c08561fb575ffce840dfcea17e71463fa80cadd4
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_elec_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168         fix3             = _mm_setzero_ps();
169         fiy3             = _mm_setzero_ps();
170         fiz3             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205             dx30             = _mm_sub_ps(ix3,jx0);
206             dy30             = _mm_sub_ps(iy3,jy0);
207             dz30             = _mm_sub_ps(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218             rinv30           = gmx_mm_invsqrt_ps(rsq30);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
222                                                               charge+jnrC+0,charge+jnrD+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225             vdwjidx0C        = 2*vdwtype[jnrC+0];
226             vdwjidx0D        = 2*vdwtype[jnrD+0];
227
228             fjx0             = _mm_setzero_ps();
229             fjy0             = _mm_setzero_ps();
230             fjz0             = _mm_setzero_ps();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
240                                          vdwparam+vdwioffset0+vdwjidx0B,
241                                          vdwparam+vdwioffset0+vdwjidx0C,
242                                          vdwparam+vdwioffset0+vdwjidx0D,
243                                          &c6_00,&c12_00);
244
245             /* Calculate table index by multiplying r with table scale and truncate to integer */
246             rt               = _mm_mul_ps(r00,vftabscale);
247             vfitab           = _mm_cvttps_epi32(rt);
248 #ifdef __XOP__
249             vfeps            = _mm_frcz_ps(rt);
250 #else
251             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
252 #endif
253             twovfeps         = _mm_add_ps(vfeps,vfeps);
254             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
255
256             /* CUBIC SPLINE TABLE DISPERSION */
257             vfitab           = _mm_add_epi32(vfitab,ifour);
258             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
260             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
261             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
262             _MM_TRANSPOSE4_PS(Y,F,G,H);
263             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
264             VV               = _mm_macc_ps(vfeps,Fp,Y);
265             vvdw6            = _mm_mul_ps(c6_00,VV);
266             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
267             fvdw6            = _mm_mul_ps(c6_00,FF);
268
269             /* CUBIC SPLINE TABLE REPULSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
277             VV               = _mm_macc_ps(vfeps,Fp,Y);
278             vvdw12           = _mm_mul_ps(c12_00,VV);
279             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
280             fvdw12           = _mm_mul_ps(c12_00,FF);
281             vvdw             = _mm_add_ps(vvdw12,vvdw6);
282             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289              /* Update vectorial force */
290             fix0             = _mm_macc_ps(dx00,fscal,fix0);
291             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
293
294             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
295             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
296             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm_mul_ps(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_ps(iq1,jq0);
306
307             /* Calculate table index by multiplying r with table scale and truncate to integer */
308             rt               = _mm_mul_ps(r10,vftabscale);
309             vfitab           = _mm_cvttps_epi32(rt);
310 #ifdef __XOP__
311             vfeps            = _mm_frcz_ps(rt);
312 #else
313             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
314 #endif
315             twovfeps         = _mm_add_ps(vfeps,vfeps);
316             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
317
318             /* CUBIC SPLINE TABLE ELECTROSTATICS */
319             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
320             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
321             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
322             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
323             _MM_TRANSPOSE4_PS(Y,F,G,H);
324             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
325             VV               = _mm_macc_ps(vfeps,Fp,Y);
326             velec            = _mm_mul_ps(qq10,VV);
327             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
328             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm_add_ps(velecsum,velec);
332
333             fscal            = felec;
334
335              /* Update vectorial force */
336             fix1             = _mm_macc_ps(dx10,fscal,fix1);
337             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
338             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
339
340             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
341             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
342             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_ps(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_ps(iq2,jq0);
352
353             /* Calculate table index by multiplying r with table scale and truncate to integer */
354             rt               = _mm_mul_ps(r20,vftabscale);
355             vfitab           = _mm_cvttps_epi32(rt);
356 #ifdef __XOP__
357             vfeps            = _mm_frcz_ps(rt);
358 #else
359             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
360 #endif
361             twovfeps         = _mm_add_ps(vfeps,vfeps);
362             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
363
364             /* CUBIC SPLINE TABLE ELECTROSTATICS */
365             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
366             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
367             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
368             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
369             _MM_TRANSPOSE4_PS(Y,F,G,H);
370             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
371             VV               = _mm_macc_ps(vfeps,Fp,Y);
372             velec            = _mm_mul_ps(qq20,VV);
373             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
374             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm_add_ps(velecsum,velec);
378
379             fscal            = felec;
380
381              /* Update vectorial force */
382             fix2             = _mm_macc_ps(dx20,fscal,fix2);
383             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
384             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
385
386             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
387             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
388             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r30              = _mm_mul_ps(rsq30,rinv30);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq30             = _mm_mul_ps(iq3,jq0);
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = _mm_mul_ps(r30,vftabscale);
401             vfitab           = _mm_cvttps_epi32(rt);
402 #ifdef __XOP__
403             vfeps            = _mm_frcz_ps(rt);
404 #else
405             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
406 #endif
407             twovfeps         = _mm_add_ps(vfeps,vfeps);
408             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
409
410             /* CUBIC SPLINE TABLE ELECTROSTATICS */
411             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
412             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
413             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
414             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
415             _MM_TRANSPOSE4_PS(Y,F,G,H);
416             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
417             VV               = _mm_macc_ps(vfeps,Fp,Y);
418             velec            = _mm_mul_ps(qq30,VV);
419             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
420             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velecsum         = _mm_add_ps(velecsum,velec);
424
425             fscal            = felec;
426
427              /* Update vectorial force */
428             fix3             = _mm_macc_ps(dx30,fscal,fix3);
429             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
430             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
431
432             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
433             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
434             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
435
436             fjptrA             = f+j_coord_offsetA;
437             fjptrB             = f+j_coord_offsetB;
438             fjptrC             = f+j_coord_offsetC;
439             fjptrD             = f+j_coord_offsetD;
440
441             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
442
443             /* Inner loop uses 197 flops */
444         }
445
446         if(jidx<j_index_end)
447         {
448
449             /* Get j neighbor index, and coordinate index */
450             jnrlistA         = jjnr[jidx];
451             jnrlistB         = jjnr[jidx+1];
452             jnrlistC         = jjnr[jidx+2];
453             jnrlistD         = jjnr[jidx+3];
454             /* Sign of each element will be negative for non-real atoms.
455              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
456              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
457              */
458             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
459             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
460             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
461             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
462             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
463             j_coord_offsetA  = DIM*jnrA;
464             j_coord_offsetB  = DIM*jnrB;
465             j_coord_offsetC  = DIM*jnrC;
466             j_coord_offsetD  = DIM*jnrD;
467
468             /* load j atom coordinates */
469             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
470                                               x+j_coord_offsetC,x+j_coord_offsetD,
471                                               &jx0,&jy0,&jz0);
472
473             /* Calculate displacement vector */
474             dx00             = _mm_sub_ps(ix0,jx0);
475             dy00             = _mm_sub_ps(iy0,jy0);
476             dz00             = _mm_sub_ps(iz0,jz0);
477             dx10             = _mm_sub_ps(ix1,jx0);
478             dy10             = _mm_sub_ps(iy1,jy0);
479             dz10             = _mm_sub_ps(iz1,jz0);
480             dx20             = _mm_sub_ps(ix2,jx0);
481             dy20             = _mm_sub_ps(iy2,jy0);
482             dz20             = _mm_sub_ps(iz2,jz0);
483             dx30             = _mm_sub_ps(ix3,jx0);
484             dy30             = _mm_sub_ps(iy3,jy0);
485             dz30             = _mm_sub_ps(iz3,jz0);
486
487             /* Calculate squared distance and things based on it */
488             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
489             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
490             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
491             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
492
493             rinv00           = gmx_mm_invsqrt_ps(rsq00);
494             rinv10           = gmx_mm_invsqrt_ps(rsq10);
495             rinv20           = gmx_mm_invsqrt_ps(rsq20);
496             rinv30           = gmx_mm_invsqrt_ps(rsq30);
497
498             /* Load parameters for j particles */
499             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
500                                                               charge+jnrC+0,charge+jnrD+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505
506             fjx0             = _mm_setzero_ps();
507             fjy0             = _mm_setzero_ps();
508             fjz0             = _mm_setzero_ps();
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r00              = _mm_mul_ps(rsq00,rinv00);
515             r00              = _mm_andnot_ps(dummy_mask,r00);
516
517             /* Compute parameters for interactions between i and j atoms */
518             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
519                                          vdwparam+vdwioffset0+vdwjidx0B,
520                                          vdwparam+vdwioffset0+vdwjidx0C,
521                                          vdwparam+vdwioffset0+vdwjidx0D,
522                                          &c6_00,&c12_00);
523
524             /* Calculate table index by multiplying r with table scale and truncate to integer */
525             rt               = _mm_mul_ps(r00,vftabscale);
526             vfitab           = _mm_cvttps_epi32(rt);
527 #ifdef __XOP__
528             vfeps            = _mm_frcz_ps(rt);
529 #else
530             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
531 #endif
532             twovfeps         = _mm_add_ps(vfeps,vfeps);
533             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
534
535             /* CUBIC SPLINE TABLE DISPERSION */
536             vfitab           = _mm_add_epi32(vfitab,ifour);
537             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
538             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
539             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
540             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
541             _MM_TRANSPOSE4_PS(Y,F,G,H);
542             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
543             VV               = _mm_macc_ps(vfeps,Fp,Y);
544             vvdw6            = _mm_mul_ps(c6_00,VV);
545             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
546             fvdw6            = _mm_mul_ps(c6_00,FF);
547
548             /* CUBIC SPLINE TABLE REPULSION */
549             vfitab           = _mm_add_epi32(vfitab,ifour);
550             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
551             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
552             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
553             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
554             _MM_TRANSPOSE4_PS(Y,F,G,H);
555             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
556             VV               = _mm_macc_ps(vfeps,Fp,Y);
557             vvdw12           = _mm_mul_ps(c12_00,VV);
558             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
559             fvdw12           = _mm_mul_ps(c12_00,FF);
560             vvdw             = _mm_add_ps(vvdw12,vvdw6);
561             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
565             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
566
567             fscal            = fvdw;
568
569             fscal            = _mm_andnot_ps(dummy_mask,fscal);
570
571              /* Update vectorial force */
572             fix0             = _mm_macc_ps(dx00,fscal,fix0);
573             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
574             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
575
576             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
577             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
578             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             r10              = _mm_mul_ps(rsq10,rinv10);
585             r10              = _mm_andnot_ps(dummy_mask,r10);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq10             = _mm_mul_ps(iq1,jq0);
589
590             /* Calculate table index by multiplying r with table scale and truncate to integer */
591             rt               = _mm_mul_ps(r10,vftabscale);
592             vfitab           = _mm_cvttps_epi32(rt);
593 #ifdef __XOP__
594             vfeps            = _mm_frcz_ps(rt);
595 #else
596             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
597 #endif
598             twovfeps         = _mm_add_ps(vfeps,vfeps);
599             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
600
601             /* CUBIC SPLINE TABLE ELECTROSTATICS */
602             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
603             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
604             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
605             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
606             _MM_TRANSPOSE4_PS(Y,F,G,H);
607             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
608             VV               = _mm_macc_ps(vfeps,Fp,Y);
609             velec            = _mm_mul_ps(qq10,VV);
610             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
611             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm_andnot_ps(dummy_mask,fscal);
620
621              /* Update vectorial force */
622             fix1             = _mm_macc_ps(dx10,fscal,fix1);
623             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
624             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
625
626             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
627             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
628             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r20              = _mm_mul_ps(rsq20,rinv20);
635             r20              = _mm_andnot_ps(dummy_mask,r20);
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq20             = _mm_mul_ps(iq2,jq0);
639
640             /* Calculate table index by multiplying r with table scale and truncate to integer */
641             rt               = _mm_mul_ps(r20,vftabscale);
642             vfitab           = _mm_cvttps_epi32(rt);
643 #ifdef __XOP__
644             vfeps            = _mm_frcz_ps(rt);
645 #else
646             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
647 #endif
648             twovfeps         = _mm_add_ps(vfeps,vfeps);
649             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
650
651             /* CUBIC SPLINE TABLE ELECTROSTATICS */
652             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
653             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
654             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
655             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
656             _MM_TRANSPOSE4_PS(Y,F,G,H);
657             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
658             VV               = _mm_macc_ps(vfeps,Fp,Y);
659             velec            = _mm_mul_ps(qq20,VV);
660             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
661             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
662
663             /* Update potential sum for this i atom from the interaction with this j atom. */
664             velec            = _mm_andnot_ps(dummy_mask,velec);
665             velecsum         = _mm_add_ps(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _mm_andnot_ps(dummy_mask,fscal);
670
671              /* Update vectorial force */
672             fix2             = _mm_macc_ps(dx20,fscal,fix2);
673             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
674             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
675
676             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
677             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
678             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
679
680             /**************************
681              * CALCULATE INTERACTIONS *
682              **************************/
683
684             r30              = _mm_mul_ps(rsq30,rinv30);
685             r30              = _mm_andnot_ps(dummy_mask,r30);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq30             = _mm_mul_ps(iq3,jq0);
689
690             /* Calculate table index by multiplying r with table scale and truncate to integer */
691             rt               = _mm_mul_ps(r30,vftabscale);
692             vfitab           = _mm_cvttps_epi32(rt);
693 #ifdef __XOP__
694             vfeps            = _mm_frcz_ps(rt);
695 #else
696             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
697 #endif
698             twovfeps         = _mm_add_ps(vfeps,vfeps);
699             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
700
701             /* CUBIC SPLINE TABLE ELECTROSTATICS */
702             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
703             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
704             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
705             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
706             _MM_TRANSPOSE4_PS(Y,F,G,H);
707             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
708             VV               = _mm_macc_ps(vfeps,Fp,Y);
709             velec            = _mm_mul_ps(qq30,VV);
710             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
711             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
712
713             /* Update potential sum for this i atom from the interaction with this j atom. */
714             velec            = _mm_andnot_ps(dummy_mask,velec);
715             velecsum         = _mm_add_ps(velecsum,velec);
716
717             fscal            = felec;
718
719             fscal            = _mm_andnot_ps(dummy_mask,fscal);
720
721              /* Update vectorial force */
722             fix3             = _mm_macc_ps(dx30,fscal,fix3);
723             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
724             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
725
726             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
727             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
728             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
729
730             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
731             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
732             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
733             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
734
735             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
736
737             /* Inner loop uses 201 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
743                                               f+i_coord_offset,fshift+i_shift_offset);
744
745         ggid                        = gid[iidx];
746         /* Update potential energies */
747         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
748         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
749
750         /* Increment number of inner iterations */
751         inneriter                  += j_index_end - j_index_start;
752
753         /* Outer loop uses 26 flops */
754     }
755
756     /* Increment number of outer iterations */
757     outeriter        += nri;
758
759     /* Update outer/inner flops */
760
761     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*201);
762 }
763 /*
764  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
765  * Electrostatics interaction: CubicSplineTable
766  * VdW interaction:            CubicSplineTable
767  * Geometry:                   Water4-Particle
768  * Calculate force/pot:        Force
769  */
770 void
771 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_single
772                     (t_nblist * gmx_restrict                nlist,
773                      rvec * gmx_restrict                    xx,
774                      rvec * gmx_restrict                    ff,
775                      t_forcerec * gmx_restrict              fr,
776                      t_mdatoms * gmx_restrict               mdatoms,
777                      nb_kernel_data_t * gmx_restrict        kernel_data,
778                      t_nrnb * gmx_restrict                  nrnb)
779 {
780     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
781      * just 0 for non-waters.
782      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
783      * jnr indices corresponding to data put in the four positions in the SIMD register.
784      */
785     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
786     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
787     int              jnrA,jnrB,jnrC,jnrD;
788     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
789     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
790     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
791     real             rcutoff_scalar;
792     real             *shiftvec,*fshift,*x,*f;
793     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
794     real             scratch[4*DIM];
795     __m128           fscal,rcutoff,rcutoff2,jidxall;
796     int              vdwioffset0;
797     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
798     int              vdwioffset1;
799     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
800     int              vdwioffset2;
801     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
802     int              vdwioffset3;
803     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
804     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
805     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
806     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
807     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
808     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
809     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
810     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
811     real             *charge;
812     int              nvdwtype;
813     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
814     int              *vdwtype;
815     real             *vdwparam;
816     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
817     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
818     __m128i          vfitab;
819     __m128i          ifour       = _mm_set1_epi32(4);
820     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
821     real             *vftab;
822     __m128           dummy_mask,cutoff_mask;
823     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
824     __m128           one     = _mm_set1_ps(1.0);
825     __m128           two     = _mm_set1_ps(2.0);
826     x                = xx[0];
827     f                = ff[0];
828
829     nri              = nlist->nri;
830     iinr             = nlist->iinr;
831     jindex           = nlist->jindex;
832     jjnr             = nlist->jjnr;
833     shiftidx         = nlist->shift;
834     gid              = nlist->gid;
835     shiftvec         = fr->shift_vec[0];
836     fshift           = fr->fshift[0];
837     facel            = _mm_set1_ps(fr->epsfac);
838     charge           = mdatoms->chargeA;
839     nvdwtype         = fr->ntype;
840     vdwparam         = fr->nbfp;
841     vdwtype          = mdatoms->typeA;
842
843     vftab            = kernel_data->table_elec_vdw->data;
844     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
845
846     /* Setup water-specific parameters */
847     inr              = nlist->iinr[0];
848     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
849     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
850     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
851     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
852
853     /* Avoid stupid compiler warnings */
854     jnrA = jnrB = jnrC = jnrD = 0;
855     j_coord_offsetA = 0;
856     j_coord_offsetB = 0;
857     j_coord_offsetC = 0;
858     j_coord_offsetD = 0;
859
860     outeriter        = 0;
861     inneriter        = 0;
862
863     for(iidx=0;iidx<4*DIM;iidx++)
864     {
865         scratch[iidx] = 0.0;
866     }
867
868     /* Start outer loop over neighborlists */
869     for(iidx=0; iidx<nri; iidx++)
870     {
871         /* Load shift vector for this list */
872         i_shift_offset   = DIM*shiftidx[iidx];
873
874         /* Load limits for loop over neighbors */
875         j_index_start    = jindex[iidx];
876         j_index_end      = jindex[iidx+1];
877
878         /* Get outer coordinate index */
879         inr              = iinr[iidx];
880         i_coord_offset   = DIM*inr;
881
882         /* Load i particle coords and add shift vector */
883         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
884                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
885
886         fix0             = _mm_setzero_ps();
887         fiy0             = _mm_setzero_ps();
888         fiz0             = _mm_setzero_ps();
889         fix1             = _mm_setzero_ps();
890         fiy1             = _mm_setzero_ps();
891         fiz1             = _mm_setzero_ps();
892         fix2             = _mm_setzero_ps();
893         fiy2             = _mm_setzero_ps();
894         fiz2             = _mm_setzero_ps();
895         fix3             = _mm_setzero_ps();
896         fiy3             = _mm_setzero_ps();
897         fiz3             = _mm_setzero_ps();
898
899         /* Start inner kernel loop */
900         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
901         {
902
903             /* Get j neighbor index, and coordinate index */
904             jnrA             = jjnr[jidx];
905             jnrB             = jjnr[jidx+1];
906             jnrC             = jjnr[jidx+2];
907             jnrD             = jjnr[jidx+3];
908             j_coord_offsetA  = DIM*jnrA;
909             j_coord_offsetB  = DIM*jnrB;
910             j_coord_offsetC  = DIM*jnrC;
911             j_coord_offsetD  = DIM*jnrD;
912
913             /* load j atom coordinates */
914             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
915                                               x+j_coord_offsetC,x+j_coord_offsetD,
916                                               &jx0,&jy0,&jz0);
917
918             /* Calculate displacement vector */
919             dx00             = _mm_sub_ps(ix0,jx0);
920             dy00             = _mm_sub_ps(iy0,jy0);
921             dz00             = _mm_sub_ps(iz0,jz0);
922             dx10             = _mm_sub_ps(ix1,jx0);
923             dy10             = _mm_sub_ps(iy1,jy0);
924             dz10             = _mm_sub_ps(iz1,jz0);
925             dx20             = _mm_sub_ps(ix2,jx0);
926             dy20             = _mm_sub_ps(iy2,jy0);
927             dz20             = _mm_sub_ps(iz2,jz0);
928             dx30             = _mm_sub_ps(ix3,jx0);
929             dy30             = _mm_sub_ps(iy3,jy0);
930             dz30             = _mm_sub_ps(iz3,jz0);
931
932             /* Calculate squared distance and things based on it */
933             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
934             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
935             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
936             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
937
938             rinv00           = gmx_mm_invsqrt_ps(rsq00);
939             rinv10           = gmx_mm_invsqrt_ps(rsq10);
940             rinv20           = gmx_mm_invsqrt_ps(rsq20);
941             rinv30           = gmx_mm_invsqrt_ps(rsq30);
942
943             /* Load parameters for j particles */
944             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
945                                                               charge+jnrC+0,charge+jnrD+0);
946             vdwjidx0A        = 2*vdwtype[jnrA+0];
947             vdwjidx0B        = 2*vdwtype[jnrB+0];
948             vdwjidx0C        = 2*vdwtype[jnrC+0];
949             vdwjidx0D        = 2*vdwtype[jnrD+0];
950
951             fjx0             = _mm_setzero_ps();
952             fjy0             = _mm_setzero_ps();
953             fjz0             = _mm_setzero_ps();
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r00              = _mm_mul_ps(rsq00,rinv00);
960
961             /* Compute parameters for interactions between i and j atoms */
962             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
963                                          vdwparam+vdwioffset0+vdwjidx0B,
964                                          vdwparam+vdwioffset0+vdwjidx0C,
965                                          vdwparam+vdwioffset0+vdwjidx0D,
966                                          &c6_00,&c12_00);
967
968             /* Calculate table index by multiplying r with table scale and truncate to integer */
969             rt               = _mm_mul_ps(r00,vftabscale);
970             vfitab           = _mm_cvttps_epi32(rt);
971 #ifdef __XOP__
972             vfeps            = _mm_frcz_ps(rt);
973 #else
974             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
975 #endif
976             twovfeps         = _mm_add_ps(vfeps,vfeps);
977             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
978
979             /* CUBIC SPLINE TABLE DISPERSION */
980             vfitab           = _mm_add_epi32(vfitab,ifour);
981             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
982             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
983             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
984             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
985             _MM_TRANSPOSE4_PS(Y,F,G,H);
986             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
987             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
988             fvdw6            = _mm_mul_ps(c6_00,FF);
989
990             /* CUBIC SPLINE TABLE REPULSION */
991             vfitab           = _mm_add_epi32(vfitab,ifour);
992             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
993             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
994             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
995             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
996             _MM_TRANSPOSE4_PS(Y,F,G,H);
997             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
998             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
999             fvdw12           = _mm_mul_ps(c12_00,FF);
1000             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1001
1002             fscal            = fvdw;
1003
1004              /* Update vectorial force */
1005             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1006             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1007             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1008
1009             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1010             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1011             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r10              = _mm_mul_ps(rsq10,rinv10);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq10             = _mm_mul_ps(iq1,jq0);
1021
1022             /* Calculate table index by multiplying r with table scale and truncate to integer */
1023             rt               = _mm_mul_ps(r10,vftabscale);
1024             vfitab           = _mm_cvttps_epi32(rt);
1025 #ifdef __XOP__
1026             vfeps            = _mm_frcz_ps(rt);
1027 #else
1028             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1029 #endif
1030             twovfeps         = _mm_add_ps(vfeps,vfeps);
1031             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1032
1033             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1034             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1035             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1036             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1037             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1038             _MM_TRANSPOSE4_PS(Y,F,G,H);
1039             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1040             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1041             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1042
1043             fscal            = felec;
1044
1045              /* Update vectorial force */
1046             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1047             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1048             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1049
1050             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1051             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1052             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             r20              = _mm_mul_ps(rsq20,rinv20);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             qq20             = _mm_mul_ps(iq2,jq0);
1062
1063             /* Calculate table index by multiplying r with table scale and truncate to integer */
1064             rt               = _mm_mul_ps(r20,vftabscale);
1065             vfitab           = _mm_cvttps_epi32(rt);
1066 #ifdef __XOP__
1067             vfeps            = _mm_frcz_ps(rt);
1068 #else
1069             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1070 #endif
1071             twovfeps         = _mm_add_ps(vfeps,vfeps);
1072             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1073
1074             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1075             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1076             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1077             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1078             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1079             _MM_TRANSPOSE4_PS(Y,F,G,H);
1080             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1081             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1082             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1083
1084             fscal            = felec;
1085
1086              /* Update vectorial force */
1087             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1088             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1089             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1090
1091             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1092             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1093             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r30              = _mm_mul_ps(rsq30,rinv30);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq30             = _mm_mul_ps(iq3,jq0);
1103
1104             /* Calculate table index by multiplying r with table scale and truncate to integer */
1105             rt               = _mm_mul_ps(r30,vftabscale);
1106             vfitab           = _mm_cvttps_epi32(rt);
1107 #ifdef __XOP__
1108             vfeps            = _mm_frcz_ps(rt);
1109 #else
1110             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1111 #endif
1112             twovfeps         = _mm_add_ps(vfeps,vfeps);
1113             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1114
1115             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1116             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1117             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1118             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1119             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1120             _MM_TRANSPOSE4_PS(Y,F,G,H);
1121             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1122             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1123             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1124
1125             fscal            = felec;
1126
1127              /* Update vectorial force */
1128             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1129             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1130             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1131
1132             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1133             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1134             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1135
1136             fjptrA             = f+j_coord_offsetA;
1137             fjptrB             = f+j_coord_offsetB;
1138             fjptrC             = f+j_coord_offsetC;
1139             fjptrD             = f+j_coord_offsetD;
1140
1141             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1142
1143             /* Inner loop uses 177 flops */
1144         }
1145
1146         if(jidx<j_index_end)
1147         {
1148
1149             /* Get j neighbor index, and coordinate index */
1150             jnrlistA         = jjnr[jidx];
1151             jnrlistB         = jjnr[jidx+1];
1152             jnrlistC         = jjnr[jidx+2];
1153             jnrlistD         = jjnr[jidx+3];
1154             /* Sign of each element will be negative for non-real atoms.
1155              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1156              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1157              */
1158             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1159             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1160             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1161             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1162             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1163             j_coord_offsetA  = DIM*jnrA;
1164             j_coord_offsetB  = DIM*jnrB;
1165             j_coord_offsetC  = DIM*jnrC;
1166             j_coord_offsetD  = DIM*jnrD;
1167
1168             /* load j atom coordinates */
1169             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1170                                               x+j_coord_offsetC,x+j_coord_offsetD,
1171                                               &jx0,&jy0,&jz0);
1172
1173             /* Calculate displacement vector */
1174             dx00             = _mm_sub_ps(ix0,jx0);
1175             dy00             = _mm_sub_ps(iy0,jy0);
1176             dz00             = _mm_sub_ps(iz0,jz0);
1177             dx10             = _mm_sub_ps(ix1,jx0);
1178             dy10             = _mm_sub_ps(iy1,jy0);
1179             dz10             = _mm_sub_ps(iz1,jz0);
1180             dx20             = _mm_sub_ps(ix2,jx0);
1181             dy20             = _mm_sub_ps(iy2,jy0);
1182             dz20             = _mm_sub_ps(iz2,jz0);
1183             dx30             = _mm_sub_ps(ix3,jx0);
1184             dy30             = _mm_sub_ps(iy3,jy0);
1185             dz30             = _mm_sub_ps(iz3,jz0);
1186
1187             /* Calculate squared distance and things based on it */
1188             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1189             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1190             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1191             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1192
1193             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1194             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1195             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1196             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1197
1198             /* Load parameters for j particles */
1199             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1200                                                               charge+jnrC+0,charge+jnrD+0);
1201             vdwjidx0A        = 2*vdwtype[jnrA+0];
1202             vdwjidx0B        = 2*vdwtype[jnrB+0];
1203             vdwjidx0C        = 2*vdwtype[jnrC+0];
1204             vdwjidx0D        = 2*vdwtype[jnrD+0];
1205
1206             fjx0             = _mm_setzero_ps();
1207             fjy0             = _mm_setzero_ps();
1208             fjz0             = _mm_setzero_ps();
1209
1210             /**************************
1211              * CALCULATE INTERACTIONS *
1212              **************************/
1213
1214             r00              = _mm_mul_ps(rsq00,rinv00);
1215             r00              = _mm_andnot_ps(dummy_mask,r00);
1216
1217             /* Compute parameters for interactions between i and j atoms */
1218             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1219                                          vdwparam+vdwioffset0+vdwjidx0B,
1220                                          vdwparam+vdwioffset0+vdwjidx0C,
1221                                          vdwparam+vdwioffset0+vdwjidx0D,
1222                                          &c6_00,&c12_00);
1223
1224             /* Calculate table index by multiplying r with table scale and truncate to integer */
1225             rt               = _mm_mul_ps(r00,vftabscale);
1226             vfitab           = _mm_cvttps_epi32(rt);
1227 #ifdef __XOP__
1228             vfeps            = _mm_frcz_ps(rt);
1229 #else
1230             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1231 #endif
1232             twovfeps         = _mm_add_ps(vfeps,vfeps);
1233             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1234
1235             /* CUBIC SPLINE TABLE DISPERSION */
1236             vfitab           = _mm_add_epi32(vfitab,ifour);
1237             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1238             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1239             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1240             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1241             _MM_TRANSPOSE4_PS(Y,F,G,H);
1242             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1243             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1244             fvdw6            = _mm_mul_ps(c6_00,FF);
1245
1246             /* CUBIC SPLINE TABLE REPULSION */
1247             vfitab           = _mm_add_epi32(vfitab,ifour);
1248             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1249             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1250             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1251             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1252             _MM_TRANSPOSE4_PS(Y,F,G,H);
1253             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1254             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1255             fvdw12           = _mm_mul_ps(c12_00,FF);
1256             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1257
1258             fscal            = fvdw;
1259
1260             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1261
1262              /* Update vectorial force */
1263             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1264             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1265             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1266
1267             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1268             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1269             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1270
1271             /**************************
1272              * CALCULATE INTERACTIONS *
1273              **************************/
1274
1275             r10              = _mm_mul_ps(rsq10,rinv10);
1276             r10              = _mm_andnot_ps(dummy_mask,r10);
1277
1278             /* Compute parameters for interactions between i and j atoms */
1279             qq10             = _mm_mul_ps(iq1,jq0);
1280
1281             /* Calculate table index by multiplying r with table scale and truncate to integer */
1282             rt               = _mm_mul_ps(r10,vftabscale);
1283             vfitab           = _mm_cvttps_epi32(rt);
1284 #ifdef __XOP__
1285             vfeps            = _mm_frcz_ps(rt);
1286 #else
1287             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1288 #endif
1289             twovfeps         = _mm_add_ps(vfeps,vfeps);
1290             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1291
1292             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1293             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1294             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1295             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1296             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1297             _MM_TRANSPOSE4_PS(Y,F,G,H);
1298             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1299             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1300             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1301
1302             fscal            = felec;
1303
1304             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1305
1306              /* Update vectorial force */
1307             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1308             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1309             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1310
1311             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1312             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1313             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1314
1315             /**************************
1316              * CALCULATE INTERACTIONS *
1317              **************************/
1318
1319             r20              = _mm_mul_ps(rsq20,rinv20);
1320             r20              = _mm_andnot_ps(dummy_mask,r20);
1321
1322             /* Compute parameters for interactions between i and j atoms */
1323             qq20             = _mm_mul_ps(iq2,jq0);
1324
1325             /* Calculate table index by multiplying r with table scale and truncate to integer */
1326             rt               = _mm_mul_ps(r20,vftabscale);
1327             vfitab           = _mm_cvttps_epi32(rt);
1328 #ifdef __XOP__
1329             vfeps            = _mm_frcz_ps(rt);
1330 #else
1331             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1332 #endif
1333             twovfeps         = _mm_add_ps(vfeps,vfeps);
1334             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1335
1336             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1337             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1338             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1339             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1340             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1341             _MM_TRANSPOSE4_PS(Y,F,G,H);
1342             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1343             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1344             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1345
1346             fscal            = felec;
1347
1348             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1349
1350              /* Update vectorial force */
1351             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1352             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1353             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1354
1355             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1356             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1357             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1358
1359             /**************************
1360              * CALCULATE INTERACTIONS *
1361              **************************/
1362
1363             r30              = _mm_mul_ps(rsq30,rinv30);
1364             r30              = _mm_andnot_ps(dummy_mask,r30);
1365
1366             /* Compute parameters for interactions between i and j atoms */
1367             qq30             = _mm_mul_ps(iq3,jq0);
1368
1369             /* Calculate table index by multiplying r with table scale and truncate to integer */
1370             rt               = _mm_mul_ps(r30,vftabscale);
1371             vfitab           = _mm_cvttps_epi32(rt);
1372 #ifdef __XOP__
1373             vfeps            = _mm_frcz_ps(rt);
1374 #else
1375             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1376 #endif
1377             twovfeps         = _mm_add_ps(vfeps,vfeps);
1378             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1379
1380             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1381             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1382             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1383             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1384             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1385             _MM_TRANSPOSE4_PS(Y,F,G,H);
1386             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1387             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1388             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1389
1390             fscal            = felec;
1391
1392             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1393
1394              /* Update vectorial force */
1395             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1396             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1397             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1398
1399             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1400             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1401             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1402
1403             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1404             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1405             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1406             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1407
1408             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1409
1410             /* Inner loop uses 181 flops */
1411         }
1412
1413         /* End of innermost loop */
1414
1415         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1416                                               f+i_coord_offset,fshift+i_shift_offset);
1417
1418         /* Increment number of inner iterations */
1419         inneriter                  += j_index_end - j_index_start;
1420
1421         /* Outer loop uses 24 flops */
1422     }
1423
1424     /* Increment number of outer iterations */
1425     outeriter        += nri;
1426
1427     /* Update outer/inner flops */
1428
1429     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*181);
1430 }