355881c25dfe9b9027a8ce1f7b5ea676f12aa7f2
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_pd(fr->ic->k_rf);
97     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_pd(fr->ic->c_rf);
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
104     rcutoff_scalar   = fr->rcoulomb;
105     rcutoff          = _mm_set1_pd(rcutoff_scalar);
106     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
107
108     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
109     rvdw             = _mm_set1_pd(fr->rvdw);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
135
136         fix0             = _mm_setzero_pd();
137         fiy0             = _mm_setzero_pd();
138         fiz0             = _mm_setzero_pd();
139
140         /* Load parameters for i particles */
141         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
142         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144         /* Reset potential sums */
145         velecsum         = _mm_setzero_pd();
146         vvdwsum          = _mm_setzero_pd();
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
150         {
151
152             /* Get j neighbor index, and coordinate index */
153             jnrA             = jjnr[jidx];
154             jnrB             = jjnr[jidx+1];
155             j_coord_offsetA  = DIM*jnrA;
156             j_coord_offsetB  = DIM*jnrB;
157
158             /* load j atom coordinates */
159             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
160                                               &jx0,&jy0,&jz0);
161
162             /* Calculate displacement vector */
163             dx00             = _mm_sub_pd(ix0,jx0);
164             dy00             = _mm_sub_pd(iy0,jy0);
165             dz00             = _mm_sub_pd(iz0,jz0);
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
169
170             rinv00           = gmx_mm_invsqrt_pd(rsq00);
171
172             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
173
174             /* Load parameters for j particles */
175             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
176             vdwjidx0A        = 2*vdwtype[jnrA+0];
177             vdwjidx0B        = 2*vdwtype[jnrB+0];
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             if (gmx_mm_any_lt(rsq00,rcutoff2))
184             {
185
186             /* Compute parameters for interactions between i and j atoms */
187             qq00             = _mm_mul_pd(iq0,jq0);
188             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
189                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
190
191             /* REACTION-FIELD ELECTROSTATICS */
192             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
193             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
194
195             /* LENNARD-JONES DISPERSION/REPULSION */
196
197             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
198             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
199             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
200             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
201                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
202             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
203
204             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
205
206             /* Update potential sum for this i atom from the interaction with this j atom. */
207             velec            = _mm_and_pd(velec,cutoff_mask);
208             velecsum         = _mm_add_pd(velecsum,velec);
209             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
210             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
211
212             fscal            = _mm_add_pd(felec,fvdw);
213
214             fscal            = _mm_and_pd(fscal,cutoff_mask);
215
216             /* Update vectorial force */
217             fix0             = _mm_macc_pd(dx00,fscal,fix0);
218             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
219             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
220             
221             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
222                                                    _mm_mul_pd(dx00,fscal),
223                                                    _mm_mul_pd(dy00,fscal),
224                                                    _mm_mul_pd(dz00,fscal));
225
226             }
227
228             /* Inner loop uses 57 flops */
229         }
230
231         if(jidx<j_index_end)
232         {
233
234             jnrA             = jjnr[jidx];
235             j_coord_offsetA  = DIM*jnrA;
236
237             /* load j atom coordinates */
238             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
239                                               &jx0,&jy0,&jz0);
240
241             /* Calculate displacement vector */
242             dx00             = _mm_sub_pd(ix0,jx0);
243             dy00             = _mm_sub_pd(iy0,jy0);
244             dz00             = _mm_sub_pd(iz0,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
248
249             rinv00           = gmx_mm_invsqrt_pd(rsq00);
250
251             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
252
253             /* Load parameters for j particles */
254             jq0              = _mm_load_sd(charge+jnrA+0);
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             if (gmx_mm_any_lt(rsq00,rcutoff2))
262             {
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq00             = _mm_mul_pd(iq0,jq0);
266             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
267
268             /* REACTION-FIELD ELECTROSTATICS */
269             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
270             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
276             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
278                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
279             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
280
281             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm_and_pd(velec,cutoff_mask);
285             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
286             velecsum         = _mm_add_pd(velecsum,velec);
287             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
288             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
289             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
290
291             fscal            = _mm_add_pd(felec,fvdw);
292
293             fscal            = _mm_and_pd(fscal,cutoff_mask);
294
295             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
296
297             /* Update vectorial force */
298             fix0             = _mm_macc_pd(dx00,fscal,fix0);
299             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
300             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
301             
302             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
303                                                    _mm_mul_pd(dx00,fscal),
304                                                    _mm_mul_pd(dy00,fscal),
305                                                    _mm_mul_pd(dz00,fscal));
306
307             }
308
309             /* Inner loop uses 57 flops */
310         }
311
312         /* End of innermost loop */
313
314         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
315                                               f+i_coord_offset,fshift+i_shift_offset);
316
317         ggid                        = gid[iidx];
318         /* Update potential energies */
319         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
320         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
321
322         /* Increment number of inner iterations */
323         inneriter                  += j_index_end - j_index_start;
324
325         /* Outer loop uses 9 flops */
326     }
327
328     /* Increment number of outer iterations */
329     outeriter        += nri;
330
331     /* Update outer/inner flops */
332
333     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
334 }
335 /*
336  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_double
337  * Electrostatics interaction: ReactionField
338  * VdW interaction:            LennardJones
339  * Geometry:                   Particle-Particle
340  * Calculate force/pot:        Force
341  */
342 void
343 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_double
344                     (t_nblist * gmx_restrict                nlist,
345                      rvec * gmx_restrict                    xx,
346                      rvec * gmx_restrict                    ff,
347                      t_forcerec * gmx_restrict              fr,
348                      t_mdatoms * gmx_restrict               mdatoms,
349                      nb_kernel_data_t * gmx_restrict        kernel_data,
350                      t_nrnb * gmx_restrict                  nrnb)
351 {
352     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
353      * just 0 for non-waters.
354      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
355      * jnr indices corresponding to data put in the four positions in the SIMD register.
356      */
357     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
358     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
359     int              jnrA,jnrB;
360     int              j_coord_offsetA,j_coord_offsetB;
361     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
362     real             rcutoff_scalar;
363     real             *shiftvec,*fshift,*x,*f;
364     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
365     int              vdwioffset0;
366     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
367     int              vdwjidx0A,vdwjidx0B;
368     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
369     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
370     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
371     real             *charge;
372     int              nvdwtype;
373     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
374     int              *vdwtype;
375     real             *vdwparam;
376     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
377     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
378     __m128d          dummy_mask,cutoff_mask;
379     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
380     __m128d          one     = _mm_set1_pd(1.0);
381     __m128d          two     = _mm_set1_pd(2.0);
382     x                = xx[0];
383     f                = ff[0];
384
385     nri              = nlist->nri;
386     iinr             = nlist->iinr;
387     jindex           = nlist->jindex;
388     jjnr             = nlist->jjnr;
389     shiftidx         = nlist->shift;
390     gid              = nlist->gid;
391     shiftvec         = fr->shift_vec[0];
392     fshift           = fr->fshift[0];
393     facel            = _mm_set1_pd(fr->epsfac);
394     charge           = mdatoms->chargeA;
395     krf              = _mm_set1_pd(fr->ic->k_rf);
396     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
397     crf              = _mm_set1_pd(fr->ic->c_rf);
398     nvdwtype         = fr->ntype;
399     vdwparam         = fr->nbfp;
400     vdwtype          = mdatoms->typeA;
401
402     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
403     rcutoff_scalar   = fr->rcoulomb;
404     rcutoff          = _mm_set1_pd(rcutoff_scalar);
405     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
406
407     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
408     rvdw             = _mm_set1_pd(fr->rvdw);
409
410     /* Avoid stupid compiler warnings */
411     jnrA = jnrB = 0;
412     j_coord_offsetA = 0;
413     j_coord_offsetB = 0;
414
415     outeriter        = 0;
416     inneriter        = 0;
417
418     /* Start outer loop over neighborlists */
419     for(iidx=0; iidx<nri; iidx++)
420     {
421         /* Load shift vector for this list */
422         i_shift_offset   = DIM*shiftidx[iidx];
423
424         /* Load limits for loop over neighbors */
425         j_index_start    = jindex[iidx];
426         j_index_end      = jindex[iidx+1];
427
428         /* Get outer coordinate index */
429         inr              = iinr[iidx];
430         i_coord_offset   = DIM*inr;
431
432         /* Load i particle coords and add shift vector */
433         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
434
435         fix0             = _mm_setzero_pd();
436         fiy0             = _mm_setzero_pd();
437         fiz0             = _mm_setzero_pd();
438
439         /* Load parameters for i particles */
440         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
441         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
442
443         /* Start inner kernel loop */
444         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
445         {
446
447             /* Get j neighbor index, and coordinate index */
448             jnrA             = jjnr[jidx];
449             jnrB             = jjnr[jidx+1];
450             j_coord_offsetA  = DIM*jnrA;
451             j_coord_offsetB  = DIM*jnrB;
452
453             /* load j atom coordinates */
454             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
455                                               &jx0,&jy0,&jz0);
456
457             /* Calculate displacement vector */
458             dx00             = _mm_sub_pd(ix0,jx0);
459             dy00             = _mm_sub_pd(iy0,jy0);
460             dz00             = _mm_sub_pd(iz0,jz0);
461
462             /* Calculate squared distance and things based on it */
463             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
464
465             rinv00           = gmx_mm_invsqrt_pd(rsq00);
466
467             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
468
469             /* Load parameters for j particles */
470             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472             vdwjidx0B        = 2*vdwtype[jnrB+0];
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             if (gmx_mm_any_lt(rsq00,rcutoff2))
479             {
480
481             /* Compute parameters for interactions between i and j atoms */
482             qq00             = _mm_mul_pd(iq0,jq0);
483             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
484                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
485
486             /* REACTION-FIELD ELECTROSTATICS */
487             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
488
489             /* LENNARD-JONES DISPERSION/REPULSION */
490
491             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
492             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
493
494             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
495
496             fscal            = _mm_add_pd(felec,fvdw);
497
498             fscal            = _mm_and_pd(fscal,cutoff_mask);
499
500             /* Update vectorial force */
501             fix0             = _mm_macc_pd(dx00,fscal,fix0);
502             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
503             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
504             
505             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
506                                                    _mm_mul_pd(dx00,fscal),
507                                                    _mm_mul_pd(dy00,fscal),
508                                                    _mm_mul_pd(dz00,fscal));
509
510             }
511
512             /* Inner loop uses 40 flops */
513         }
514
515         if(jidx<j_index_end)
516         {
517
518             jnrA             = jjnr[jidx];
519             j_coord_offsetA  = DIM*jnrA;
520
521             /* load j atom coordinates */
522             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
523                                               &jx0,&jy0,&jz0);
524
525             /* Calculate displacement vector */
526             dx00             = _mm_sub_pd(ix0,jx0);
527             dy00             = _mm_sub_pd(iy0,jy0);
528             dz00             = _mm_sub_pd(iz0,jz0);
529
530             /* Calculate squared distance and things based on it */
531             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
532
533             rinv00           = gmx_mm_invsqrt_pd(rsq00);
534
535             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
536
537             /* Load parameters for j particles */
538             jq0              = _mm_load_sd(charge+jnrA+0);
539             vdwjidx0A        = 2*vdwtype[jnrA+0];
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm_any_lt(rsq00,rcutoff2))
546             {
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq00             = _mm_mul_pd(iq0,jq0);
550             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
551
552             /* REACTION-FIELD ELECTROSTATICS */
553             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
554
555             /* LENNARD-JONES DISPERSION/REPULSION */
556
557             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
558             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
559
560             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
561
562             fscal            = _mm_add_pd(felec,fvdw);
563
564             fscal            = _mm_and_pd(fscal,cutoff_mask);
565
566             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
567
568             /* Update vectorial force */
569             fix0             = _mm_macc_pd(dx00,fscal,fix0);
570             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
571             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
572             
573             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
574                                                    _mm_mul_pd(dx00,fscal),
575                                                    _mm_mul_pd(dy00,fscal),
576                                                    _mm_mul_pd(dz00,fscal));
577
578             }
579
580             /* Inner loop uses 40 flops */
581         }
582
583         /* End of innermost loop */
584
585         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
586                                               f+i_coord_offset,fshift+i_shift_offset);
587
588         /* Increment number of inner iterations */
589         inneriter                  += j_index_end - j_index_start;
590
591         /* Outer loop uses 7 flops */
592     }
593
594     /* Increment number of outer iterations */
595     outeriter        += nri;
596
597     /* Update outer/inner flops */
598
599     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*40);
600 }