7cea363fd61fd663a2c0fa72ec95dc779d78b256
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     invsqrta         = fr->invsqrta;
116     dvda             = fr->dvda;
117     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
118     gbtab            = fr->gbtab.data;
119     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         isai0            = _mm_load1_pd(invsqrta+inr+0);
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vgbsum           = _mm_setzero_pd();
157         dvdasum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195
196             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
197             isaprod          = _mm_mul_pd(isai0,isaj0);
198             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
199             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
200
201             /* Calculate generalized born table index - this is a separate table from the normal one,
202              * but we use the same procedure by multiplying r with scale and truncating to integer.
203              */
204             rt               = _mm_mul_pd(r00,gbscale);
205             gbitab           = _mm_cvttpd_epi32(rt);
206 #ifdef __XOP__
207             gbeps            = _mm_frcz_pd(rt);
208 #else
209             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
210 #endif
211             gbitab           = _mm_slli_epi32(gbitab,2);
212
213             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
214             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
215             GMX_MM_TRANSPOSE2_PD(Y,F);
216             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
217             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
218             GMX_MM_TRANSPOSE2_PD(G,H);
219             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
220             VV               = _mm_macc_pd(gbeps,Fp,Y);
221             vgb              = _mm_mul_pd(gbqqfactor,VV);
222
223             twogbeps         = _mm_add_pd(gbeps,gbeps);
224             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
225             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
226             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
227             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
228             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
229             velec            = _mm_mul_pd(qq00,rinv00);
230             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm_add_pd(velecsum,velec);
234             vgbsum           = _mm_add_pd(vgbsum,vgb);
235
236             fscal            = felec;
237
238             /* Update vectorial force */
239             fix0             = _mm_macc_pd(dx00,fscal,fix0);
240             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
241             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
242             
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
244                                                    _mm_mul_pd(dx00,fscal),
245                                                    _mm_mul_pd(dy00,fscal),
246                                                    _mm_mul_pd(dz00,fscal));
247
248             /* Inner loop uses 61 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             jnrA             = jjnr[jidx];
255             j_coord_offsetA  = DIM*jnrA;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259                                               &jx0,&jy0,&jz0);
260
261             /* Calculate displacement vector */
262             dx00             = _mm_sub_pd(ix0,jx0);
263             dy00             = _mm_sub_pd(iy0,jy0);
264             dz00             = _mm_sub_pd(iz0,jz0);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268
269             rinv00           = gmx_mm_invsqrt_pd(rsq00);
270
271             /* Load parameters for j particles */
272             jq0              = _mm_load_sd(charge+jnrA+0);
273             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r00              = _mm_mul_pd(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq00             = _mm_mul_pd(iq0,jq0);
283
284             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
285             isaprod          = _mm_mul_pd(isai0,isaj0);
286             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
287             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
288
289             /* Calculate generalized born table index - this is a separate table from the normal one,
290              * but we use the same procedure by multiplying r with scale and truncating to integer.
291              */
292             rt               = _mm_mul_pd(r00,gbscale);
293             gbitab           = _mm_cvttpd_epi32(rt);
294 #ifdef __XOP__
295             gbeps            = _mm_frcz_pd(rt);
296 #else
297             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
298 #endif
299             gbitab           = _mm_slli_epi32(gbitab,2);
300
301             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
302             F                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(Y,F);
304             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
305             H                = _mm_setzero_pd();
306             GMX_MM_TRANSPOSE2_PD(G,H);
307             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
308             VV               = _mm_macc_pd(gbeps,Fp,Y);
309             vgb              = _mm_mul_pd(gbqqfactor,VV);
310
311             twogbeps         = _mm_add_pd(gbeps,gbeps);
312             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
313             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
314             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
315             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
316             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
317             velec            = _mm_mul_pd(qq00,rinv00);
318             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
322             velecsum         = _mm_add_pd(velecsum,velec);
323             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
324             vgbsum           = _mm_add_pd(vgbsum,vgb);
325
326             fscal            = felec;
327
328             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
329
330             /* Update vectorial force */
331             fix0             = _mm_macc_pd(dx00,fscal,fix0);
332             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
333             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
334             
335             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
336                                                    _mm_mul_pd(dx00,fscal),
337                                                    _mm_mul_pd(dy00,fscal),
338                                                    _mm_mul_pd(dz00,fscal));
339
340             /* Inner loop uses 61 flops */
341         }
342
343         /* End of innermost loop */
344
345         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
346                                               f+i_coord_offset,fshift+i_shift_offset);
347
348         ggid                        = gid[iidx];
349         /* Update potential energies */
350         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
351         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
352         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
353         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
354
355         /* Increment number of inner iterations */
356         inneriter                  += j_index_end - j_index_start;
357
358         /* Outer loop uses 9 flops */
359     }
360
361     /* Increment number of outer iterations */
362     outeriter        += nri;
363
364     /* Update outer/inner flops */
365
366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
367 }
368 /*
369  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
370  * Electrostatics interaction: GeneralizedBorn
371  * VdW interaction:            None
372  * Geometry:                   Particle-Particle
373  * Calculate force/pot:        Force
374  */
375 void
376 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
377                     (t_nblist * gmx_restrict                nlist,
378                      rvec * gmx_restrict                    xx,
379                      rvec * gmx_restrict                    ff,
380                      t_forcerec * gmx_restrict              fr,
381                      t_mdatoms * gmx_restrict               mdatoms,
382                      nb_kernel_data_t * gmx_restrict        kernel_data,
383                      t_nrnb * gmx_restrict                  nrnb)
384 {
385     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
386      * just 0 for non-waters.
387      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
388      * jnr indices corresponding to data put in the four positions in the SIMD register.
389      */
390     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
391     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
392     int              jnrA,jnrB;
393     int              j_coord_offsetA,j_coord_offsetB;
394     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
395     real             rcutoff_scalar;
396     real             *shiftvec,*fshift,*x,*f;
397     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
398     int              vdwioffset0;
399     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
400     int              vdwjidx0A,vdwjidx0B;
401     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
402     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
403     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
404     real             *charge;
405     __m128i          gbitab;
406     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
407     __m128d          minushalf = _mm_set1_pd(-0.5);
408     real             *invsqrta,*dvda,*gbtab;
409     __m128i          vfitab;
410     __m128i          ifour       = _mm_set1_epi32(4);
411     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
412     real             *vftab;
413     __m128d          dummy_mask,cutoff_mask;
414     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
415     __m128d          one     = _mm_set1_pd(1.0);
416     __m128d          two     = _mm_set1_pd(2.0);
417     x                = xx[0];
418     f                = ff[0];
419
420     nri              = nlist->nri;
421     iinr             = nlist->iinr;
422     jindex           = nlist->jindex;
423     jjnr             = nlist->jjnr;
424     shiftidx         = nlist->shift;
425     gid              = nlist->gid;
426     shiftvec         = fr->shift_vec[0];
427     fshift           = fr->fshift[0];
428     facel            = _mm_set1_pd(fr->epsfac);
429     charge           = mdatoms->chargeA;
430
431     invsqrta         = fr->invsqrta;
432     dvda             = fr->dvda;
433     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
434     gbtab            = fr->gbtab.data;
435     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
436
437     /* Avoid stupid compiler warnings */
438     jnrA = jnrB = 0;
439     j_coord_offsetA = 0;
440     j_coord_offsetB = 0;
441
442     outeriter        = 0;
443     inneriter        = 0;
444
445     /* Start outer loop over neighborlists */
446     for(iidx=0; iidx<nri; iidx++)
447     {
448         /* Load shift vector for this list */
449         i_shift_offset   = DIM*shiftidx[iidx];
450
451         /* Load limits for loop over neighbors */
452         j_index_start    = jindex[iidx];
453         j_index_end      = jindex[iidx+1];
454
455         /* Get outer coordinate index */
456         inr              = iinr[iidx];
457         i_coord_offset   = DIM*inr;
458
459         /* Load i particle coords and add shift vector */
460         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
461
462         fix0             = _mm_setzero_pd();
463         fiy0             = _mm_setzero_pd();
464         fiz0             = _mm_setzero_pd();
465
466         /* Load parameters for i particles */
467         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
468         isai0            = _mm_load1_pd(invsqrta+inr+0);
469
470         dvdasum          = _mm_setzero_pd();
471
472         /* Start inner kernel loop */
473         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
474         {
475
476             /* Get j neighbor index, and coordinate index */
477             jnrA             = jjnr[jidx];
478             jnrB             = jjnr[jidx+1];
479             j_coord_offsetA  = DIM*jnrA;
480             j_coord_offsetB  = DIM*jnrB;
481
482             /* load j atom coordinates */
483             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
484                                               &jx0,&jy0,&jz0);
485
486             /* Calculate displacement vector */
487             dx00             = _mm_sub_pd(ix0,jx0);
488             dy00             = _mm_sub_pd(iy0,jy0);
489             dz00             = _mm_sub_pd(iz0,jz0);
490
491             /* Calculate squared distance and things based on it */
492             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
493
494             rinv00           = gmx_mm_invsqrt_pd(rsq00);
495
496             /* Load parameters for j particles */
497             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
498             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             r00              = _mm_mul_pd(rsq00,rinv00);
505
506             /* Compute parameters for interactions between i and j atoms */
507             qq00             = _mm_mul_pd(iq0,jq0);
508
509             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
510             isaprod          = _mm_mul_pd(isai0,isaj0);
511             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
512             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
513
514             /* Calculate generalized born table index - this is a separate table from the normal one,
515              * but we use the same procedure by multiplying r with scale and truncating to integer.
516              */
517             rt               = _mm_mul_pd(r00,gbscale);
518             gbitab           = _mm_cvttpd_epi32(rt);
519 #ifdef __XOP__
520             gbeps            = _mm_frcz_pd(rt);
521 #else
522             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
523 #endif
524             gbitab           = _mm_slli_epi32(gbitab,2);
525
526             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
527             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
528             GMX_MM_TRANSPOSE2_PD(Y,F);
529             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
530             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
531             GMX_MM_TRANSPOSE2_PD(G,H);
532             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
533             VV               = _mm_macc_pd(gbeps,Fp,Y);
534             vgb              = _mm_mul_pd(gbqqfactor,VV);
535
536             twogbeps         = _mm_add_pd(gbeps,gbeps);
537             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
538             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
539             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
540             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
541             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
542             velec            = _mm_mul_pd(qq00,rinv00);
543             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
544
545             fscal            = felec;
546
547             /* Update vectorial force */
548             fix0             = _mm_macc_pd(dx00,fscal,fix0);
549             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
550             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
551             
552             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
553                                                    _mm_mul_pd(dx00,fscal),
554                                                    _mm_mul_pd(dy00,fscal),
555                                                    _mm_mul_pd(dz00,fscal));
556
557             /* Inner loop uses 59 flops */
558         }
559
560         if(jidx<j_index_end)
561         {
562
563             jnrA             = jjnr[jidx];
564             j_coord_offsetA  = DIM*jnrA;
565
566             /* load j atom coordinates */
567             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
568                                               &jx0,&jy0,&jz0);
569
570             /* Calculate displacement vector */
571             dx00             = _mm_sub_pd(ix0,jx0);
572             dy00             = _mm_sub_pd(iy0,jy0);
573             dz00             = _mm_sub_pd(iz0,jz0);
574
575             /* Calculate squared distance and things based on it */
576             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
577
578             rinv00           = gmx_mm_invsqrt_pd(rsq00);
579
580             /* Load parameters for j particles */
581             jq0              = _mm_load_sd(charge+jnrA+0);
582             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             r00              = _mm_mul_pd(rsq00,rinv00);
589
590             /* Compute parameters for interactions between i and j atoms */
591             qq00             = _mm_mul_pd(iq0,jq0);
592
593             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
594             isaprod          = _mm_mul_pd(isai0,isaj0);
595             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
596             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
597
598             /* Calculate generalized born table index - this is a separate table from the normal one,
599              * but we use the same procedure by multiplying r with scale and truncating to integer.
600              */
601             rt               = _mm_mul_pd(r00,gbscale);
602             gbitab           = _mm_cvttpd_epi32(rt);
603 #ifdef __XOP__
604             gbeps            = _mm_frcz_pd(rt);
605 #else
606             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
607 #endif
608             gbitab           = _mm_slli_epi32(gbitab,2);
609
610             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
611             F                = _mm_setzero_pd();
612             GMX_MM_TRANSPOSE2_PD(Y,F);
613             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
614             H                = _mm_setzero_pd();
615             GMX_MM_TRANSPOSE2_PD(G,H);
616             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
617             VV               = _mm_macc_pd(gbeps,Fp,Y);
618             vgb              = _mm_mul_pd(gbqqfactor,VV);
619
620             twogbeps         = _mm_add_pd(gbeps,gbeps);
621             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
622             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
623             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
624             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
625             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
626             velec            = _mm_mul_pd(qq00,rinv00);
627             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
628
629             fscal            = felec;
630
631             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
632
633             /* Update vectorial force */
634             fix0             = _mm_macc_pd(dx00,fscal,fix0);
635             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
636             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
637             
638             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
639                                                    _mm_mul_pd(dx00,fscal),
640                                                    _mm_mul_pd(dy00,fscal),
641                                                    _mm_mul_pd(dz00,fscal));
642
643             /* Inner loop uses 59 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
649                                               f+i_coord_offset,fshift+i_shift_offset);
650
651         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
652         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
653
654         /* Increment number of inner iterations */
655         inneriter                  += j_index_end - j_index_start;
656
657         /* Outer loop uses 7 flops */
658     }
659
660     /* Increment number of outer iterations */
661     outeriter        += nri;
662
663     /* Update outer/inner flops */
664
665     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
666 }