made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     krf              = _mm_set1_pd(fr->ic->k_rf);
107     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
108     crf              = _mm_set1_pd(fr->ic->c_rf);
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157         fix1             = _mm_setzero_pd();
158         fiy1             = _mm_setzero_pd();
159         fiz1             = _mm_setzero_pd();
160         fix2             = _mm_setzero_pd();
161         fiy2             = _mm_setzero_pd();
162         fiz2             = _mm_setzero_pd();
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186             dx10             = _mm_sub_pd(ix1,jx0);
187             dy10             = _mm_sub_pd(iy1,jy0);
188             dz10             = _mm_sub_pd(iz1,jz0);
189             dx20             = _mm_sub_pd(ix2,jx0);
190             dy20             = _mm_sub_pd(iy2,jy0);
191             dz20             = _mm_sub_pd(iz2,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
195             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
196             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
197
198             rinv00           = gmx_mm_invsqrt_pd(rsq00);
199             rinv10           = gmx_mm_invsqrt_pd(rsq10);
200             rinv20           = gmx_mm_invsqrt_pd(rsq20);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
204             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             fjx0             = _mm_setzero_pd();
212             fjy0             = _mm_setzero_pd();
213             fjz0             = _mm_setzero_pd();
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm_any_lt(rsq00,rcutoff2))
220             {
221
222             r00              = _mm_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_pd(iq0,jq0);
226             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
228
229             /* Calculate table index by multiplying r with table scale and truncate to integer */
230             rt               = _mm_mul_pd(r00,vftabscale);
231             vfitab           = _mm_cvttpd_epi32(rt);
232 #ifdef __XOP__
233             vfeps            = _mm_frcz_pd(rt);
234 #else
235             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
236 #endif
237             twovfeps         = _mm_add_pd(vfeps,vfeps);
238             vfitab           = _mm_slli_epi32(vfitab,3);
239
240             /* REACTION-FIELD ELECTROSTATICS */
241             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
242             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
243
244             /* CUBIC SPLINE TABLE DISPERSION */
245             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
246             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
247             GMX_MM_TRANSPOSE2_PD(Y,F);
248             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
249             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
250             GMX_MM_TRANSPOSE2_PD(G,H);
251             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
252             VV               = _mm_macc_pd(vfeps,Fp,Y);
253             vvdw6            = _mm_mul_pd(c6_00,VV);
254             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
255             fvdw6            = _mm_mul_pd(c6_00,FF);
256
257             /* CUBIC SPLINE TABLE REPULSION */
258             vfitab           = _mm_add_epi32(vfitab,ifour);
259             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             GMX_MM_TRANSPOSE2_PD(Y,F);
262             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
263             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
264             GMX_MM_TRANSPOSE2_PD(G,H);
265             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
266             VV               = _mm_macc_pd(vfeps,Fp,Y);
267             vvdw12           = _mm_mul_pd(c12_00,VV);
268             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
269             fvdw12           = _mm_mul_pd(c12_00,FF);
270             vvdw             = _mm_add_pd(vvdw12,vvdw6);
271             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
272
273             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_pd(velec,cutoff_mask);
277             velecsum         = _mm_add_pd(velecsum,velec);
278             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
280
281             fscal            = _mm_add_pd(felec,fvdw);
282
283             fscal            = _mm_and_pd(fscal,cutoff_mask);
284
285             /* Update vectorial force */
286             fix0             = _mm_macc_pd(dx00,fscal,fix0);
287             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
288             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
289             
290             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
291             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
292             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
293
294             }
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             if (gmx_mm_any_lt(rsq10,rcutoff2))
301             {
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_pd(iq1,jq0);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
308             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
309
310             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velec            = _mm_and_pd(velec,cutoff_mask);
314             velecsum         = _mm_add_pd(velecsum,velec);
315
316             fscal            = felec;
317
318             fscal            = _mm_and_pd(fscal,cutoff_mask);
319
320             /* Update vectorial force */
321             fix1             = _mm_macc_pd(dx10,fscal,fix1);
322             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
323             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
324             
325             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
326             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
327             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm_any_lt(rsq20,rcutoff2))
336             {
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm_mul_pd(iq2,jq0);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
343             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
344
345             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_and_pd(velec,cutoff_mask);
349             velecsum         = _mm_add_pd(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm_and_pd(fscal,cutoff_mask);
354
355             /* Update vectorial force */
356             fix2             = _mm_macc_pd(dx20,fscal,fix2);
357             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
358             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
359             
360             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
361             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
362             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
363
364             }
365
366             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
367
368             /* Inner loop uses 156 flops */
369         }
370
371         if(jidx<j_index_end)
372         {
373
374             jnrA             = jjnr[jidx];
375             j_coord_offsetA  = DIM*jnrA;
376
377             /* load j atom coordinates */
378             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
379                                               &jx0,&jy0,&jz0);
380
381             /* Calculate displacement vector */
382             dx00             = _mm_sub_pd(ix0,jx0);
383             dy00             = _mm_sub_pd(iy0,jy0);
384             dz00             = _mm_sub_pd(iz0,jz0);
385             dx10             = _mm_sub_pd(ix1,jx0);
386             dy10             = _mm_sub_pd(iy1,jy0);
387             dz10             = _mm_sub_pd(iz1,jz0);
388             dx20             = _mm_sub_pd(ix2,jx0);
389             dy20             = _mm_sub_pd(iy2,jy0);
390             dz20             = _mm_sub_pd(iz2,jz0);
391
392             /* Calculate squared distance and things based on it */
393             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
394             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
395             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
396
397             rinv00           = gmx_mm_invsqrt_pd(rsq00);
398             rinv10           = gmx_mm_invsqrt_pd(rsq10);
399             rinv20           = gmx_mm_invsqrt_pd(rsq20);
400
401             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
402             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
403             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
404
405             /* Load parameters for j particles */
406             jq0              = _mm_load_sd(charge+jnrA+0);
407             vdwjidx0A        = 2*vdwtype[jnrA+0];
408
409             fjx0             = _mm_setzero_pd();
410             fjy0             = _mm_setzero_pd();
411             fjz0             = _mm_setzero_pd();
412
413             /**************************
414              * CALCULATE INTERACTIONS *
415              **************************/
416
417             if (gmx_mm_any_lt(rsq00,rcutoff2))
418             {
419
420             r00              = _mm_mul_pd(rsq00,rinv00);
421
422             /* Compute parameters for interactions between i and j atoms */
423             qq00             = _mm_mul_pd(iq0,jq0);
424             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
425
426             /* Calculate table index by multiplying r with table scale and truncate to integer */
427             rt               = _mm_mul_pd(r00,vftabscale);
428             vfitab           = _mm_cvttpd_epi32(rt);
429 #ifdef __XOP__
430             vfeps            = _mm_frcz_pd(rt);
431 #else
432             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
433 #endif
434             twovfeps         = _mm_add_pd(vfeps,vfeps);
435             vfitab           = _mm_slli_epi32(vfitab,3);
436
437             /* REACTION-FIELD ELECTROSTATICS */
438             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
439             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
440
441             /* CUBIC SPLINE TABLE DISPERSION */
442             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
443             F                = _mm_setzero_pd();
444             GMX_MM_TRANSPOSE2_PD(Y,F);
445             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
446             H                = _mm_setzero_pd();
447             GMX_MM_TRANSPOSE2_PD(G,H);
448             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
449             VV               = _mm_macc_pd(vfeps,Fp,Y);
450             vvdw6            = _mm_mul_pd(c6_00,VV);
451             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
452             fvdw6            = _mm_mul_pd(c6_00,FF);
453
454             /* CUBIC SPLINE TABLE REPULSION */
455             vfitab           = _mm_add_epi32(vfitab,ifour);
456             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
463             VV               = _mm_macc_pd(vfeps,Fp,Y);
464             vvdw12           = _mm_mul_pd(c12_00,VV);
465             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
466             fvdw12           = _mm_mul_pd(c12_00,FF);
467             vvdw             = _mm_add_pd(vvdw12,vvdw6);
468             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
469
470             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm_and_pd(velec,cutoff_mask);
474             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
475             velecsum         = _mm_add_pd(velecsum,velec);
476             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
477             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
478             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
479
480             fscal            = _mm_add_pd(felec,fvdw);
481
482             fscal            = _mm_and_pd(fscal,cutoff_mask);
483
484             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
485
486             /* Update vectorial force */
487             fix0             = _mm_macc_pd(dx00,fscal,fix0);
488             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
489             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
490             
491             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
492             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
493             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
494
495             }
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             if (gmx_mm_any_lt(rsq10,rcutoff2))
502             {
503
504             /* Compute parameters for interactions between i and j atoms */
505             qq10             = _mm_mul_pd(iq1,jq0);
506
507             /* REACTION-FIELD ELECTROSTATICS */
508             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_macc_pd(krf,rsq10,rinv10),crf));
509             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
510
511             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm_and_pd(velec,cutoff_mask);
515             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
516             velecsum         = _mm_add_pd(velecsum,velec);
517
518             fscal            = felec;
519
520             fscal            = _mm_and_pd(fscal,cutoff_mask);
521
522             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
523
524             /* Update vectorial force */
525             fix1             = _mm_macc_pd(dx10,fscal,fix1);
526             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
527             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
528             
529             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
530             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
531             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
532
533             }
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             if (gmx_mm_any_lt(rsq20,rcutoff2))
540             {
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq20             = _mm_mul_pd(iq2,jq0);
544
545             /* REACTION-FIELD ELECTROSTATICS */
546             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_macc_pd(krf,rsq20,rinv20),crf));
547             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
548
549             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_and_pd(velec,cutoff_mask);
553             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
554             velecsum         = _mm_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm_and_pd(fscal,cutoff_mask);
559
560             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
561
562             /* Update vectorial force */
563             fix2             = _mm_macc_pd(dx20,fscal,fix2);
564             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
565             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
566             
567             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
568             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
569             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
570
571             }
572
573             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
574
575             /* Inner loop uses 156 flops */
576         }
577
578         /* End of innermost loop */
579
580         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
581                                               f+i_coord_offset,fshift+i_shift_offset);
582
583         ggid                        = gid[iidx];
584         /* Update potential energies */
585         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
586         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
587
588         /* Increment number of inner iterations */
589         inneriter                  += j_index_end - j_index_start;
590
591         /* Outer loop uses 20 flops */
592     }
593
594     /* Increment number of outer iterations */
595     outeriter        += nri;
596
597     /* Update outer/inner flops */
598
599     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*156);
600 }
601 /*
602  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_double
603  * Electrostatics interaction: ReactionField
604  * VdW interaction:            CubicSplineTable
605  * Geometry:                   Water3-Particle
606  * Calculate force/pot:        Force
607  */
608 void
609 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_double
610                     (t_nblist * gmx_restrict                nlist,
611                      rvec * gmx_restrict                    xx,
612                      rvec * gmx_restrict                    ff,
613                      t_forcerec * gmx_restrict              fr,
614                      t_mdatoms * gmx_restrict               mdatoms,
615                      nb_kernel_data_t * gmx_restrict        kernel_data,
616                      t_nrnb * gmx_restrict                  nrnb)
617 {
618     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
619      * just 0 for non-waters.
620      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
621      * jnr indices corresponding to data put in the four positions in the SIMD register.
622      */
623     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
624     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
625     int              jnrA,jnrB;
626     int              j_coord_offsetA,j_coord_offsetB;
627     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
628     real             rcutoff_scalar;
629     real             *shiftvec,*fshift,*x,*f;
630     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
631     int              vdwioffset0;
632     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
633     int              vdwioffset1;
634     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
635     int              vdwioffset2;
636     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
637     int              vdwjidx0A,vdwjidx0B;
638     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
639     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
640     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
641     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
642     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
643     real             *charge;
644     int              nvdwtype;
645     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
646     int              *vdwtype;
647     real             *vdwparam;
648     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
649     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
650     __m128i          vfitab;
651     __m128i          ifour       = _mm_set1_epi32(4);
652     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
653     real             *vftab;
654     __m128d          dummy_mask,cutoff_mask;
655     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
656     __m128d          one     = _mm_set1_pd(1.0);
657     __m128d          two     = _mm_set1_pd(2.0);
658     x                = xx[0];
659     f                = ff[0];
660
661     nri              = nlist->nri;
662     iinr             = nlist->iinr;
663     jindex           = nlist->jindex;
664     jjnr             = nlist->jjnr;
665     shiftidx         = nlist->shift;
666     gid              = nlist->gid;
667     shiftvec         = fr->shift_vec[0];
668     fshift           = fr->fshift[0];
669     facel            = _mm_set1_pd(fr->epsfac);
670     charge           = mdatoms->chargeA;
671     krf              = _mm_set1_pd(fr->ic->k_rf);
672     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
673     crf              = _mm_set1_pd(fr->ic->c_rf);
674     nvdwtype         = fr->ntype;
675     vdwparam         = fr->nbfp;
676     vdwtype          = mdatoms->typeA;
677
678     vftab            = kernel_data->table_vdw->data;
679     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
680
681     /* Setup water-specific parameters */
682     inr              = nlist->iinr[0];
683     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
684     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
685     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
686     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
687
688     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
689     rcutoff_scalar   = fr->rcoulomb;
690     rcutoff          = _mm_set1_pd(rcutoff_scalar);
691     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
692
693     /* Avoid stupid compiler warnings */
694     jnrA = jnrB = 0;
695     j_coord_offsetA = 0;
696     j_coord_offsetB = 0;
697
698     outeriter        = 0;
699     inneriter        = 0;
700
701     /* Start outer loop over neighborlists */
702     for(iidx=0; iidx<nri; iidx++)
703     {
704         /* Load shift vector for this list */
705         i_shift_offset   = DIM*shiftidx[iidx];
706
707         /* Load limits for loop over neighbors */
708         j_index_start    = jindex[iidx];
709         j_index_end      = jindex[iidx+1];
710
711         /* Get outer coordinate index */
712         inr              = iinr[iidx];
713         i_coord_offset   = DIM*inr;
714
715         /* Load i particle coords and add shift vector */
716         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
717                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
718
719         fix0             = _mm_setzero_pd();
720         fiy0             = _mm_setzero_pd();
721         fiz0             = _mm_setzero_pd();
722         fix1             = _mm_setzero_pd();
723         fiy1             = _mm_setzero_pd();
724         fiz1             = _mm_setzero_pd();
725         fix2             = _mm_setzero_pd();
726         fiy2             = _mm_setzero_pd();
727         fiz2             = _mm_setzero_pd();
728
729         /* Start inner kernel loop */
730         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
731         {
732
733             /* Get j neighbor index, and coordinate index */
734             jnrA             = jjnr[jidx];
735             jnrB             = jjnr[jidx+1];
736             j_coord_offsetA  = DIM*jnrA;
737             j_coord_offsetB  = DIM*jnrB;
738
739             /* load j atom coordinates */
740             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
741                                               &jx0,&jy0,&jz0);
742
743             /* Calculate displacement vector */
744             dx00             = _mm_sub_pd(ix0,jx0);
745             dy00             = _mm_sub_pd(iy0,jy0);
746             dz00             = _mm_sub_pd(iz0,jz0);
747             dx10             = _mm_sub_pd(ix1,jx0);
748             dy10             = _mm_sub_pd(iy1,jy0);
749             dz10             = _mm_sub_pd(iz1,jz0);
750             dx20             = _mm_sub_pd(ix2,jx0);
751             dy20             = _mm_sub_pd(iy2,jy0);
752             dz20             = _mm_sub_pd(iz2,jz0);
753
754             /* Calculate squared distance and things based on it */
755             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
756             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
757             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
758
759             rinv00           = gmx_mm_invsqrt_pd(rsq00);
760             rinv10           = gmx_mm_invsqrt_pd(rsq10);
761             rinv20           = gmx_mm_invsqrt_pd(rsq20);
762
763             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
764             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
765             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
766
767             /* Load parameters for j particles */
768             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
769             vdwjidx0A        = 2*vdwtype[jnrA+0];
770             vdwjidx0B        = 2*vdwtype[jnrB+0];
771
772             fjx0             = _mm_setzero_pd();
773             fjy0             = _mm_setzero_pd();
774             fjz0             = _mm_setzero_pd();
775
776             /**************************
777              * CALCULATE INTERACTIONS *
778              **************************/
779
780             if (gmx_mm_any_lt(rsq00,rcutoff2))
781             {
782
783             r00              = _mm_mul_pd(rsq00,rinv00);
784
785             /* Compute parameters for interactions between i and j atoms */
786             qq00             = _mm_mul_pd(iq0,jq0);
787             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
788                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
789
790             /* Calculate table index by multiplying r with table scale and truncate to integer */
791             rt               = _mm_mul_pd(r00,vftabscale);
792             vfitab           = _mm_cvttpd_epi32(rt);
793 #ifdef __XOP__
794             vfeps            = _mm_frcz_pd(rt);
795 #else
796             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
797 #endif
798             twovfeps         = _mm_add_pd(vfeps,vfeps);
799             vfitab           = _mm_slli_epi32(vfitab,3);
800
801             /* REACTION-FIELD ELECTROSTATICS */
802             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
803
804             /* CUBIC SPLINE TABLE DISPERSION */
805             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
806             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
807             GMX_MM_TRANSPOSE2_PD(Y,F);
808             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
809             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
810             GMX_MM_TRANSPOSE2_PD(G,H);
811             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
812             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
813             fvdw6            = _mm_mul_pd(c6_00,FF);
814
815             /* CUBIC SPLINE TABLE REPULSION */
816             vfitab           = _mm_add_epi32(vfitab,ifour);
817             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
818             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
819             GMX_MM_TRANSPOSE2_PD(Y,F);
820             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
821             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
822             GMX_MM_TRANSPOSE2_PD(G,H);
823             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
824             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
825             fvdw12           = _mm_mul_pd(c12_00,FF);
826             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
827
828             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
829
830             fscal            = _mm_add_pd(felec,fvdw);
831
832             fscal            = _mm_and_pd(fscal,cutoff_mask);
833
834             /* Update vectorial force */
835             fix0             = _mm_macc_pd(dx00,fscal,fix0);
836             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
837             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
838             
839             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
840             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
841             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
842
843             }
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             if (gmx_mm_any_lt(rsq10,rcutoff2))
850             {
851
852             /* Compute parameters for interactions between i and j atoms */
853             qq10             = _mm_mul_pd(iq1,jq0);
854
855             /* REACTION-FIELD ELECTROSTATICS */
856             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
857
858             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
859
860             fscal            = felec;
861
862             fscal            = _mm_and_pd(fscal,cutoff_mask);
863
864             /* Update vectorial force */
865             fix1             = _mm_macc_pd(dx10,fscal,fix1);
866             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
867             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
868             
869             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
870             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
871             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
872
873             }
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             if (gmx_mm_any_lt(rsq20,rcutoff2))
880             {
881
882             /* Compute parameters for interactions between i and j atoms */
883             qq20             = _mm_mul_pd(iq2,jq0);
884
885             /* REACTION-FIELD ELECTROSTATICS */
886             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
887
888             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
889
890             fscal            = felec;
891
892             fscal            = _mm_and_pd(fscal,cutoff_mask);
893
894             /* Update vectorial force */
895             fix2             = _mm_macc_pd(dx20,fscal,fix2);
896             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
897             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
898             
899             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
900             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
901             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
902
903             }
904
905             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
906
907             /* Inner loop uses 129 flops */
908         }
909
910         if(jidx<j_index_end)
911         {
912
913             jnrA             = jjnr[jidx];
914             j_coord_offsetA  = DIM*jnrA;
915
916             /* load j atom coordinates */
917             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
918                                               &jx0,&jy0,&jz0);
919
920             /* Calculate displacement vector */
921             dx00             = _mm_sub_pd(ix0,jx0);
922             dy00             = _mm_sub_pd(iy0,jy0);
923             dz00             = _mm_sub_pd(iz0,jz0);
924             dx10             = _mm_sub_pd(ix1,jx0);
925             dy10             = _mm_sub_pd(iy1,jy0);
926             dz10             = _mm_sub_pd(iz1,jz0);
927             dx20             = _mm_sub_pd(ix2,jx0);
928             dy20             = _mm_sub_pd(iy2,jy0);
929             dz20             = _mm_sub_pd(iz2,jz0);
930
931             /* Calculate squared distance and things based on it */
932             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
933             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
934             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
935
936             rinv00           = gmx_mm_invsqrt_pd(rsq00);
937             rinv10           = gmx_mm_invsqrt_pd(rsq10);
938             rinv20           = gmx_mm_invsqrt_pd(rsq20);
939
940             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
941             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
942             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
943
944             /* Load parameters for j particles */
945             jq0              = _mm_load_sd(charge+jnrA+0);
946             vdwjidx0A        = 2*vdwtype[jnrA+0];
947
948             fjx0             = _mm_setzero_pd();
949             fjy0             = _mm_setzero_pd();
950             fjz0             = _mm_setzero_pd();
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm_any_lt(rsq00,rcutoff2))
957             {
958
959             r00              = _mm_mul_pd(rsq00,rinv00);
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq00             = _mm_mul_pd(iq0,jq0);
963             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
964
965             /* Calculate table index by multiplying r with table scale and truncate to integer */
966             rt               = _mm_mul_pd(r00,vftabscale);
967             vfitab           = _mm_cvttpd_epi32(rt);
968 #ifdef __XOP__
969             vfeps            = _mm_frcz_pd(rt);
970 #else
971             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
972 #endif
973             twovfeps         = _mm_add_pd(vfeps,vfeps);
974             vfitab           = _mm_slli_epi32(vfitab,3);
975
976             /* REACTION-FIELD ELECTROSTATICS */
977             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
978
979             /* CUBIC SPLINE TABLE DISPERSION */
980             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
981             F                = _mm_setzero_pd();
982             GMX_MM_TRANSPOSE2_PD(Y,F);
983             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
984             H                = _mm_setzero_pd();
985             GMX_MM_TRANSPOSE2_PD(G,H);
986             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
987             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
988             fvdw6            = _mm_mul_pd(c6_00,FF);
989
990             /* CUBIC SPLINE TABLE REPULSION */
991             vfitab           = _mm_add_epi32(vfitab,ifour);
992             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
993             F                = _mm_setzero_pd();
994             GMX_MM_TRANSPOSE2_PD(Y,F);
995             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
996             H                = _mm_setzero_pd();
997             GMX_MM_TRANSPOSE2_PD(G,H);
998             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
999             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1000             fvdw12           = _mm_mul_pd(c12_00,FF);
1001             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1002
1003             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1004
1005             fscal            = _mm_add_pd(felec,fvdw);
1006
1007             fscal            = _mm_and_pd(fscal,cutoff_mask);
1008
1009             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1010
1011             /* Update vectorial force */
1012             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1013             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1014             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1015             
1016             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1017             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1018             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1019
1020             }
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             if (gmx_mm_any_lt(rsq10,rcutoff2))
1027             {
1028
1029             /* Compute parameters for interactions between i and j atoms */
1030             qq10             = _mm_mul_pd(iq1,jq0);
1031
1032             /* REACTION-FIELD ELECTROSTATICS */
1033             felec            = _mm_mul_pd(qq10,_mm_msub_pd(rinv10,rinvsq10,krf2));
1034
1035             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_and_pd(fscal,cutoff_mask);
1040
1041             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1042
1043             /* Update vectorial force */
1044             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1045             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1046             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1047             
1048             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1049             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1050             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1051
1052             }
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (gmx_mm_any_lt(rsq20,rcutoff2))
1059             {
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq20             = _mm_mul_pd(iq2,jq0);
1063
1064             /* REACTION-FIELD ELECTROSTATICS */
1065             felec            = _mm_mul_pd(qq20,_mm_msub_pd(rinv20,rinvsq20,krf2));
1066
1067             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1068
1069             fscal            = felec;
1070
1071             fscal            = _mm_and_pd(fscal,cutoff_mask);
1072
1073             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1074
1075             /* Update vectorial force */
1076             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1077             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1078             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1079             
1080             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1081             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1082             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1083
1084             }
1085
1086             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1087
1088             /* Inner loop uses 129 flops */
1089         }
1090
1091         /* End of innermost loop */
1092
1093         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1094                                               f+i_coord_offset,fshift+i_shift_offset);
1095
1096         /* Increment number of inner iterations */
1097         inneriter                  += j_index_end - j_index_start;
1098
1099         /* Outer loop uses 18 flops */
1100     }
1101
1102     /* Increment number of outer iterations */
1103     outeriter        += nri;
1104
1105     /* Update outer/inner flops */
1106
1107     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*129);
1108 }