made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
76     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
77     __m128d          dummy_mask,cutoff_mask;
78     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
79     __m128d          one     = _mm_set1_pd(1.0);
80     __m128d          two     = _mm_set1_pd(2.0);
81     x                = xx[0];
82     f                = ff[0];
83
84     nri              = nlist->nri;
85     iinr             = nlist->iinr;
86     jindex           = nlist->jindex;
87     jjnr             = nlist->jjnr;
88     shiftidx         = nlist->shift;
89     gid              = nlist->gid;
90     shiftvec         = fr->shift_vec[0];
91     fshift           = fr->fshift[0];
92     nvdwtype         = fr->ntype;
93     vdwparam         = fr->nbfp;
94     vdwtype          = mdatoms->typeA;
95
96     rcutoff_scalar   = fr->rvdw;
97     rcutoff          = _mm_set1_pd(rcutoff_scalar);
98     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
99
100     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
101     rvdw             = _mm_set1_pd(fr->rvdw);
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     /* Start outer loop over neighborlists */
112     for(iidx=0; iidx<nri; iidx++)
113     {
114         /* Load shift vector for this list */
115         i_shift_offset   = DIM*shiftidx[iidx];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
127
128         fix0             = _mm_setzero_pd();
129         fiy0             = _mm_setzero_pd();
130         fiz0             = _mm_setzero_pd();
131
132         /* Load parameters for i particles */
133         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135         /* Reset potential sums */
136         vvdwsum          = _mm_setzero_pd();
137
138         /* Start inner kernel loop */
139         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
140         {
141
142             /* Get j neighbor index, and coordinate index */
143             jnrA             = jjnr[jidx];
144             jnrB             = jjnr[jidx+1];
145             j_coord_offsetA  = DIM*jnrA;
146             j_coord_offsetB  = DIM*jnrB;
147
148             /* load j atom coordinates */
149             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
150                                               &jx0,&jy0,&jz0);
151
152             /* Calculate displacement vector */
153             dx00             = _mm_sub_pd(ix0,jx0);
154             dy00             = _mm_sub_pd(iy0,jy0);
155             dz00             = _mm_sub_pd(iz0,jz0);
156
157             /* Calculate squared distance and things based on it */
158             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
159
160             rinvsq00         = gmx_mm_inv_pd(rsq00);
161
162             /* Load parameters for j particles */
163             vdwjidx0A        = 2*vdwtype[jnrA+0];
164             vdwjidx0B        = 2*vdwtype[jnrB+0];
165
166             /**************************
167              * CALCULATE INTERACTIONS *
168              **************************/
169
170             if (gmx_mm_any_lt(rsq00,rcutoff2))
171             {
172
173             /* Compute parameters for interactions between i and j atoms */
174             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
175                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
176
177             /* LENNARD-JONES DISPERSION/REPULSION */
178
179             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
180             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
181             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
182             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
183                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
184             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
185
186             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
187
188             /* Update potential sum for this i atom from the interaction with this j atom. */
189             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
190             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
191
192             fscal            = fvdw;
193
194             fscal            = _mm_and_pd(fscal,cutoff_mask);
195
196             /* Update vectorial force */
197             fix0             = _mm_macc_pd(dx00,fscal,fix0);
198             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
199             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
200             
201             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
202                                                    _mm_mul_pd(dx00,fscal),
203                                                    _mm_mul_pd(dy00,fscal),
204                                                    _mm_mul_pd(dz00,fscal));
205
206             }
207
208             /* Inner loop uses 44 flops */
209         }
210
211         if(jidx<j_index_end)
212         {
213
214             jnrA             = jjnr[jidx];
215             j_coord_offsetA  = DIM*jnrA;
216
217             /* load j atom coordinates */
218             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
219                                               &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm_sub_pd(ix0,jx0);
223             dy00             = _mm_sub_pd(iy0,jy0);
224             dz00             = _mm_sub_pd(iz0,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
228
229             rinvsq00         = gmx_mm_inv_pd(rsq00);
230
231             /* Load parameters for j particles */
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             if (gmx_mm_any_lt(rsq00,rcutoff2))
239             {
240
241             /* Compute parameters for interactions between i and j atoms */
242             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
248             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
249             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
250                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
251             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
252
253             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
254
255             /* Update potential sum for this i atom from the interaction with this j atom. */
256             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
257             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
258             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
259
260             fscal            = fvdw;
261
262             fscal            = _mm_and_pd(fscal,cutoff_mask);
263
264             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
265
266             /* Update vectorial force */
267             fix0             = _mm_macc_pd(dx00,fscal,fix0);
268             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
269             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
270             
271             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
272                                                    _mm_mul_pd(dx00,fscal),
273                                                    _mm_mul_pd(dy00,fscal),
274                                                    _mm_mul_pd(dz00,fscal));
275
276             }
277
278             /* Inner loop uses 44 flops */
279         }
280
281         /* End of innermost loop */
282
283         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
284                                               f+i_coord_offset,fshift+i_shift_offset);
285
286         ggid                        = gid[iidx];
287         /* Update potential energies */
288         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
289
290         /* Increment number of inner iterations */
291         inneriter                  += j_index_end - j_index_start;
292
293         /* Outer loop uses 7 flops */
294     }
295
296     /* Increment number of outer iterations */
297     outeriter        += nri;
298
299     /* Update outer/inner flops */
300
301     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*44);
302 }
303 /*
304  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_double
305  * Electrostatics interaction: None
306  * VdW interaction:            LennardJones
307  * Geometry:                   Particle-Particle
308  * Calculate force/pot:        Force
309  */
310 void
311 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_double
312                     (t_nblist * gmx_restrict                nlist,
313                      rvec * gmx_restrict                    xx,
314                      rvec * gmx_restrict                    ff,
315                      t_forcerec * gmx_restrict              fr,
316                      t_mdatoms * gmx_restrict               mdatoms,
317                      nb_kernel_data_t * gmx_restrict        kernel_data,
318                      t_nrnb * gmx_restrict                  nrnb)
319 {
320     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
321      * just 0 for non-waters.
322      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
323      * jnr indices corresponding to data put in the four positions in the SIMD register.
324      */
325     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
326     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
327     int              jnrA,jnrB;
328     int              j_coord_offsetA,j_coord_offsetB;
329     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
330     real             rcutoff_scalar;
331     real             *shiftvec,*fshift,*x,*f;
332     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
333     int              vdwioffset0;
334     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
335     int              vdwjidx0A,vdwjidx0B;
336     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
337     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
338     int              nvdwtype;
339     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
340     int              *vdwtype;
341     real             *vdwparam;
342     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
343     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
344     __m128d          dummy_mask,cutoff_mask;
345     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
346     __m128d          one     = _mm_set1_pd(1.0);
347     __m128d          two     = _mm_set1_pd(2.0);
348     x                = xx[0];
349     f                = ff[0];
350
351     nri              = nlist->nri;
352     iinr             = nlist->iinr;
353     jindex           = nlist->jindex;
354     jjnr             = nlist->jjnr;
355     shiftidx         = nlist->shift;
356     gid              = nlist->gid;
357     shiftvec         = fr->shift_vec[0];
358     fshift           = fr->fshift[0];
359     nvdwtype         = fr->ntype;
360     vdwparam         = fr->nbfp;
361     vdwtype          = mdatoms->typeA;
362
363     rcutoff_scalar   = fr->rvdw;
364     rcutoff          = _mm_set1_pd(rcutoff_scalar);
365     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
366
367     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
368     rvdw             = _mm_set1_pd(fr->rvdw);
369
370     /* Avoid stupid compiler warnings */
371     jnrA = jnrB = 0;
372     j_coord_offsetA = 0;
373     j_coord_offsetB = 0;
374
375     outeriter        = 0;
376     inneriter        = 0;
377
378     /* Start outer loop over neighborlists */
379     for(iidx=0; iidx<nri; iidx++)
380     {
381         /* Load shift vector for this list */
382         i_shift_offset   = DIM*shiftidx[iidx];
383
384         /* Load limits for loop over neighbors */
385         j_index_start    = jindex[iidx];
386         j_index_end      = jindex[iidx+1];
387
388         /* Get outer coordinate index */
389         inr              = iinr[iidx];
390         i_coord_offset   = DIM*inr;
391
392         /* Load i particle coords and add shift vector */
393         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
394
395         fix0             = _mm_setzero_pd();
396         fiy0             = _mm_setzero_pd();
397         fiz0             = _mm_setzero_pd();
398
399         /* Load parameters for i particles */
400         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
401
402         /* Start inner kernel loop */
403         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrA             = jjnr[jidx];
408             jnrB             = jjnr[jidx+1];
409             j_coord_offsetA  = DIM*jnrA;
410             j_coord_offsetB  = DIM*jnrB;
411
412             /* load j atom coordinates */
413             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_pd(ix0,jx0);
418             dy00             = _mm_sub_pd(iy0,jy0);
419             dz00             = _mm_sub_pd(iz0,jz0);
420
421             /* Calculate squared distance and things based on it */
422             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
423
424             rinvsq00         = gmx_mm_inv_pd(rsq00);
425
426             /* Load parameters for j particles */
427             vdwjidx0A        = 2*vdwtype[jnrA+0];
428             vdwjidx0B        = 2*vdwtype[jnrB+0];
429
430             /**************************
431              * CALCULATE INTERACTIONS *
432              **************************/
433
434             if (gmx_mm_any_lt(rsq00,rcutoff2))
435             {
436
437             /* Compute parameters for interactions between i and j atoms */
438             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
439                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
440
441             /* LENNARD-JONES DISPERSION/REPULSION */
442
443             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
444             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
445
446             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
447
448             fscal            = fvdw;
449
450             fscal            = _mm_and_pd(fscal,cutoff_mask);
451
452             /* Update vectorial force */
453             fix0             = _mm_macc_pd(dx00,fscal,fix0);
454             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
455             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
456             
457             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
458                                                    _mm_mul_pd(dx00,fscal),
459                                                    _mm_mul_pd(dy00,fscal),
460                                                    _mm_mul_pd(dz00,fscal));
461
462             }
463
464             /* Inner loop uses 33 flops */
465         }
466
467         if(jidx<j_index_end)
468         {
469
470             jnrA             = jjnr[jidx];
471             j_coord_offsetA  = DIM*jnrA;
472
473             /* load j atom coordinates */
474             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
475                                               &jx0,&jy0,&jz0);
476
477             /* Calculate displacement vector */
478             dx00             = _mm_sub_pd(ix0,jx0);
479             dy00             = _mm_sub_pd(iy0,jy0);
480             dz00             = _mm_sub_pd(iz0,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
484
485             rinvsq00         = gmx_mm_inv_pd(rsq00);
486
487             /* Load parameters for j particles */
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             if (gmx_mm_any_lt(rsq00,rcutoff2))
495             {
496
497             /* Compute parameters for interactions between i and j atoms */
498             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
499
500             /* LENNARD-JONES DISPERSION/REPULSION */
501
502             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
503             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
504
505             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
506
507             fscal            = fvdw;
508
509             fscal            = _mm_and_pd(fscal,cutoff_mask);
510
511             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
512
513             /* Update vectorial force */
514             fix0             = _mm_macc_pd(dx00,fscal,fix0);
515             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
516             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
517             
518             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
519                                                    _mm_mul_pd(dx00,fscal),
520                                                    _mm_mul_pd(dy00,fscal),
521                                                    _mm_mul_pd(dz00,fscal));
522
523             }
524
525             /* Inner loop uses 33 flops */
526         }
527
528         /* End of innermost loop */
529
530         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
531                                               f+i_coord_offset,fshift+i_shift_offset);
532
533         /* Increment number of inner iterations */
534         inneriter                  += j_index_end - j_index_start;
535
536         /* Outer loop uses 6 flops */
537     }
538
539     /* Increment number of outer iterations */
540     outeriter        += nri;
541
542     /* Update outer/inner flops */
543
544     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*33);
545 }