7ac3e53b1747407319d4d3c73918411f99ce228d
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_pd(fr->ic->k_rf);
97     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_pd(fr->ic->c_rf);
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     /* Start outer loop over neighborlists */
112     for(iidx=0; iidx<nri; iidx++)
113     {
114         /* Load shift vector for this list */
115         i_shift_offset   = DIM*shiftidx[iidx];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
127
128         fix0             = _mm_setzero_pd();
129         fiy0             = _mm_setzero_pd();
130         fiz0             = _mm_setzero_pd();
131
132         /* Load parameters for i particles */
133         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
134         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136         /* Reset potential sums */
137         velecsum         = _mm_setzero_pd();
138         vvdwsum          = _mm_setzero_pd();
139
140         /* Start inner kernel loop */
141         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
142         {
143
144             /* Get j neighbor index, and coordinate index */
145             jnrA             = jjnr[jidx];
146             jnrB             = jjnr[jidx+1];
147             j_coord_offsetA  = DIM*jnrA;
148             j_coord_offsetB  = DIM*jnrB;
149
150             /* load j atom coordinates */
151             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
152                                               &jx0,&jy0,&jz0);
153
154             /* Calculate displacement vector */
155             dx00             = _mm_sub_pd(ix0,jx0);
156             dy00             = _mm_sub_pd(iy0,jy0);
157             dz00             = _mm_sub_pd(iz0,jz0);
158
159             /* Calculate squared distance and things based on it */
160             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
161
162             rinv00           = gmx_mm_invsqrt_pd(rsq00);
163
164             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
165
166             /* Load parameters for j particles */
167             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
168             vdwjidx0A        = 2*vdwtype[jnrA+0];
169             vdwjidx0B        = 2*vdwtype[jnrB+0];
170
171             /**************************
172              * CALCULATE INTERACTIONS *
173              **************************/
174
175             /* Compute parameters for interactions between i and j atoms */
176             qq00             = _mm_mul_pd(iq0,jq0);
177             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
178                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
179
180             /* REACTION-FIELD ELECTROSTATICS */
181             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
182             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
183
184             /* LENNARD-JONES DISPERSION/REPULSION */
185
186             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
187             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
188             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
189             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
190             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
191
192             /* Update potential sum for this i atom from the interaction with this j atom. */
193             velecsum         = _mm_add_pd(velecsum,velec);
194             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
195
196             fscal            = _mm_add_pd(felec,fvdw);
197
198             /* Update vectorial force */
199             fix0             = _mm_macc_pd(dx00,fscal,fix0);
200             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
201             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
202             
203             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
204                                                    _mm_mul_pd(dx00,fscal),
205                                                    _mm_mul_pd(dy00,fscal),
206                                                    _mm_mul_pd(dz00,fscal));
207
208             /* Inner loop uses 47 flops */
209         }
210
211         if(jidx<j_index_end)
212         {
213
214             jnrA             = jjnr[jidx];
215             j_coord_offsetA  = DIM*jnrA;
216
217             /* load j atom coordinates */
218             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
219                                               &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm_sub_pd(ix0,jx0);
223             dy00             = _mm_sub_pd(iy0,jy0);
224             dz00             = _mm_sub_pd(iz0,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
228
229             rinv00           = gmx_mm_invsqrt_pd(rsq00);
230
231             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
232
233             /* Load parameters for j particles */
234             jq0              = _mm_load_sd(charge+jnrA+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_pd(iq0,jq0);
243             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
244
245             /* REACTION-FIELD ELECTROSTATICS */
246             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
247             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
248
249             /* LENNARD-JONES DISPERSION/REPULSION */
250
251             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
252             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
253             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
254             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
255             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
259             velecsum         = _mm_add_pd(velecsum,velec);
260             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
261             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
262
263             fscal            = _mm_add_pd(felec,fvdw);
264
265             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
266
267             /* Update vectorial force */
268             fix0             = _mm_macc_pd(dx00,fscal,fix0);
269             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
270             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
271             
272             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
273                                                    _mm_mul_pd(dx00,fscal),
274                                                    _mm_mul_pd(dy00,fscal),
275                                                    _mm_mul_pd(dz00,fscal));
276
277             /* Inner loop uses 47 flops */
278         }
279
280         /* End of innermost loop */
281
282         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
283                                               f+i_coord_offset,fshift+i_shift_offset);
284
285         ggid                        = gid[iidx];
286         /* Update potential energies */
287         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
288         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
289
290         /* Increment number of inner iterations */
291         inneriter                  += j_index_end - j_index_start;
292
293         /* Outer loop uses 9 flops */
294     }
295
296     /* Increment number of outer iterations */
297     outeriter        += nri;
298
299     /* Update outer/inner flops */
300
301     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*47);
302 }
303 /*
304  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_double
305  * Electrostatics interaction: ReactionField
306  * VdW interaction:            LennardJones
307  * Geometry:                   Particle-Particle
308  * Calculate force/pot:        Force
309  */
310 void
311 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_double
312                     (t_nblist * gmx_restrict                nlist,
313                      rvec * gmx_restrict                    xx,
314                      rvec * gmx_restrict                    ff,
315                      t_forcerec * gmx_restrict              fr,
316                      t_mdatoms * gmx_restrict               mdatoms,
317                      nb_kernel_data_t * gmx_restrict        kernel_data,
318                      t_nrnb * gmx_restrict                  nrnb)
319 {
320     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
321      * just 0 for non-waters.
322      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
323      * jnr indices corresponding to data put in the four positions in the SIMD register.
324      */
325     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
326     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
327     int              jnrA,jnrB;
328     int              j_coord_offsetA,j_coord_offsetB;
329     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
330     real             rcutoff_scalar;
331     real             *shiftvec,*fshift,*x,*f;
332     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
333     int              vdwioffset0;
334     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
335     int              vdwjidx0A,vdwjidx0B;
336     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
337     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
338     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
339     real             *charge;
340     int              nvdwtype;
341     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
342     int              *vdwtype;
343     real             *vdwparam;
344     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
345     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
346     __m128d          dummy_mask,cutoff_mask;
347     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
348     __m128d          one     = _mm_set1_pd(1.0);
349     __m128d          two     = _mm_set1_pd(2.0);
350     x                = xx[0];
351     f                = ff[0];
352
353     nri              = nlist->nri;
354     iinr             = nlist->iinr;
355     jindex           = nlist->jindex;
356     jjnr             = nlist->jjnr;
357     shiftidx         = nlist->shift;
358     gid              = nlist->gid;
359     shiftvec         = fr->shift_vec[0];
360     fshift           = fr->fshift[0];
361     facel            = _mm_set1_pd(fr->epsfac);
362     charge           = mdatoms->chargeA;
363     krf              = _mm_set1_pd(fr->ic->k_rf);
364     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
365     crf              = _mm_set1_pd(fr->ic->c_rf);
366     nvdwtype         = fr->ntype;
367     vdwparam         = fr->nbfp;
368     vdwtype          = mdatoms->typeA;
369
370     /* Avoid stupid compiler warnings */
371     jnrA = jnrB = 0;
372     j_coord_offsetA = 0;
373     j_coord_offsetB = 0;
374
375     outeriter        = 0;
376     inneriter        = 0;
377
378     /* Start outer loop over neighborlists */
379     for(iidx=0; iidx<nri; iidx++)
380     {
381         /* Load shift vector for this list */
382         i_shift_offset   = DIM*shiftidx[iidx];
383
384         /* Load limits for loop over neighbors */
385         j_index_start    = jindex[iidx];
386         j_index_end      = jindex[iidx+1];
387
388         /* Get outer coordinate index */
389         inr              = iinr[iidx];
390         i_coord_offset   = DIM*inr;
391
392         /* Load i particle coords and add shift vector */
393         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
394
395         fix0             = _mm_setzero_pd();
396         fiy0             = _mm_setzero_pd();
397         fiz0             = _mm_setzero_pd();
398
399         /* Load parameters for i particles */
400         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
401         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
402
403         /* Start inner kernel loop */
404         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
405         {
406
407             /* Get j neighbor index, and coordinate index */
408             jnrA             = jjnr[jidx];
409             jnrB             = jjnr[jidx+1];
410             j_coord_offsetA  = DIM*jnrA;
411             j_coord_offsetB  = DIM*jnrB;
412
413             /* load j atom coordinates */
414             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
415                                               &jx0,&jy0,&jz0);
416
417             /* Calculate displacement vector */
418             dx00             = _mm_sub_pd(ix0,jx0);
419             dy00             = _mm_sub_pd(iy0,jy0);
420             dz00             = _mm_sub_pd(iz0,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
424
425             rinv00           = gmx_mm_invsqrt_pd(rsq00);
426
427             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
428
429             /* Load parameters for j particles */
430             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
431             vdwjidx0A        = 2*vdwtype[jnrA+0];
432             vdwjidx0B        = 2*vdwtype[jnrB+0];
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq00             = _mm_mul_pd(iq0,jq0);
440             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
441                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
442
443             /* REACTION-FIELD ELECTROSTATICS */
444             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
445
446             /* LENNARD-JONES DISPERSION/REPULSION */
447
448             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
449             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
450
451             fscal            = _mm_add_pd(felec,fvdw);
452
453             /* Update vectorial force */
454             fix0             = _mm_macc_pd(dx00,fscal,fix0);
455             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
456             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
457             
458             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
459                                                    _mm_mul_pd(dx00,fscal),
460                                                    _mm_mul_pd(dy00,fscal),
461                                                    _mm_mul_pd(dz00,fscal));
462
463             /* Inner loop uses 37 flops */
464         }
465
466         if(jidx<j_index_end)
467         {
468
469             jnrA             = jjnr[jidx];
470             j_coord_offsetA  = DIM*jnrA;
471
472             /* load j atom coordinates */
473             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
474                                               &jx0,&jy0,&jz0);
475
476             /* Calculate displacement vector */
477             dx00             = _mm_sub_pd(ix0,jx0);
478             dy00             = _mm_sub_pd(iy0,jy0);
479             dz00             = _mm_sub_pd(iz0,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483
484             rinv00           = gmx_mm_invsqrt_pd(rsq00);
485
486             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
487
488             /* Load parameters for j particles */
489             jq0              = _mm_load_sd(charge+jnrA+0);
490             vdwjidx0A        = 2*vdwtype[jnrA+0];
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq00             = _mm_mul_pd(iq0,jq0);
498             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
506             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
507
508             fscal            = _mm_add_pd(felec,fvdw);
509
510             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
511
512             /* Update vectorial force */
513             fix0             = _mm_macc_pd(dx00,fscal,fix0);
514             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
515             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
516             
517             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
518                                                    _mm_mul_pd(dx00,fscal),
519                                                    _mm_mul_pd(dy00,fscal),
520                                                    _mm_mul_pd(dz00,fscal));
521
522             /* Inner loop uses 37 flops */
523         }
524
525         /* End of innermost loop */
526
527         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
528                                               f+i_coord_offset,fshift+i_shift_offset);
529
530         /* Increment number of inner iterations */
531         inneriter                  += j_index_end - j_index_start;
532
533         /* Outer loop uses 7 flops */
534     }
535
536     /* Increment number of outer iterations */
537     outeriter        += nri;
538
539     /* Update outer/inner flops */
540
541     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
542 }