773f6fbacd1dcbd4d9f54adc04826390c981afd3
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
80     real             rswitch_scalar,d_scalar;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_pd(fr->epsfac);
97     charge           = mdatoms->chargeA;
98     krf              = _mm_set1_pd(fr->ic->k_rf);
99     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
100     crf              = _mm_set1_pd(fr->ic->c_rf);
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
106     rcutoff_scalar   = fr->rcoulomb;
107     rcutoff          = _mm_set1_pd(rcutoff_scalar);
108     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
109
110     rswitch_scalar   = fr->rvdw_switch;
111     rswitch          = _mm_set1_pd(rswitch_scalar);
112     /* Setup switch parameters */
113     d_scalar         = rcutoff_scalar-rswitch_scalar;
114     d                = _mm_set1_pd(d_scalar);
115     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
116     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
117     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
118     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
119     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
120     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm_setzero_pd();
148         fiy0             = _mm_setzero_pd();
149         fiz0             = _mm_setzero_pd();
150
151         /* Load parameters for i particles */
152         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_pd();
157         vvdwsum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             if (gmx_mm_any_lt(rsq00,rcutoff2))
195             {
196
197             r00              = _mm_mul_pd(rsq00,rinv00);
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_pd(iq0,jq0);
201             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
202                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
203
204             /* REACTION-FIELD ELECTROSTATICS */
205             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
206             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
207
208             /* LENNARD-JONES DISPERSION/REPULSION */
209
210             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
211             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
212             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
213             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
214             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
215
216             d                = _mm_sub_pd(r00,rswitch);
217             d                = _mm_max_pd(d,_mm_setzero_pd());
218             d2               = _mm_mul_pd(d,d);
219             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
220
221             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
222
223             /* Evaluate switch function */
224             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
225             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
226             vvdw             = _mm_mul_pd(vvdw,sw);
227             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velec            = _mm_and_pd(velec,cutoff_mask);
231             velecsum         = _mm_add_pd(velecsum,velec);
232             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
233             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
234
235             fscal            = _mm_add_pd(felec,fvdw);
236
237             fscal            = _mm_and_pd(fscal,cutoff_mask);
238
239             /* Update vectorial force */
240             fix0             = _mm_macc_pd(dx00,fscal,fix0);
241             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
242             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
243             
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
245                                                    _mm_mul_pd(dx00,fscal),
246                                                    _mm_mul_pd(dy00,fscal),
247                                                    _mm_mul_pd(dz00,fscal));
248
249             }
250
251             /* Inner loop uses 73 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             jnrA             = jjnr[jidx];
258             j_coord_offsetA  = DIM*jnrA;
259
260             /* load j atom coordinates */
261             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
262                                               &jx0,&jy0,&jz0);
263
264             /* Calculate displacement vector */
265             dx00             = _mm_sub_pd(ix0,jx0);
266             dy00             = _mm_sub_pd(iy0,jy0);
267             dz00             = _mm_sub_pd(iz0,jz0);
268
269             /* Calculate squared distance and things based on it */
270             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
271
272             rinv00           = gmx_mm_invsqrt_pd(rsq00);
273
274             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
275
276             /* Load parameters for j particles */
277             jq0              = _mm_load_sd(charge+jnrA+0);
278             vdwjidx0A        = 2*vdwtype[jnrA+0];
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             if (gmx_mm_any_lt(rsq00,rcutoff2))
285             {
286
287             r00              = _mm_mul_pd(rsq00,rinv00);
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq00             = _mm_mul_pd(iq0,jq0);
291             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
292
293             /* REACTION-FIELD ELECTROSTATICS */
294             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
295             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
296
297             /* LENNARD-JONES DISPERSION/REPULSION */
298
299             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
300             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
301             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
302             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
303             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
304
305             d                = _mm_sub_pd(r00,rswitch);
306             d                = _mm_max_pd(d,_mm_setzero_pd());
307             d2               = _mm_mul_pd(d,d);
308             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
309
310             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
311
312             /* Evaluate switch function */
313             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
314             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
315             vvdw             = _mm_mul_pd(vvdw,sw);
316             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_and_pd(velec,cutoff_mask);
320             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
321             velecsum         = _mm_add_pd(velecsum,velec);
322             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
323             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
324             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
325
326             fscal            = _mm_add_pd(felec,fvdw);
327
328             fscal            = _mm_and_pd(fscal,cutoff_mask);
329
330             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
331
332             /* Update vectorial force */
333             fix0             = _mm_macc_pd(dx00,fscal,fix0);
334             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
335             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
336             
337             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
338                                                    _mm_mul_pd(dx00,fscal),
339                                                    _mm_mul_pd(dy00,fscal),
340                                                    _mm_mul_pd(dz00,fscal));
341
342             }
343
344             /* Inner loop uses 73 flops */
345         }
346
347         /* End of innermost loop */
348
349         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
350                                               f+i_coord_offset,fshift+i_shift_offset);
351
352         ggid                        = gid[iidx];
353         /* Update potential energies */
354         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
355         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
356
357         /* Increment number of inner iterations */
358         inneriter                  += j_index_end - j_index_start;
359
360         /* Outer loop uses 9 flops */
361     }
362
363     /* Increment number of outer iterations */
364     outeriter        += nri;
365
366     /* Update outer/inner flops */
367
368     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
369 }
370 /*
371  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_double
372  * Electrostatics interaction: ReactionField
373  * VdW interaction:            LennardJones
374  * Geometry:                   Particle-Particle
375  * Calculate force/pot:        Force
376  */
377 void
378 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_double
379                     (t_nblist * gmx_restrict                nlist,
380                      rvec * gmx_restrict                    xx,
381                      rvec * gmx_restrict                    ff,
382                      t_forcerec * gmx_restrict              fr,
383                      t_mdatoms * gmx_restrict               mdatoms,
384                      nb_kernel_data_t * gmx_restrict        kernel_data,
385                      t_nrnb * gmx_restrict                  nrnb)
386 {
387     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
388      * just 0 for non-waters.
389      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
390      * jnr indices corresponding to data put in the four positions in the SIMD register.
391      */
392     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
393     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
394     int              jnrA,jnrB;
395     int              j_coord_offsetA,j_coord_offsetB;
396     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
397     real             rcutoff_scalar;
398     real             *shiftvec,*fshift,*x,*f;
399     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
400     int              vdwioffset0;
401     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
402     int              vdwjidx0A,vdwjidx0B;
403     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
404     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
405     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
406     real             *charge;
407     int              nvdwtype;
408     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
409     int              *vdwtype;
410     real             *vdwparam;
411     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
412     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
413     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
414     real             rswitch_scalar,d_scalar;
415     __m128d          dummy_mask,cutoff_mask;
416     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
417     __m128d          one     = _mm_set1_pd(1.0);
418     __m128d          two     = _mm_set1_pd(2.0);
419     x                = xx[0];
420     f                = ff[0];
421
422     nri              = nlist->nri;
423     iinr             = nlist->iinr;
424     jindex           = nlist->jindex;
425     jjnr             = nlist->jjnr;
426     shiftidx         = nlist->shift;
427     gid              = nlist->gid;
428     shiftvec         = fr->shift_vec[0];
429     fshift           = fr->fshift[0];
430     facel            = _mm_set1_pd(fr->epsfac);
431     charge           = mdatoms->chargeA;
432     krf              = _mm_set1_pd(fr->ic->k_rf);
433     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
434     crf              = _mm_set1_pd(fr->ic->c_rf);
435     nvdwtype         = fr->ntype;
436     vdwparam         = fr->nbfp;
437     vdwtype          = mdatoms->typeA;
438
439     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
440     rcutoff_scalar   = fr->rcoulomb;
441     rcutoff          = _mm_set1_pd(rcutoff_scalar);
442     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
443
444     rswitch_scalar   = fr->rvdw_switch;
445     rswitch          = _mm_set1_pd(rswitch_scalar);
446     /* Setup switch parameters */
447     d_scalar         = rcutoff_scalar-rswitch_scalar;
448     d                = _mm_set1_pd(d_scalar);
449     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
450     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
451     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
452     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
453     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
454     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
455
456     /* Avoid stupid compiler warnings */
457     jnrA = jnrB = 0;
458     j_coord_offsetA = 0;
459     j_coord_offsetB = 0;
460
461     outeriter        = 0;
462     inneriter        = 0;
463
464     /* Start outer loop over neighborlists */
465     for(iidx=0; iidx<nri; iidx++)
466     {
467         /* Load shift vector for this list */
468         i_shift_offset   = DIM*shiftidx[iidx];
469
470         /* Load limits for loop over neighbors */
471         j_index_start    = jindex[iidx];
472         j_index_end      = jindex[iidx+1];
473
474         /* Get outer coordinate index */
475         inr              = iinr[iidx];
476         i_coord_offset   = DIM*inr;
477
478         /* Load i particle coords and add shift vector */
479         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
480
481         fix0             = _mm_setzero_pd();
482         fiy0             = _mm_setzero_pd();
483         fiz0             = _mm_setzero_pd();
484
485         /* Load parameters for i particles */
486         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
487         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
488
489         /* Start inner kernel loop */
490         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
491         {
492
493             /* Get j neighbor index, and coordinate index */
494             jnrA             = jjnr[jidx];
495             jnrB             = jjnr[jidx+1];
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498
499             /* load j atom coordinates */
500             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
501                                               &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm_sub_pd(ix0,jx0);
505             dy00             = _mm_sub_pd(iy0,jy0);
506             dz00             = _mm_sub_pd(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
510
511             rinv00           = gmx_mm_invsqrt_pd(rsq00);
512
513             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
514
515             /* Load parameters for j particles */
516             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
517             vdwjidx0A        = 2*vdwtype[jnrA+0];
518             vdwjidx0B        = 2*vdwtype[jnrB+0];
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             if (gmx_mm_any_lt(rsq00,rcutoff2))
525             {
526
527             r00              = _mm_mul_pd(rsq00,rinv00);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq00             = _mm_mul_pd(iq0,jq0);
531             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
532                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
533
534             /* REACTION-FIELD ELECTROSTATICS */
535             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
536
537             /* LENNARD-JONES DISPERSION/REPULSION */
538
539             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
540             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
541             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
542             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
543             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
544
545             d                = _mm_sub_pd(r00,rswitch);
546             d                = _mm_max_pd(d,_mm_setzero_pd());
547             d2               = _mm_mul_pd(d,d);
548             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
549
550             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
551
552             /* Evaluate switch function */
553             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
554             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
555             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
556
557             fscal            = _mm_add_pd(felec,fvdw);
558
559             fscal            = _mm_and_pd(fscal,cutoff_mask);
560
561             /* Update vectorial force */
562             fix0             = _mm_macc_pd(dx00,fscal,fix0);
563             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
564             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
565             
566             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
567                                                    _mm_mul_pd(dx00,fscal),
568                                                    _mm_mul_pd(dy00,fscal),
569                                                    _mm_mul_pd(dz00,fscal));
570
571             }
572
573             /* Inner loop uses 64 flops */
574         }
575
576         if(jidx<j_index_end)
577         {
578
579             jnrA             = jjnr[jidx];
580             j_coord_offsetA  = DIM*jnrA;
581
582             /* load j atom coordinates */
583             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
584                                               &jx0,&jy0,&jz0);
585
586             /* Calculate displacement vector */
587             dx00             = _mm_sub_pd(ix0,jx0);
588             dy00             = _mm_sub_pd(iy0,jy0);
589             dz00             = _mm_sub_pd(iz0,jz0);
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
593
594             rinv00           = gmx_mm_invsqrt_pd(rsq00);
595
596             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
597
598             /* Load parameters for j particles */
599             jq0              = _mm_load_sd(charge+jnrA+0);
600             vdwjidx0A        = 2*vdwtype[jnrA+0];
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             if (gmx_mm_any_lt(rsq00,rcutoff2))
607             {
608
609             r00              = _mm_mul_pd(rsq00,rinv00);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm_mul_pd(iq0,jq0);
613             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
614
615             /* REACTION-FIELD ELECTROSTATICS */
616             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
617
618             /* LENNARD-JONES DISPERSION/REPULSION */
619
620             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
621             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
622             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
623             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
624             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
625
626             d                = _mm_sub_pd(r00,rswitch);
627             d                = _mm_max_pd(d,_mm_setzero_pd());
628             d2               = _mm_mul_pd(d,d);
629             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
630
631             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
632
633             /* Evaluate switch function */
634             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
635             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
636             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
637
638             fscal            = _mm_add_pd(felec,fvdw);
639
640             fscal            = _mm_and_pd(fscal,cutoff_mask);
641
642             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
643
644             /* Update vectorial force */
645             fix0             = _mm_macc_pd(dx00,fscal,fix0);
646             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
647             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
648             
649             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
650                                                    _mm_mul_pd(dx00,fscal),
651                                                    _mm_mul_pd(dy00,fscal),
652                                                    _mm_mul_pd(dz00,fscal));
653
654             }
655
656             /* Inner loop uses 64 flops */
657         }
658
659         /* End of innermost loop */
660
661         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
662                                               f+i_coord_offset,fshift+i_shift_offset);
663
664         /* Increment number of inner iterations */
665         inneriter                  += j_index_end - j_index_start;
666
667         /* Outer loop uses 7 flops */
668     }
669
670     /* Increment number of outer iterations */
671     outeriter        += nri;
672
673     /* Update outer/inner flops */
674
675     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
676 }