7df236c5b3c503f56b68e1e1644d19af2aa1b6ed
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128d          dummy_mask,cutoff_mask;
74     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
75     __m128d          one     = _mm_set1_pd(1.0);
76     __m128d          two     = _mm_set1_pd(2.0);
77     x                = xx[0];
78     f                = ff[0];
79
80     nri              = nlist->nri;
81     iinr             = nlist->iinr;
82     jindex           = nlist->jindex;
83     jjnr             = nlist->jjnr;
84     shiftidx         = nlist->shift;
85     gid              = nlist->gid;
86     shiftvec         = fr->shift_vec[0];
87     fshift           = fr->fshift[0];
88     facel            = _mm_set1_pd(fr->epsfac);
89     charge           = mdatoms->chargeA;
90     krf              = _mm_set1_pd(fr->ic->k_rf);
91     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
92     crf              = _mm_set1_pd(fr->ic->c_rf);
93
94     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
95     rcutoff_scalar   = fr->rcoulomb;
96     rcutoff          = _mm_set1_pd(rcutoff_scalar);
97     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103
104     outeriter        = 0;
105     inneriter        = 0;
106
107     /* Start outer loop over neighborlists */
108     for(iidx=0; iidx<nri; iidx++)
109     {
110         /* Load shift vector for this list */
111         i_shift_offset   = DIM*shiftidx[iidx];
112
113         /* Load limits for loop over neighbors */
114         j_index_start    = jindex[iidx];
115         j_index_end      = jindex[iidx+1];
116
117         /* Get outer coordinate index */
118         inr              = iinr[iidx];
119         i_coord_offset   = DIM*inr;
120
121         /* Load i particle coords and add shift vector */
122         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
123
124         fix0             = _mm_setzero_pd();
125         fiy0             = _mm_setzero_pd();
126         fiz0             = _mm_setzero_pd();
127
128         /* Load parameters for i particles */
129         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
130
131         /* Reset potential sums */
132         velecsum         = _mm_setzero_pd();
133
134         /* Start inner kernel loop */
135         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
136         {
137
138             /* Get j neighbor index, and coordinate index */
139             jnrA             = jjnr[jidx];
140             jnrB             = jjnr[jidx+1];
141             j_coord_offsetA  = DIM*jnrA;
142             j_coord_offsetB  = DIM*jnrB;
143
144             /* load j atom coordinates */
145             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
146                                               &jx0,&jy0,&jz0);
147
148             /* Calculate displacement vector */
149             dx00             = _mm_sub_pd(ix0,jx0);
150             dy00             = _mm_sub_pd(iy0,jy0);
151             dz00             = _mm_sub_pd(iz0,jz0);
152
153             /* Calculate squared distance and things based on it */
154             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
155
156             rinv00           = gmx_mm_invsqrt_pd(rsq00);
157
158             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
159
160             /* Load parameters for j particles */
161             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
162
163             /**************************
164              * CALCULATE INTERACTIONS *
165              **************************/
166
167             if (gmx_mm_any_lt(rsq00,rcutoff2))
168             {
169
170             /* Compute parameters for interactions between i and j atoms */
171             qq00             = _mm_mul_pd(iq0,jq0);
172
173             /* REACTION-FIELD ELECTROSTATICS */
174             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
175             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
176
177             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
178
179             /* Update potential sum for this i atom from the interaction with this j atom. */
180             velec            = _mm_and_pd(velec,cutoff_mask);
181             velecsum         = _mm_add_pd(velecsum,velec);
182
183             fscal            = felec;
184
185             fscal            = _mm_and_pd(fscal,cutoff_mask);
186
187             /* Update vectorial force */
188             fix0             = _mm_macc_pd(dx00,fscal,fix0);
189             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
190             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
191             
192             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
193                                                    _mm_mul_pd(dx00,fscal),
194                                                    _mm_mul_pd(dy00,fscal),
195                                                    _mm_mul_pd(dz00,fscal));
196
197             }
198
199             /* Inner loop uses 39 flops */
200         }
201
202         if(jidx<j_index_end)
203         {
204
205             jnrA             = jjnr[jidx];
206             j_coord_offsetA  = DIM*jnrA;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
210                                               &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm_sub_pd(ix0,jx0);
214             dy00             = _mm_sub_pd(iy0,jy0);
215             dz00             = _mm_sub_pd(iz0,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
219
220             rinv00           = gmx_mm_invsqrt_pd(rsq00);
221
222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
223
224             /* Load parameters for j particles */
225             jq0              = _mm_load_sd(charge+jnrA+0);
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_pd(iq0,jq0);
236
237             /* REACTION-FIELD ELECTROSTATICS */
238             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
239             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
240
241             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_pd(velec,cutoff_mask);
245             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
246             velecsum         = _mm_add_pd(velecsum,velec);
247
248             fscal            = felec;
249
250             fscal            = _mm_and_pd(fscal,cutoff_mask);
251
252             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
253
254             /* Update vectorial force */
255             fix0             = _mm_macc_pd(dx00,fscal,fix0);
256             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
257             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
258             
259             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
260                                                    _mm_mul_pd(dx00,fscal),
261                                                    _mm_mul_pd(dy00,fscal),
262                                                    _mm_mul_pd(dz00,fscal));
263
264             }
265
266             /* Inner loop uses 39 flops */
267         }
268
269         /* End of innermost loop */
270
271         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
272                                               f+i_coord_offset,fshift+i_shift_offset);
273
274         ggid                        = gid[iidx];
275         /* Update potential energies */
276         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
277
278         /* Increment number of inner iterations */
279         inneriter                  += j_index_end - j_index_start;
280
281         /* Outer loop uses 8 flops */
282     }
283
284     /* Increment number of outer iterations */
285     outeriter        += nri;
286
287     /* Update outer/inner flops */
288
289     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*39);
290 }
291 /*
292  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_128_fma_double
293  * Electrostatics interaction: ReactionField
294  * VdW interaction:            None
295  * Geometry:                   Particle-Particle
296  * Calculate force/pot:        Force
297  */
298 void
299 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_128_fma_double
300                     (t_nblist * gmx_restrict                nlist,
301                      rvec * gmx_restrict                    xx,
302                      rvec * gmx_restrict                    ff,
303                      t_forcerec * gmx_restrict              fr,
304                      t_mdatoms * gmx_restrict               mdatoms,
305                      nb_kernel_data_t * gmx_restrict        kernel_data,
306                      t_nrnb * gmx_restrict                  nrnb)
307 {
308     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
309      * just 0 for non-waters.
310      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
311      * jnr indices corresponding to data put in the four positions in the SIMD register.
312      */
313     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
314     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
315     int              jnrA,jnrB;
316     int              j_coord_offsetA,j_coord_offsetB;
317     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
318     real             rcutoff_scalar;
319     real             *shiftvec,*fshift,*x,*f;
320     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
321     int              vdwioffset0;
322     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
323     int              vdwjidx0A,vdwjidx0B;
324     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
325     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
326     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
327     real             *charge;
328     __m128d          dummy_mask,cutoff_mask;
329     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
330     __m128d          one     = _mm_set1_pd(1.0);
331     __m128d          two     = _mm_set1_pd(2.0);
332     x                = xx[0];
333     f                = ff[0];
334
335     nri              = nlist->nri;
336     iinr             = nlist->iinr;
337     jindex           = nlist->jindex;
338     jjnr             = nlist->jjnr;
339     shiftidx         = nlist->shift;
340     gid              = nlist->gid;
341     shiftvec         = fr->shift_vec[0];
342     fshift           = fr->fshift[0];
343     facel            = _mm_set1_pd(fr->epsfac);
344     charge           = mdatoms->chargeA;
345     krf              = _mm_set1_pd(fr->ic->k_rf);
346     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
347     crf              = _mm_set1_pd(fr->ic->c_rf);
348
349     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
350     rcutoff_scalar   = fr->rcoulomb;
351     rcutoff          = _mm_set1_pd(rcutoff_scalar);
352     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
353
354     /* Avoid stupid compiler warnings */
355     jnrA = jnrB = 0;
356     j_coord_offsetA = 0;
357     j_coord_offsetB = 0;
358
359     outeriter        = 0;
360     inneriter        = 0;
361
362     /* Start outer loop over neighborlists */
363     for(iidx=0; iidx<nri; iidx++)
364     {
365         /* Load shift vector for this list */
366         i_shift_offset   = DIM*shiftidx[iidx];
367
368         /* Load limits for loop over neighbors */
369         j_index_start    = jindex[iidx];
370         j_index_end      = jindex[iidx+1];
371
372         /* Get outer coordinate index */
373         inr              = iinr[iidx];
374         i_coord_offset   = DIM*inr;
375
376         /* Load i particle coords and add shift vector */
377         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
378
379         fix0             = _mm_setzero_pd();
380         fiy0             = _mm_setzero_pd();
381         fiz0             = _mm_setzero_pd();
382
383         /* Load parameters for i particles */
384         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
385
386         /* Start inner kernel loop */
387         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
388         {
389
390             /* Get j neighbor index, and coordinate index */
391             jnrA             = jjnr[jidx];
392             jnrB             = jjnr[jidx+1];
393             j_coord_offsetA  = DIM*jnrA;
394             j_coord_offsetB  = DIM*jnrB;
395
396             /* load j atom coordinates */
397             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
398                                               &jx0,&jy0,&jz0);
399
400             /* Calculate displacement vector */
401             dx00             = _mm_sub_pd(ix0,jx0);
402             dy00             = _mm_sub_pd(iy0,jy0);
403             dz00             = _mm_sub_pd(iz0,jz0);
404
405             /* Calculate squared distance and things based on it */
406             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
407
408             rinv00           = gmx_mm_invsqrt_pd(rsq00);
409
410             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
411
412             /* Load parameters for j particles */
413             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
414
415             /**************************
416              * CALCULATE INTERACTIONS *
417              **************************/
418
419             if (gmx_mm_any_lt(rsq00,rcutoff2))
420             {
421
422             /* Compute parameters for interactions between i and j atoms */
423             qq00             = _mm_mul_pd(iq0,jq0);
424
425             /* REACTION-FIELD ELECTROSTATICS */
426             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
427
428             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
429
430             fscal            = felec;
431
432             fscal            = _mm_and_pd(fscal,cutoff_mask);
433
434             /* Update vectorial force */
435             fix0             = _mm_macc_pd(dx00,fscal,fix0);
436             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
437             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
438             
439             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
440                                                    _mm_mul_pd(dx00,fscal),
441                                                    _mm_mul_pd(dy00,fscal),
442                                                    _mm_mul_pd(dz00,fscal));
443
444             }
445
446             /* Inner loop uses 33 flops */
447         }
448
449         if(jidx<j_index_end)
450         {
451
452             jnrA             = jjnr[jidx];
453             j_coord_offsetA  = DIM*jnrA;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _mm_sub_pd(ix0,jx0);
461             dy00             = _mm_sub_pd(iy0,jy0);
462             dz00             = _mm_sub_pd(iz0,jz0);
463
464             /* Calculate squared distance and things based on it */
465             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
466
467             rinv00           = gmx_mm_invsqrt_pd(rsq00);
468
469             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
470
471             /* Load parameters for j particles */
472             jq0              = _mm_load_sd(charge+jnrA+0);
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             if (gmx_mm_any_lt(rsq00,rcutoff2))
479             {
480
481             /* Compute parameters for interactions between i and j atoms */
482             qq00             = _mm_mul_pd(iq0,jq0);
483
484             /* REACTION-FIELD ELECTROSTATICS */
485             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
486
487             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
488
489             fscal            = felec;
490
491             fscal            = _mm_and_pd(fscal,cutoff_mask);
492
493             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
494
495             /* Update vectorial force */
496             fix0             = _mm_macc_pd(dx00,fscal,fix0);
497             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
498             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
499             
500             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
501                                                    _mm_mul_pd(dx00,fscal),
502                                                    _mm_mul_pd(dy00,fscal),
503                                                    _mm_mul_pd(dz00,fscal));
504
505             }
506
507             /* Inner loop uses 33 flops */
508         }
509
510         /* End of innermost loop */
511
512         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
513                                               f+i_coord_offset,fshift+i_shift_offset);
514
515         /* Increment number of inner iterations */
516         inneriter                  += j_index_end - j_index_start;
517
518         /* Outer loop uses 7 flops */
519     }
520
521     /* Increment number of outer iterations */
522     outeriter        += nri;
523
524     /* Update outer/inner flops */
525
526     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*33);
527 }