made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
91     real             *vftab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_pd(fr->ic->k_rf);
110     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_pd(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
156
157         fix0             = _mm_setzero_pd();
158         fiy0             = _mm_setzero_pd();
159         fiz0             = _mm_setzero_pd();
160         fix1             = _mm_setzero_pd();
161         fiy1             = _mm_setzero_pd();
162         fiz1             = _mm_setzero_pd();
163         fix2             = _mm_setzero_pd();
164         fiy2             = _mm_setzero_pd();
165         fiz2             = _mm_setzero_pd();
166         fix3             = _mm_setzero_pd();
167         fiy3             = _mm_setzero_pd();
168         fiz3             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198             dx30             = _mm_sub_pd(ix3,jx0);
199             dy30             = _mm_sub_pd(iy3,jy0);
200             dz30             = _mm_sub_pd(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
207
208             rinv00           = gmx_mm_invsqrt_pd(rsq00);
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
214             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
215             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221
222             fjx0             = _mm_setzero_pd();
223             fjy0             = _mm_setzero_pd();
224             fjz0             = _mm_setzero_pd();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm_mul_pd(r00,vftabscale);
238             vfitab           = _mm_cvttpd_epi32(rt);
239 #ifdef __XOP__
240             vfeps            = _mm_frcz_pd(rt);
241 #else
242             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
243 #endif
244             twovfeps         = _mm_add_pd(vfeps,vfeps);
245             vfitab           = _mm_slli_epi32(vfitab,3);
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
255             VV               = _mm_macc_pd(vfeps,Fp,Y);
256             vvdw6            = _mm_mul_pd(c6_00,VV);
257             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
258             fvdw6            = _mm_mul_pd(c6_00,FF);
259
260             /* CUBIC SPLINE TABLE REPULSION */
261             vfitab           = _mm_add_epi32(vfitab,ifour);
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw12           = _mm_mul_pd(c12_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw12           = _mm_mul_pd(c12_00,FF);
273             vvdw             = _mm_add_pd(vvdw12,vvdw6);
274             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
278
279             fscal            = fvdw;
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
287             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
288             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (gmx_mm_any_lt(rsq10,rcutoff2))
295             {
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq10             = _mm_mul_pd(iq1,jq0);
299
300             /* REACTION-FIELD ELECTROSTATICS */
301             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
302             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
303
304             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velec            = _mm_and_pd(velec,cutoff_mask);
308             velecsum         = _mm_add_pd(velecsum,velec);
309
310             fscal            = felec;
311
312             fscal            = _mm_and_pd(fscal,cutoff_mask);
313
314             /* Update vectorial force */
315             fix1             = _mm_macc_pd(dx10,fscal,fix1);
316             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
317             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
318             
319             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
320             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
321             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
322
323             }
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq20,rcutoff2))
330             {
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_pd(iq2,jq0);
334
335             /* REACTION-FIELD ELECTROSTATICS */
336             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
337             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
338
339             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_and_pd(velec,cutoff_mask);
343             velecsum         = _mm_add_pd(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_pd(fscal,cutoff_mask);
348
349             /* Update vectorial force */
350             fix2             = _mm_macc_pd(dx20,fscal,fix2);
351             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
352             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
353             
354             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
355             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
356             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm_any_lt(rsq30,rcutoff2))
365             {
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq30             = _mm_mul_pd(iq3,jq0);
369
370             /* REACTION-FIELD ELECTROSTATICS */
371             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
372             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
373
374             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velec            = _mm_and_pd(velec,cutoff_mask);
378             velecsum         = _mm_add_pd(velecsum,velec);
379
380             fscal            = felec;
381
382             fscal            = _mm_and_pd(fscal,cutoff_mask);
383
384             /* Update vectorial force */
385             fix3             = _mm_macc_pd(dx30,fscal,fix3);
386             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
387             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
388             
389             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
390             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
391             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
392
393             }
394
395             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
396
397             /* Inner loop uses 179 flops */
398         }
399
400         if(jidx<j_index_end)
401         {
402
403             jnrA             = jjnr[jidx];
404             j_coord_offsetA  = DIM*jnrA;
405
406             /* load j atom coordinates */
407             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
408                                               &jx0,&jy0,&jz0);
409
410             /* Calculate displacement vector */
411             dx00             = _mm_sub_pd(ix0,jx0);
412             dy00             = _mm_sub_pd(iy0,jy0);
413             dz00             = _mm_sub_pd(iz0,jz0);
414             dx10             = _mm_sub_pd(ix1,jx0);
415             dy10             = _mm_sub_pd(iy1,jy0);
416             dz10             = _mm_sub_pd(iz1,jz0);
417             dx20             = _mm_sub_pd(ix2,jx0);
418             dy20             = _mm_sub_pd(iy2,jy0);
419             dz20             = _mm_sub_pd(iz2,jz0);
420             dx30             = _mm_sub_pd(ix3,jx0);
421             dy30             = _mm_sub_pd(iy3,jy0);
422             dz30             = _mm_sub_pd(iz3,jz0);
423
424             /* Calculate squared distance and things based on it */
425             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
426             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
427             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
428             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
429
430             rinv00           = gmx_mm_invsqrt_pd(rsq00);
431             rinv10           = gmx_mm_invsqrt_pd(rsq10);
432             rinv20           = gmx_mm_invsqrt_pd(rsq20);
433             rinv30           = gmx_mm_invsqrt_pd(rsq30);
434
435             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
436             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
437             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
438
439             /* Load parameters for j particles */
440             jq0              = _mm_load_sd(charge+jnrA+0);
441             vdwjidx0A        = 2*vdwtype[jnrA+0];
442
443             fjx0             = _mm_setzero_pd();
444             fjy0             = _mm_setzero_pd();
445             fjz0             = _mm_setzero_pd();
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r00              = _mm_mul_pd(rsq00,rinv00);
452
453             /* Compute parameters for interactions between i and j atoms */
454             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
455
456             /* Calculate table index by multiplying r with table scale and truncate to integer */
457             rt               = _mm_mul_pd(r00,vftabscale);
458             vfitab           = _mm_cvttpd_epi32(rt);
459 #ifdef __XOP__
460             vfeps            = _mm_frcz_pd(rt);
461 #else
462             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
463 #endif
464             twovfeps         = _mm_add_pd(vfeps,vfeps);
465             vfitab           = _mm_slli_epi32(vfitab,3);
466
467             /* CUBIC SPLINE TABLE DISPERSION */
468             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
469             F                = _mm_setzero_pd();
470             GMX_MM_TRANSPOSE2_PD(Y,F);
471             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
472             H                = _mm_setzero_pd();
473             GMX_MM_TRANSPOSE2_PD(G,H);
474             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
475             VV               = _mm_macc_pd(vfeps,Fp,Y);
476             vvdw6            = _mm_mul_pd(c6_00,VV);
477             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
478             fvdw6            = _mm_mul_pd(c6_00,FF);
479
480             /* CUBIC SPLINE TABLE REPULSION */
481             vfitab           = _mm_add_epi32(vfitab,ifour);
482             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
483             F                = _mm_setzero_pd();
484             GMX_MM_TRANSPOSE2_PD(Y,F);
485             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
486             H                = _mm_setzero_pd();
487             GMX_MM_TRANSPOSE2_PD(G,H);
488             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
489             VV               = _mm_macc_pd(vfeps,Fp,Y);
490             vvdw12           = _mm_mul_pd(c12_00,VV);
491             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
492             fvdw12           = _mm_mul_pd(c12_00,FF);
493             vvdw             = _mm_add_pd(vvdw12,vvdw6);
494             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
498             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
499
500             fscal            = fvdw;
501
502             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
503
504             /* Update vectorial force */
505             fix0             = _mm_macc_pd(dx00,fscal,fix0);
506             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
507             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
508             
509             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
510             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
511             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             if (gmx_mm_any_lt(rsq10,rcutoff2))
518             {
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq10             = _mm_mul_pd(iq1,jq0);
522
523             /* REACTION-FIELD ELECTROSTATICS */
524             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
525             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
526
527             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm_and_pd(velec,cutoff_mask);
531             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
532             velecsum         = _mm_add_pd(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm_and_pd(fscal,cutoff_mask);
537
538             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
539
540             /* Update vectorial force */
541             fix1             = _mm_macc_pd(dx10,fscal,fix1);
542             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
543             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
544             
545             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
546             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
547             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
548
549             }
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             if (gmx_mm_any_lt(rsq20,rcutoff2))
556             {
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq20             = _mm_mul_pd(iq2,jq0);
560
561             /* REACTION-FIELD ELECTROSTATICS */
562             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
563             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
564
565             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm_and_pd(velec,cutoff_mask);
569             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_and_pd(fscal,cutoff_mask);
575
576             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
577
578             /* Update vectorial force */
579             fix2             = _mm_macc_pd(dx20,fscal,fix2);
580             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
581             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
582             
583             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
584             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
585             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm_any_lt(rsq30,rcutoff2))
594             {
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq30             = _mm_mul_pd(iq3,jq0);
598
599             /* REACTION-FIELD ELECTROSTATICS */
600             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_macc_pd(krf,rsq30,rinv30),crf));
601             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
602
603             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm_and_pd(velec,cutoff_mask);
607             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
608             velecsum         = _mm_add_pd(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm_and_pd(fscal,cutoff_mask);
613
614             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
615
616             /* Update vectorial force */
617             fix3             = _mm_macc_pd(dx30,fscal,fix3);
618             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
619             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
620             
621             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
622             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
623             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
624
625             }
626
627             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
628
629             /* Inner loop uses 179 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         ggid                        = gid[iidx];
638         /* Update potential energies */
639         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
640         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 26 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*179);
654 }
655 /*
656  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_double
657  * Electrostatics interaction: ReactionField
658  * VdW interaction:            CubicSplineTable
659  * Geometry:                   Water4-Particle
660  * Calculate force/pot:        Force
661  */
662 void
663 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_double
664                     (t_nblist * gmx_restrict                nlist,
665                      rvec * gmx_restrict                    xx,
666                      rvec * gmx_restrict                    ff,
667                      t_forcerec * gmx_restrict              fr,
668                      t_mdatoms * gmx_restrict               mdatoms,
669                      nb_kernel_data_t * gmx_restrict        kernel_data,
670                      t_nrnb * gmx_restrict                  nrnb)
671 {
672     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
673      * just 0 for non-waters.
674      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
675      * jnr indices corresponding to data put in the four positions in the SIMD register.
676      */
677     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
678     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
679     int              jnrA,jnrB;
680     int              j_coord_offsetA,j_coord_offsetB;
681     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
682     real             rcutoff_scalar;
683     real             *shiftvec,*fshift,*x,*f;
684     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
685     int              vdwioffset0;
686     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
687     int              vdwioffset1;
688     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
689     int              vdwioffset2;
690     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
691     int              vdwioffset3;
692     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
693     int              vdwjidx0A,vdwjidx0B;
694     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
695     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
696     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
697     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
698     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
699     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
700     real             *charge;
701     int              nvdwtype;
702     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
703     int              *vdwtype;
704     real             *vdwparam;
705     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
706     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
707     __m128i          vfitab;
708     __m128i          ifour       = _mm_set1_epi32(4);
709     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
710     real             *vftab;
711     __m128d          dummy_mask,cutoff_mask;
712     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
713     __m128d          one     = _mm_set1_pd(1.0);
714     __m128d          two     = _mm_set1_pd(2.0);
715     x                = xx[0];
716     f                = ff[0];
717
718     nri              = nlist->nri;
719     iinr             = nlist->iinr;
720     jindex           = nlist->jindex;
721     jjnr             = nlist->jjnr;
722     shiftidx         = nlist->shift;
723     gid              = nlist->gid;
724     shiftvec         = fr->shift_vec[0];
725     fshift           = fr->fshift[0];
726     facel            = _mm_set1_pd(fr->epsfac);
727     charge           = mdatoms->chargeA;
728     krf              = _mm_set1_pd(fr->ic->k_rf);
729     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
730     crf              = _mm_set1_pd(fr->ic->c_rf);
731     nvdwtype         = fr->ntype;
732     vdwparam         = fr->nbfp;
733     vdwtype          = mdatoms->typeA;
734
735     vftab            = kernel_data->table_vdw->data;
736     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
737
738     /* Setup water-specific parameters */
739     inr              = nlist->iinr[0];
740     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
741     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
742     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
743     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
744
745     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
746     rcutoff_scalar   = fr->rcoulomb;
747     rcutoff          = _mm_set1_pd(rcutoff_scalar);
748     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
749
750     /* Avoid stupid compiler warnings */
751     jnrA = jnrB = 0;
752     j_coord_offsetA = 0;
753     j_coord_offsetB = 0;
754
755     outeriter        = 0;
756     inneriter        = 0;
757
758     /* Start outer loop over neighborlists */
759     for(iidx=0; iidx<nri; iidx++)
760     {
761         /* Load shift vector for this list */
762         i_shift_offset   = DIM*shiftidx[iidx];
763
764         /* Load limits for loop over neighbors */
765         j_index_start    = jindex[iidx];
766         j_index_end      = jindex[iidx+1];
767
768         /* Get outer coordinate index */
769         inr              = iinr[iidx];
770         i_coord_offset   = DIM*inr;
771
772         /* Load i particle coords and add shift vector */
773         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
774                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
775
776         fix0             = _mm_setzero_pd();
777         fiy0             = _mm_setzero_pd();
778         fiz0             = _mm_setzero_pd();
779         fix1             = _mm_setzero_pd();
780         fiy1             = _mm_setzero_pd();
781         fiz1             = _mm_setzero_pd();
782         fix2             = _mm_setzero_pd();
783         fiy2             = _mm_setzero_pd();
784         fiz2             = _mm_setzero_pd();
785         fix3             = _mm_setzero_pd();
786         fiy3             = _mm_setzero_pd();
787         fiz3             = _mm_setzero_pd();
788
789         /* Start inner kernel loop */
790         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
791         {
792
793             /* Get j neighbor index, and coordinate index */
794             jnrA             = jjnr[jidx];
795             jnrB             = jjnr[jidx+1];
796             j_coord_offsetA  = DIM*jnrA;
797             j_coord_offsetB  = DIM*jnrB;
798
799             /* load j atom coordinates */
800             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_pd(ix0,jx0);
805             dy00             = _mm_sub_pd(iy0,jy0);
806             dz00             = _mm_sub_pd(iz0,jz0);
807             dx10             = _mm_sub_pd(ix1,jx0);
808             dy10             = _mm_sub_pd(iy1,jy0);
809             dz10             = _mm_sub_pd(iz1,jz0);
810             dx20             = _mm_sub_pd(ix2,jx0);
811             dy20             = _mm_sub_pd(iy2,jy0);
812             dz20             = _mm_sub_pd(iz2,jz0);
813             dx30             = _mm_sub_pd(ix3,jx0);
814             dy30             = _mm_sub_pd(iy3,jy0);
815             dz30             = _mm_sub_pd(iz3,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
819             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
820             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
821             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
822
823             rinv00           = gmx_mm_invsqrt_pd(rsq00);
824             rinv10           = gmx_mm_invsqrt_pd(rsq10);
825             rinv20           = gmx_mm_invsqrt_pd(rsq20);
826             rinv30           = gmx_mm_invsqrt_pd(rsq30);
827
828             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
829             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
830             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
831
832             /* Load parameters for j particles */
833             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
834             vdwjidx0A        = 2*vdwtype[jnrA+0];
835             vdwjidx0B        = 2*vdwtype[jnrB+0];
836
837             fjx0             = _mm_setzero_pd();
838             fjy0             = _mm_setzero_pd();
839             fjz0             = _mm_setzero_pd();
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             r00              = _mm_mul_pd(rsq00,rinv00);
846
847             /* Compute parameters for interactions between i and j atoms */
848             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
849                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
850
851             /* Calculate table index by multiplying r with table scale and truncate to integer */
852             rt               = _mm_mul_pd(r00,vftabscale);
853             vfitab           = _mm_cvttpd_epi32(rt);
854 #ifdef __XOP__
855             vfeps            = _mm_frcz_pd(rt);
856 #else
857             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
858 #endif
859             twovfeps         = _mm_add_pd(vfeps,vfeps);
860             vfitab           = _mm_slli_epi32(vfitab,3);
861
862             /* CUBIC SPLINE TABLE DISPERSION */
863             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
864             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
865             GMX_MM_TRANSPOSE2_PD(Y,F);
866             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
867             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
868             GMX_MM_TRANSPOSE2_PD(G,H);
869             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
870             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
871             fvdw6            = _mm_mul_pd(c6_00,FF);
872
873             /* CUBIC SPLINE TABLE REPULSION */
874             vfitab           = _mm_add_epi32(vfitab,ifour);
875             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
876             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
877             GMX_MM_TRANSPOSE2_PD(Y,F);
878             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
879             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
880             GMX_MM_TRANSPOSE2_PD(G,H);
881             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
882             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
883             fvdw12           = _mm_mul_pd(c12_00,FF);
884             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
885
886             fscal            = fvdw;
887
888             /* Update vectorial force */
889             fix0             = _mm_macc_pd(dx00,fscal,fix0);
890             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
891             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
892             
893             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
894             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
895             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             if (gmx_mm_any_lt(rsq10,rcutoff2))
902             {
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq10             = _mm_mul_pd(iq1,jq0);
906
907             /* REACTION-FIELD ELECTROSTATICS */
908             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
909
910             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
911
912             fscal            = felec;
913
914             fscal            = _mm_and_pd(fscal,cutoff_mask);
915
916             /* Update vectorial force */
917             fix1             = _mm_macc_pd(dx10,fscal,fix1);
918             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
919             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
920             
921             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
922             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
923             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
924
925             }
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             if (gmx_mm_any_lt(rsq20,rcutoff2))
932             {
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq20             = _mm_mul_pd(iq2,jq0);
936
937             /* REACTION-FIELD ELECTROSTATICS */
938             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
939
940             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
941
942             fscal            = felec;
943
944             fscal            = _mm_and_pd(fscal,cutoff_mask);
945
946             /* Update vectorial force */
947             fix2             = _mm_macc_pd(dx20,fscal,fix2);
948             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
949             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
950             
951             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
952             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
953             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
954
955             }
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             if (gmx_mm_any_lt(rsq30,rcutoff2))
962             {
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq30             = _mm_mul_pd(iq3,jq0);
966
967             /* REACTION-FIELD ELECTROSTATICS */
968             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
969
970             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
971
972             fscal            = felec;
973
974             fscal            = _mm_and_pd(fscal,cutoff_mask);
975
976             /* Update vectorial force */
977             fix3             = _mm_macc_pd(dx30,fscal,fix3);
978             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
979             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
980             
981             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
982             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
983             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
984
985             }
986
987             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
988
989             /* Inner loop uses 153 flops */
990         }
991
992         if(jidx<j_index_end)
993         {
994
995             jnrA             = jjnr[jidx];
996             j_coord_offsetA  = DIM*jnrA;
997
998             /* load j atom coordinates */
999             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1000                                               &jx0,&jy0,&jz0);
1001
1002             /* Calculate displacement vector */
1003             dx00             = _mm_sub_pd(ix0,jx0);
1004             dy00             = _mm_sub_pd(iy0,jy0);
1005             dz00             = _mm_sub_pd(iz0,jz0);
1006             dx10             = _mm_sub_pd(ix1,jx0);
1007             dy10             = _mm_sub_pd(iy1,jy0);
1008             dz10             = _mm_sub_pd(iz1,jz0);
1009             dx20             = _mm_sub_pd(ix2,jx0);
1010             dy20             = _mm_sub_pd(iy2,jy0);
1011             dz20             = _mm_sub_pd(iz2,jz0);
1012             dx30             = _mm_sub_pd(ix3,jx0);
1013             dy30             = _mm_sub_pd(iy3,jy0);
1014             dz30             = _mm_sub_pd(iz3,jz0);
1015
1016             /* Calculate squared distance and things based on it */
1017             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1018             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1019             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1020             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1021
1022             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1023             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1024             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1025             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1026
1027             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1028             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1029             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1030
1031             /* Load parameters for j particles */
1032             jq0              = _mm_load_sd(charge+jnrA+0);
1033             vdwjidx0A        = 2*vdwtype[jnrA+0];
1034
1035             fjx0             = _mm_setzero_pd();
1036             fjy0             = _mm_setzero_pd();
1037             fjz0             = _mm_setzero_pd();
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r00              = _mm_mul_pd(rsq00,rinv00);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1047
1048             /* Calculate table index by multiplying r with table scale and truncate to integer */
1049             rt               = _mm_mul_pd(r00,vftabscale);
1050             vfitab           = _mm_cvttpd_epi32(rt);
1051 #ifdef __XOP__
1052             vfeps            = _mm_frcz_pd(rt);
1053 #else
1054             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1055 #endif
1056             twovfeps         = _mm_add_pd(vfeps,vfeps);
1057             vfitab           = _mm_slli_epi32(vfitab,3);
1058
1059             /* CUBIC SPLINE TABLE DISPERSION */
1060             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1061             F                = _mm_setzero_pd();
1062             GMX_MM_TRANSPOSE2_PD(Y,F);
1063             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1064             H                = _mm_setzero_pd();
1065             GMX_MM_TRANSPOSE2_PD(G,H);
1066             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1067             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1068             fvdw6            = _mm_mul_pd(c6_00,FF);
1069
1070             /* CUBIC SPLINE TABLE REPULSION */
1071             vfitab           = _mm_add_epi32(vfitab,ifour);
1072             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1073             F                = _mm_setzero_pd();
1074             GMX_MM_TRANSPOSE2_PD(Y,F);
1075             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1076             H                = _mm_setzero_pd();
1077             GMX_MM_TRANSPOSE2_PD(G,H);
1078             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1079             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1080             fvdw12           = _mm_mul_pd(c12_00,FF);
1081             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1082
1083             fscal            = fvdw;
1084
1085             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1086
1087             /* Update vectorial force */
1088             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1089             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1090             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1091             
1092             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1093             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1094             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             if (gmx_mm_any_lt(rsq10,rcutoff2))
1101             {
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             qq10             = _mm_mul_pd(iq1,jq0);
1105
1106             /* REACTION-FIELD ELECTROSTATICS */
1107             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1108
1109             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1110
1111             fscal            = felec;
1112
1113             fscal            = _mm_and_pd(fscal,cutoff_mask);
1114
1115             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1116
1117             /* Update vectorial force */
1118             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1119             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1120             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1121             
1122             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1123             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1124             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1125
1126             }
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             if (gmx_mm_any_lt(rsq20,rcutoff2))
1133             {
1134
1135             /* Compute parameters for interactions between i and j atoms */
1136             qq20             = _mm_mul_pd(iq2,jq0);
1137
1138             /* REACTION-FIELD ELECTROSTATICS */
1139             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1140
1141             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1142
1143             fscal            = felec;
1144
1145             fscal            = _mm_and_pd(fscal,cutoff_mask);
1146
1147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148
1149             /* Update vectorial force */
1150             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1151             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1152             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1153             
1154             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1155             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1156             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1157
1158             }
1159
1160             /**************************
1161              * CALCULATE INTERACTIONS *
1162              **************************/
1163
1164             if (gmx_mm_any_lt(rsq30,rcutoff2))
1165             {
1166
1167             /* Compute parameters for interactions between i and j atoms */
1168             qq30             = _mm_mul_pd(iq3,jq0);
1169
1170             /* REACTION-FIELD ELECTROSTATICS */
1171             felec            = _mm_mul_pd(qq30,_mm_msub_pd(rinv30,rinvsq30,krf2));
1172
1173             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1174
1175             fscal            = felec;
1176
1177             fscal            = _mm_and_pd(fscal,cutoff_mask);
1178
1179             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1180
1181             /* Update vectorial force */
1182             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1183             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1184             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1185             
1186             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1187             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1188             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1189
1190             }
1191
1192             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1193
1194             /* Inner loop uses 153 flops */
1195         }
1196
1197         /* End of innermost loop */
1198
1199         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1200                                               f+i_coord_offset,fshift+i_shift_offset);
1201
1202         /* Increment number of inner iterations */
1203         inneriter                  += j_index_end - j_index_start;
1204
1205         /* Outer loop uses 24 flops */
1206     }
1207
1208     /* Increment number of outer iterations */
1209     outeriter        += nri;
1210
1211     /* Update outer/inner flops */
1212
1213     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*153);
1214 }