f8fde74f562f3c2b4aee42e052b60b10d186a117
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: None
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
76     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
80     real             *vftab;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     nvdwtype         = fr->ntype;
97     vdwparam         = fr->nbfp;
98     vdwtype          = mdatoms->typeA;
99
100     vftab            = kernel_data->table_vdw->data;
101     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     /* Start outer loop over neighborlists */
112     for(iidx=0; iidx<nri; iidx++)
113     {
114         /* Load shift vector for this list */
115         i_shift_offset   = DIM*shiftidx[iidx];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
127
128         fix0             = _mm_setzero_pd();
129         fiy0             = _mm_setzero_pd();
130         fiz0             = _mm_setzero_pd();
131
132         /* Load parameters for i particles */
133         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135         /* Reset potential sums */
136         vvdwsum          = _mm_setzero_pd();
137
138         /* Start inner kernel loop */
139         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
140         {
141
142             /* Get j neighbor index, and coordinate index */
143             jnrA             = jjnr[jidx];
144             jnrB             = jjnr[jidx+1];
145             j_coord_offsetA  = DIM*jnrA;
146             j_coord_offsetB  = DIM*jnrB;
147
148             /* load j atom coordinates */
149             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
150                                               &jx0,&jy0,&jz0);
151
152             /* Calculate displacement vector */
153             dx00             = _mm_sub_pd(ix0,jx0);
154             dy00             = _mm_sub_pd(iy0,jy0);
155             dz00             = _mm_sub_pd(iz0,jz0);
156
157             /* Calculate squared distance and things based on it */
158             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
159
160             rinv00           = gmx_mm_invsqrt_pd(rsq00);
161
162             /* Load parameters for j particles */
163             vdwjidx0A        = 2*vdwtype[jnrA+0];
164             vdwjidx0B        = 2*vdwtype[jnrB+0];
165
166             /**************************
167              * CALCULATE INTERACTIONS *
168              **************************/
169
170             r00              = _mm_mul_pd(rsq00,rinv00);
171
172             /* Compute parameters for interactions between i and j atoms */
173             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
174                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
175
176             /* Calculate table index by multiplying r with table scale and truncate to integer */
177             rt               = _mm_mul_pd(r00,vftabscale);
178             vfitab           = _mm_cvttpd_epi32(rt);
179 #ifdef __XOP__
180             vfeps            = _mm_frcz_pd(rt);
181 #else
182             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
183 #endif
184             twovfeps         = _mm_add_pd(vfeps,vfeps);
185             vfitab           = _mm_slli_epi32(vfitab,3);
186
187             /* CUBIC SPLINE TABLE DISPERSION */
188             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
189             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
190             GMX_MM_TRANSPOSE2_PD(Y,F);
191             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
192             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
193             GMX_MM_TRANSPOSE2_PD(G,H);
194             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
195             VV               = _mm_macc_pd(vfeps,Fp,Y);
196             vvdw6            = _mm_mul_pd(c6_00,VV);
197             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
198             fvdw6            = _mm_mul_pd(c6_00,FF);
199
200             /* CUBIC SPLINE TABLE REPULSION */
201             vfitab           = _mm_add_epi32(vfitab,ifour);
202             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
203             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
204             GMX_MM_TRANSPOSE2_PD(Y,F);
205             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
206             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
207             GMX_MM_TRANSPOSE2_PD(G,H);
208             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
209             VV               = _mm_macc_pd(vfeps,Fp,Y);
210             vvdw12           = _mm_mul_pd(c12_00,VV);
211             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
212             fvdw12           = _mm_mul_pd(c12_00,FF);
213             vvdw             = _mm_add_pd(vvdw12,vvdw6);
214             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
215
216             /* Update potential sum for this i atom from the interaction with this j atom. */
217             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
218
219             fscal            = fvdw;
220
221             /* Update vectorial force */
222             fix0             = _mm_macc_pd(dx00,fscal,fix0);
223             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
224             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
225             
226             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
227                                                    _mm_mul_pd(dx00,fscal),
228                                                    _mm_mul_pd(dy00,fscal),
229                                                    _mm_mul_pd(dz00,fscal));
230
231             /* Inner loop uses 59 flops */
232         }
233
234         if(jidx<j_index_end)
235         {
236
237             jnrA             = jjnr[jidx];
238             j_coord_offsetA  = DIM*jnrA;
239
240             /* load j atom coordinates */
241             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
242                                               &jx0,&jy0,&jz0);
243
244             /* Calculate displacement vector */
245             dx00             = _mm_sub_pd(ix0,jx0);
246             dy00             = _mm_sub_pd(iy0,jy0);
247             dz00             = _mm_sub_pd(iz0,jz0);
248
249             /* Calculate squared distance and things based on it */
250             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
251
252             rinv00           = gmx_mm_invsqrt_pd(rsq00);
253
254             /* Load parameters for j particles */
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
265
266             /* Calculate table index by multiplying r with table scale and truncate to integer */
267             rt               = _mm_mul_pd(r00,vftabscale);
268             vfitab           = _mm_cvttpd_epi32(rt);
269 #ifdef __XOP__
270             vfeps            = _mm_frcz_pd(rt);
271 #else
272             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
273 #endif
274             twovfeps         = _mm_add_pd(vfeps,vfeps);
275             vfitab           = _mm_slli_epi32(vfitab,3);
276
277             /* CUBIC SPLINE TABLE DISPERSION */
278             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm_setzero_pd();
280             GMX_MM_TRANSPOSE2_PD(Y,F);
281             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
282             H                = _mm_setzero_pd();
283             GMX_MM_TRANSPOSE2_PD(G,H);
284             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
285             VV               = _mm_macc_pd(vfeps,Fp,Y);
286             vvdw6            = _mm_mul_pd(c6_00,VV);
287             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
288             fvdw6            = _mm_mul_pd(c6_00,FF);
289
290             /* CUBIC SPLINE TABLE REPULSION */
291             vfitab           = _mm_add_epi32(vfitab,ifour);
292             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
293             F                = _mm_setzero_pd();
294             GMX_MM_TRANSPOSE2_PD(Y,F);
295             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
296             H                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(G,H);
298             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
299             VV               = _mm_macc_pd(vfeps,Fp,Y);
300             vvdw12           = _mm_mul_pd(c12_00,VV);
301             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
302             fvdw12           = _mm_mul_pd(c12_00,FF);
303             vvdw             = _mm_add_pd(vvdw12,vvdw6);
304             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
308             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
309
310             fscal            = fvdw;
311
312             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
313
314             /* Update vectorial force */
315             fix0             = _mm_macc_pd(dx00,fscal,fix0);
316             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
317             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
318             
319             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
320                                                    _mm_mul_pd(dx00,fscal),
321                                                    _mm_mul_pd(dy00,fscal),
322                                                    _mm_mul_pd(dz00,fscal));
323
324             /* Inner loop uses 59 flops */
325         }
326
327         /* End of innermost loop */
328
329         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
330                                               f+i_coord_offset,fshift+i_shift_offset);
331
332         ggid                        = gid[iidx];
333         /* Update potential energies */
334         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
335
336         /* Increment number of inner iterations */
337         inneriter                  += j_index_end - j_index_start;
338
339         /* Outer loop uses 7 flops */
340     }
341
342     /* Increment number of outer iterations */
343     outeriter        += nri;
344
345     /* Update outer/inner flops */
346
347     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*59);
348 }
349 /*
350  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
351  * Electrostatics interaction: None
352  * VdW interaction:            CubicSplineTable
353  * Geometry:                   Particle-Particle
354  * Calculate force/pot:        Force
355  */
356 void
357 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
358                     (t_nblist * gmx_restrict                nlist,
359                      rvec * gmx_restrict                    xx,
360                      rvec * gmx_restrict                    ff,
361                      t_forcerec * gmx_restrict              fr,
362                      t_mdatoms * gmx_restrict               mdatoms,
363                      nb_kernel_data_t * gmx_restrict        kernel_data,
364                      t_nrnb * gmx_restrict                  nrnb)
365 {
366     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
367      * just 0 for non-waters.
368      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
369      * jnr indices corresponding to data put in the four positions in the SIMD register.
370      */
371     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
372     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
373     int              jnrA,jnrB;
374     int              j_coord_offsetA,j_coord_offsetB;
375     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
376     real             rcutoff_scalar;
377     real             *shiftvec,*fshift,*x,*f;
378     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
379     int              vdwioffset0;
380     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
381     int              vdwjidx0A,vdwjidx0B;
382     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
383     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
384     int              nvdwtype;
385     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
386     int              *vdwtype;
387     real             *vdwparam;
388     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
389     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
390     __m128i          vfitab;
391     __m128i          ifour       = _mm_set1_epi32(4);
392     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
393     real             *vftab;
394     __m128d          dummy_mask,cutoff_mask;
395     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
396     __m128d          one     = _mm_set1_pd(1.0);
397     __m128d          two     = _mm_set1_pd(2.0);
398     x                = xx[0];
399     f                = ff[0];
400
401     nri              = nlist->nri;
402     iinr             = nlist->iinr;
403     jindex           = nlist->jindex;
404     jjnr             = nlist->jjnr;
405     shiftidx         = nlist->shift;
406     gid              = nlist->gid;
407     shiftvec         = fr->shift_vec[0];
408     fshift           = fr->fshift[0];
409     nvdwtype         = fr->ntype;
410     vdwparam         = fr->nbfp;
411     vdwtype          = mdatoms->typeA;
412
413     vftab            = kernel_data->table_vdw->data;
414     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
415
416     /* Avoid stupid compiler warnings */
417     jnrA = jnrB = 0;
418     j_coord_offsetA = 0;
419     j_coord_offsetB = 0;
420
421     outeriter        = 0;
422     inneriter        = 0;
423
424     /* Start outer loop over neighborlists */
425     for(iidx=0; iidx<nri; iidx++)
426     {
427         /* Load shift vector for this list */
428         i_shift_offset   = DIM*shiftidx[iidx];
429
430         /* Load limits for loop over neighbors */
431         j_index_start    = jindex[iidx];
432         j_index_end      = jindex[iidx+1];
433
434         /* Get outer coordinate index */
435         inr              = iinr[iidx];
436         i_coord_offset   = DIM*inr;
437
438         /* Load i particle coords and add shift vector */
439         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
440
441         fix0             = _mm_setzero_pd();
442         fiy0             = _mm_setzero_pd();
443         fiz0             = _mm_setzero_pd();
444
445         /* Load parameters for i particles */
446         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
447
448         /* Start inner kernel loop */
449         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
450         {
451
452             /* Get j neighbor index, and coordinate index */
453             jnrA             = jjnr[jidx];
454             jnrB             = jjnr[jidx+1];
455             j_coord_offsetA  = DIM*jnrA;
456             j_coord_offsetB  = DIM*jnrB;
457
458             /* load j atom coordinates */
459             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
460                                               &jx0,&jy0,&jz0);
461
462             /* Calculate displacement vector */
463             dx00             = _mm_sub_pd(ix0,jx0);
464             dy00             = _mm_sub_pd(iy0,jy0);
465             dz00             = _mm_sub_pd(iz0,jz0);
466
467             /* Calculate squared distance and things based on it */
468             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
469
470             rinv00           = gmx_mm_invsqrt_pd(rsq00);
471
472             /* Load parameters for j particles */
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474             vdwjidx0B        = 2*vdwtype[jnrB+0];
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r00              = _mm_mul_pd(rsq00,rinv00);
481
482             /* Compute parameters for interactions between i and j atoms */
483             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
484                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
485
486             /* Calculate table index by multiplying r with table scale and truncate to integer */
487             rt               = _mm_mul_pd(r00,vftabscale);
488             vfitab           = _mm_cvttpd_epi32(rt);
489 #ifdef __XOP__
490             vfeps            = _mm_frcz_pd(rt);
491 #else
492             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
493 #endif
494             twovfeps         = _mm_add_pd(vfeps,vfeps);
495             vfitab           = _mm_slli_epi32(vfitab,3);
496
497             /* CUBIC SPLINE TABLE DISPERSION */
498             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
499             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
500             GMX_MM_TRANSPOSE2_PD(Y,F);
501             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
502             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
503             GMX_MM_TRANSPOSE2_PD(G,H);
504             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
505             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
506             fvdw6            = _mm_mul_pd(c6_00,FF);
507
508             /* CUBIC SPLINE TABLE REPULSION */
509             vfitab           = _mm_add_epi32(vfitab,ifour);
510             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
511             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
512             GMX_MM_TRANSPOSE2_PD(Y,F);
513             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
514             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
515             GMX_MM_TRANSPOSE2_PD(G,H);
516             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
517             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
518             fvdw12           = _mm_mul_pd(c12_00,FF);
519             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
520
521             fscal            = fvdw;
522
523             /* Update vectorial force */
524             fix0             = _mm_macc_pd(dx00,fscal,fix0);
525             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
526             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
527             
528             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
529                                                    _mm_mul_pd(dx00,fscal),
530                                                    _mm_mul_pd(dy00,fscal),
531                                                    _mm_mul_pd(dz00,fscal));
532
533             /* Inner loop uses 51 flops */
534         }
535
536         if(jidx<j_index_end)
537         {
538
539             jnrA             = jjnr[jidx];
540             j_coord_offsetA  = DIM*jnrA;
541
542             /* load j atom coordinates */
543             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _mm_sub_pd(ix0,jx0);
548             dy00             = _mm_sub_pd(iy0,jy0);
549             dz00             = _mm_sub_pd(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
553
554             rinv00           = gmx_mm_invsqrt_pd(rsq00);
555
556             /* Load parameters for j particles */
557             vdwjidx0A        = 2*vdwtype[jnrA+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _mm_mul_pd(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
567
568             /* Calculate table index by multiplying r with table scale and truncate to integer */
569             rt               = _mm_mul_pd(r00,vftabscale);
570             vfitab           = _mm_cvttpd_epi32(rt);
571 #ifdef __XOP__
572             vfeps            = _mm_frcz_pd(rt);
573 #else
574             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
575 #endif
576             twovfeps         = _mm_add_pd(vfeps,vfeps);
577             vfitab           = _mm_slli_epi32(vfitab,3);
578
579             /* CUBIC SPLINE TABLE DISPERSION */
580             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
581             F                = _mm_setzero_pd();
582             GMX_MM_TRANSPOSE2_PD(Y,F);
583             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
584             H                = _mm_setzero_pd();
585             GMX_MM_TRANSPOSE2_PD(G,H);
586             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
587             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
588             fvdw6            = _mm_mul_pd(c6_00,FF);
589
590             /* CUBIC SPLINE TABLE REPULSION */
591             vfitab           = _mm_add_epi32(vfitab,ifour);
592             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
593             F                = _mm_setzero_pd();
594             GMX_MM_TRANSPOSE2_PD(Y,F);
595             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
596             H                = _mm_setzero_pd();
597             GMX_MM_TRANSPOSE2_PD(G,H);
598             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
599             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
600             fvdw12           = _mm_mul_pd(c12_00,FF);
601             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
602
603             fscal            = fvdw;
604
605             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606
607             /* Update vectorial force */
608             fix0             = _mm_macc_pd(dx00,fscal,fix0);
609             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
610             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
611             
612             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
613                                                    _mm_mul_pd(dx00,fscal),
614                                                    _mm_mul_pd(dy00,fscal),
615                                                    _mm_mul_pd(dz00,fscal));
616
617             /* Inner loop uses 51 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 6 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*51);
637 }