANSPOSE4_PS(Y,F,G,H);
1172             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1173             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1174             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1179
1180              /* Update vectorial force */
1181             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1182             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1183             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1184
1185             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1186             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1187             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1188
1189             /**************************
1190              * CALCULATE INTERACTIONS *
1191              **************************/
1192
1193             r20              = _mm_mul_ps(rsq20,rinv20);
1194             r20              = _mm_andnot_ps(dummy_mask,r20);
1195
1196             /* Compute parameters for interactions between i and j atoms */
1197             qq20             = _mm_mul_ps(iq2,jq0);
1198
1199             /* Calculate table index by multiplying r with table scale and truncate to integer */
1200             rt               = _mm_mul_ps(r20,vftabscale);
1201             vfitab           = _mm_cvttps_epi32(rt);
1202 #ifdef __XOP__
1203             vfeps            = _mm_frcz_ps(rt);
1204 #else
1205             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1206 #endif
1207             twovfeps         = _mm_add_ps(vfeps,vfeps);
1208             vfitab           = _mm_slli_epi32(vfitab,2);
1209
1210             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1211             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1212             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1213             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1214             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1215             _MM_TRANSPOSE4_PS(Y,F,G,H);
1216             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1217             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1218             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1223
1224              /* Update vectorial force */
1225             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1226             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1227             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1228
1229             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1230             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1231             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             r30              = _mm_mul_ps(rsq30,rinv30);
1238             r30              = _mm_andnot_ps(dummy_mask,r30);
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq30             = _mm_mul_ps(iq3,jq0);
1242
1243             /* Calculate table index by multiplying r with table scale and truncate to integer */
1244             rt               = _mm_mul_ps(r30,vftabscale);
1245             vfitab           = _mm_cvttps_epi32(rt);
1246 #ifdef __XOP__
1247             vfeps            = _mm_frcz_ps(rt);
1248 #else
1249             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1250 #endif
1251             twovfeps         = _mm_add_ps(vfeps,vfeps);
1252             vfitab           = _mm_slli_epi32(vfitab,2);
1253
1254             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1255             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1256             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1257             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1258             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1259             _MM_TRANSPOSE4_PS(Y,F,G,H);
1260             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1261             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1262             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1263
1264             fscal            = felec;
1265
1266             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1267
1268              /* Update vectorial force */
1269             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1270             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1271             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1272
1273             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1274             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1275             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1276
1277             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1278             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1279             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1280             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1281
1282             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1283
1284             /* Inner loop uses 159 flops */
1285         }
1286
1287         /* End of innermost loop */
1288
1289         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1290                                               f+i_coord_offset,fshift+i_shift_offset);
1291
1292         /* Increment number of inner iterations */
1293         inneriter                  += j_index_end - j_index_start;
1294
1295         /* Outer loop uses 24 flops */
1296     }
1297
1298     /* Increment number of outer iterations */
1299     outeriter        += nri;
1300
1301     /* Update outer/inner flops */
1302
1303     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1304 }