ba37ec536c9d32da3a053053a0afe0c03bec96d0
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     krf              = _mm_set1_pd(fr->ic->k_rf);
101     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
102     crf              = _mm_set1_pd(fr->ic->c_rf);
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->rcoulomb;
112     rcutoff          = _mm_set1_pd(rcutoff_scalar);
113     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_pd();
141         fiy0             = _mm_setzero_pd();
142         fiz0             = _mm_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vvdwsum          = _mm_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_pd(ix0,jx0);
168             dy00             = _mm_sub_pd(iy0,jy0);
169             dz00             = _mm_sub_pd(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_pd(rsq00);
175
176             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
177
178             /* Load parameters for j particles */
179             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
180             vdwjidx0A        = 2*vdwtype[jnrA+0];
181             vdwjidx0B        = 2*vdwtype[jnrB+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             if (gmx_mm_any_lt(rsq00,rcutoff2))
188             {
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* Calculate table index by multiplying r with table scale and truncate to integer */
198             rt               = _mm_mul_pd(r00,vftabscale);
199             vfitab           = _mm_cvttpd_epi32(rt);
200 #ifdef __XOP__
201             vfeps            = _mm_frcz_pd(rt);
202 #else
203             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
204 #endif
205             twovfeps         = _mm_add_pd(vfeps,vfeps);
206             vfitab           = _mm_slli_epi32(vfitab,3);
207
208             /* REACTION-FIELD ELECTROSTATICS */
209             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
210             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
211
212             /* CUBIC SPLINE TABLE DISPERSION */
213             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
214             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
215             GMX_MM_TRANSPOSE2_PD(Y,F);
216             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
217             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
218             GMX_MM_TRANSPOSE2_PD(G,H);
219             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
220             VV               = _mm_macc_pd(vfeps,Fp,Y);
221             vvdw6            = _mm_mul_pd(c6_00,VV);
222             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
223             fvdw6            = _mm_mul_pd(c6_00,FF);
224
225             /* CUBIC SPLINE TABLE REPULSION */
226             vfitab           = _mm_add_epi32(vfitab,ifour);
227             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
228             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
229             GMX_MM_TRANSPOSE2_PD(Y,F);
230             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
231             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
232             GMX_MM_TRANSPOSE2_PD(G,H);
233             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
234             VV               = _mm_macc_pd(vfeps,Fp,Y);
235             vvdw12           = _mm_mul_pd(c12_00,VV);
236             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
237             fvdw12           = _mm_mul_pd(c12_00,FF);
238             vvdw             = _mm_add_pd(vvdw12,vvdw6);
239             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
240
241             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_pd(velec,cutoff_mask);
245             velecsum         = _mm_add_pd(velecsum,velec);
246             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
247             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
248
249             fscal            = _mm_add_pd(felec,fvdw);
250
251             fscal            = _mm_and_pd(fscal,cutoff_mask);
252
253             /* Update vectorial force */
254             fix0             = _mm_macc_pd(dx00,fscal,fix0);
255             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
256             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
257             
258             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
259                                                    _mm_mul_pd(dx00,fscal),
260                                                    _mm_mul_pd(dy00,fscal),
261                                                    _mm_mul_pd(dz00,fscal));
262
263             }
264
265             /* Inner loop uses 75 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_pd(ix0,jx0);
280             dy00             = _mm_sub_pd(iy0,jy0);
281             dz00             = _mm_sub_pd(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
285
286             rinv00           = gmx_mm_invsqrt_pd(rsq00);
287
288             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _mm_load_sd(charge+jnrA+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq00,rcutoff2))
299             {
300
301             r00              = _mm_mul_pd(rsq00,rinv00);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm_mul_pd(iq0,jq0);
305             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
306
307             /* Calculate table index by multiplying r with table scale and truncate to integer */
308             rt               = _mm_mul_pd(r00,vftabscale);
309             vfitab           = _mm_cvttpd_epi32(rt);
310 #ifdef __XOP__
311             vfeps            = _mm_frcz_pd(rt);
312 #else
313             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
314 #endif
315             twovfeps         = _mm_add_pd(vfeps,vfeps);
316             vfitab           = _mm_slli_epi32(vfitab,3);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
320             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
321
322             /* CUBIC SPLINE TABLE DISPERSION */
323             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
324             F                = _mm_setzero_pd();
325             GMX_MM_TRANSPOSE2_PD(Y,F);
326             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
327             H                = _mm_setzero_pd();
328             GMX_MM_TRANSPOSE2_PD(G,H);
329             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
330             VV               = _mm_macc_pd(vfeps,Fp,Y);
331             vvdw6            = _mm_mul_pd(c6_00,VV);
332             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
333             fvdw6            = _mm_mul_pd(c6_00,FF);
334
335             /* CUBIC SPLINE TABLE REPULSION */
336             vfitab           = _mm_add_epi32(vfitab,ifour);
337             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
338             F                = _mm_setzero_pd();
339             GMX_MM_TRANSPOSE2_PD(Y,F);
340             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
341             H                = _mm_setzero_pd();
342             GMX_MM_TRANSPOSE2_PD(G,H);
343             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
344             VV               = _mm_macc_pd(vfeps,Fp,Y);
345             vvdw12           = _mm_mul_pd(c12_00,VV);
346             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
347             fvdw12           = _mm_mul_pd(c12_00,FF);
348             vvdw             = _mm_add_pd(vvdw12,vvdw6);
349             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
350
351             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_and_pd(velec,cutoff_mask);
355             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
356             velecsum         = _mm_add_pd(velecsum,velec);
357             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
358             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
359             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
360
361             fscal            = _mm_add_pd(felec,fvdw);
362
363             fscal            = _mm_and_pd(fscal,cutoff_mask);
364
365             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
366
367             /* Update vectorial force */
368             fix0             = _mm_macc_pd(dx00,fscal,fix0);
369             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
370             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
371             
372             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
373                                                    _mm_mul_pd(dx00,fscal),
374                                                    _mm_mul_pd(dy00,fscal),
375                                                    _mm_mul_pd(dz00,fscal));
376
377             }
378
379             /* Inner loop uses 75 flops */
380         }
381
382         /* End of innermost loop */
383
384         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
385                                               f+i_coord_offset,fshift+i_shift_offset);
386
387         ggid                        = gid[iidx];
388         /* Update potential energies */
389         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
390         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
391
392         /* Increment number of inner iterations */
393         inneriter                  += j_index_end - j_index_start;
394
395         /* Outer loop uses 9 flops */
396     }
397
398     /* Increment number of outer iterations */
399     outeriter        += nri;
400
401     /* Update outer/inner flops */
402
403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
404 }
405 /*
406  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
407  * Electrostatics interaction: ReactionField
408  * VdW interaction:            CubicSplineTable
409  * Geometry:                   Particle-Particle
410  * Calculate force/pot:        Force
411  */
412 void
413 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
414                     (t_nblist * gmx_restrict                nlist,
415                      rvec * gmx_restrict                    xx,
416                      rvec * gmx_restrict                    ff,
417                      t_forcerec * gmx_restrict              fr,
418                      t_mdatoms * gmx_restrict               mdatoms,
419                      nb_kernel_data_t * gmx_restrict        kernel_data,
420                      t_nrnb * gmx_restrict                  nrnb)
421 {
422     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
423      * just 0 for non-waters.
424      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
425      * jnr indices corresponding to data put in the four positions in the SIMD register.
426      */
427     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
428     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
429     int              jnrA,jnrB;
430     int              j_coord_offsetA,j_coord_offsetB;
431     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
432     real             rcutoff_scalar;
433     real             *shiftvec,*fshift,*x,*f;
434     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
435     int              vdwioffset0;
436     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
437     int              vdwjidx0A,vdwjidx0B;
438     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
439     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
440     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
441     real             *charge;
442     int              nvdwtype;
443     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
444     int              *vdwtype;
445     real             *vdwparam;
446     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
447     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
448     __m128i          vfitab;
449     __m128i          ifour       = _mm_set1_epi32(4);
450     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
451     real             *vftab;
452     __m128d          dummy_mask,cutoff_mask;
453     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
454     __m128d          one     = _mm_set1_pd(1.0);
455     __m128d          two     = _mm_set1_pd(2.0);
456     x                = xx[0];
457     f                = ff[0];
458
459     nri              = nlist->nri;
460     iinr             = nlist->iinr;
461     jindex           = nlist->jindex;
462     jjnr             = nlist->jjnr;
463     shiftidx         = nlist->shift;
464     gid              = nlist->gid;
465     shiftvec         = fr->shift_vec[0];
466     fshift           = fr->fshift[0];
467     facel            = _mm_set1_pd(fr->epsfac);
468     charge           = mdatoms->chargeA;
469     krf              = _mm_set1_pd(fr->ic->k_rf);
470     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
471     crf              = _mm_set1_pd(fr->ic->c_rf);
472     nvdwtype         = fr->ntype;
473     vdwparam         = fr->nbfp;
474     vdwtype          = mdatoms->typeA;
475
476     vftab            = kernel_data->table_vdw->data;
477     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
478
479     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
480     rcutoff_scalar   = fr->rcoulomb;
481     rcutoff          = _mm_set1_pd(rcutoff_scalar);
482     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
483
484     /* Avoid stupid compiler warnings */
485     jnrA = jnrB = 0;
486     j_coord_offsetA = 0;
487     j_coord_offsetB = 0;
488
489     outeriter        = 0;
490     inneriter        = 0;
491
492     /* Start outer loop over neighborlists */
493     for(iidx=0; iidx<nri; iidx++)
494     {
495         /* Load shift vector for this list */
496         i_shift_offset   = DIM*shiftidx[iidx];
497
498         /* Load limits for loop over neighbors */
499         j_index_start    = jindex[iidx];
500         j_index_end      = jindex[iidx+1];
501
502         /* Get outer coordinate index */
503         inr              = iinr[iidx];
504         i_coord_offset   = DIM*inr;
505
506         /* Load i particle coords and add shift vector */
507         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
508
509         fix0             = _mm_setzero_pd();
510         fiy0             = _mm_setzero_pd();
511         fiz0             = _mm_setzero_pd();
512
513         /* Load parameters for i particles */
514         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
515         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
516
517         /* Start inner kernel loop */
518         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
519         {
520
521             /* Get j neighbor index, and coordinate index */
522             jnrA             = jjnr[jidx];
523             jnrB             = jjnr[jidx+1];
524             j_coord_offsetA  = DIM*jnrA;
525             j_coord_offsetB  = DIM*jnrB;
526
527             /* load j atom coordinates */
528             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
529                                               &jx0,&jy0,&jz0);
530
531             /* Calculate displacement vector */
532             dx00             = _mm_sub_pd(ix0,jx0);
533             dy00             = _mm_sub_pd(iy0,jy0);
534             dz00             = _mm_sub_pd(iz0,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
538
539             rinv00           = gmx_mm_invsqrt_pd(rsq00);
540
541             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
542
543             /* Load parameters for j particles */
544             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
545             vdwjidx0A        = 2*vdwtype[jnrA+0];
546             vdwjidx0B        = 2*vdwtype[jnrB+0];
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm_any_lt(rsq00,rcutoff2))
553             {
554
555             r00              = _mm_mul_pd(rsq00,rinv00);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq00             = _mm_mul_pd(iq0,jq0);
559             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
560                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
561
562             /* Calculate table index by multiplying r with table scale and truncate to integer */
563             rt               = _mm_mul_pd(r00,vftabscale);
564             vfitab           = _mm_cvttpd_epi32(rt);
565 #ifdef __XOP__
566             vfeps            = _mm_frcz_pd(rt);
567 #else
568             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
569 #endif
570             twovfeps         = _mm_add_pd(vfeps,vfeps);
571             vfitab           = _mm_slli_epi32(vfitab,3);
572
573             /* REACTION-FIELD ELECTROSTATICS */
574             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
575
576             /* CUBIC SPLINE TABLE DISPERSION */
577             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
578             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
579             GMX_MM_TRANSPOSE2_PD(Y,F);
580             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
581             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
582             GMX_MM_TRANSPOSE2_PD(G,H);
583             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
584             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
585             fvdw6            = _mm_mul_pd(c6_00,FF);
586
587             /* CUBIC SPLINE TABLE REPULSION */
588             vfitab           = _mm_add_epi32(vfitab,ifour);
589             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
590             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
591             GMX_MM_TRANSPOSE2_PD(Y,F);
592             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
593             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
594             GMX_MM_TRANSPOSE2_PD(G,H);
595             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
596             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
597             fvdw12           = _mm_mul_pd(c12_00,FF);
598             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
599
600             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
601
602             fscal            = _mm_add_pd(felec,fvdw);
603
604             fscal            = _mm_and_pd(fscal,cutoff_mask);
605
606             /* Update vectorial force */
607             fix0             = _mm_macc_pd(dx00,fscal,fix0);
608             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
609             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
610             
611             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
612                                                    _mm_mul_pd(dx00,fscal),
613                                                    _mm_mul_pd(dy00,fscal),
614                                                    _mm_mul_pd(dz00,fscal));
615
616             }
617
618             /* Inner loop uses 60 flops */
619         }
620
621         if(jidx<j_index_end)
622         {
623
624             jnrA             = jjnr[jidx];
625             j_coord_offsetA  = DIM*jnrA;
626
627             /* load j atom coordinates */
628             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
629                                               &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm_sub_pd(ix0,jx0);
633             dy00             = _mm_sub_pd(iy0,jy0);
634             dz00             = _mm_sub_pd(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
638
639             rinv00           = gmx_mm_invsqrt_pd(rsq00);
640
641             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = _mm_load_sd(charge+jnrA+0);
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm_any_lt(rsq00,rcutoff2))
652             {
653
654             r00              = _mm_mul_pd(rsq00,rinv00);
655
656             /* Compute parameters for interactions between i and j atoms */
657             qq00             = _mm_mul_pd(iq0,jq0);
658             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
659
660             /* Calculate table index by multiplying r with table scale and truncate to integer */
661             rt               = _mm_mul_pd(r00,vftabscale);
662             vfitab           = _mm_cvttpd_epi32(rt);
663 #ifdef __XOP__
664             vfeps            = _mm_frcz_pd(rt);
665 #else
666             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
667 #endif
668             twovfeps         = _mm_add_pd(vfeps,vfeps);
669             vfitab           = _mm_slli_epi32(vfitab,3);
670
671             /* REACTION-FIELD ELECTROSTATICS */
672             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
673
674             /* CUBIC SPLINE TABLE DISPERSION */
675             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
676             F                = _mm_setzero_pd();
677             GMX_MM_TRANSPOSE2_PD(Y,F);
678             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
679             H                = _mm_setzero_pd();
680             GMX_MM_TRANSPOSE2_PD(G,H);
681             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
682             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
683             fvdw6            = _mm_mul_pd(c6_00,FF);
684
685             /* CUBIC SPLINE TABLE REPULSION */
686             vfitab           = _mm_add_epi32(vfitab,ifour);
687             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
688             F                = _mm_setzero_pd();
689             GMX_MM_TRANSPOSE2_PD(Y,F);
690             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
691             H                = _mm_setzero_pd();
692             GMX_MM_TRANSPOSE2_PD(G,H);
693             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
694             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
695             fvdw12           = _mm_mul_pd(c12_00,FF);
696             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
697
698             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
699
700             fscal            = _mm_add_pd(felec,fvdw);
701
702             fscal            = _mm_and_pd(fscal,cutoff_mask);
703
704             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
705
706             /* Update vectorial force */
707             fix0             = _mm_macc_pd(dx00,fscal,fix0);
708             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
709             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
710             
711             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
712                                                    _mm_mul_pd(dx00,fscal),
713                                                    _mm_mul_pd(dy00,fscal),
714                                                    _mm_mul_pd(dz00,fscal));
715
716             }
717
718             /* Inner loop uses 60 flops */
719         }
720
721         /* End of innermost loop */
722
723         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
724                                               f+i_coord_offset,fshift+i_shift_offset);
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 7 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
738 }