made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
80     real             *vftab;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_pd(fr->epsfac);
97     charge           = mdatoms->chargeA;
98
99     invsqrta         = fr->invsqrta;
100     dvda             = fr->dvda;
101     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
102     gbtab            = fr->gbtab.data;
103     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
129
130         fix0             = _mm_setzero_pd();
131         fiy0             = _mm_setzero_pd();
132         fiz0             = _mm_setzero_pd();
133
134         /* Load parameters for i particles */
135         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
136         isai0            = _mm_load1_pd(invsqrta+inr+0);
137
138         /* Reset potential sums */
139         velecsum         = _mm_setzero_pd();
140         vgbsum           = _mm_setzero_pd();
141         dvdasum          = _mm_setzero_pd();
142
143         /* Start inner kernel loop */
144         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
145         {
146
147             /* Get j neighbor index, and coordinate index */
148             jnrA             = jjnr[jidx];
149             jnrB             = jjnr[jidx+1];
150             j_coord_offsetA  = DIM*jnrA;
151             j_coord_offsetB  = DIM*jnrB;
152
153             /* load j atom coordinates */
154             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
155                                               &jx0,&jy0,&jz0);
156
157             /* Calculate displacement vector */
158             dx00             = _mm_sub_pd(ix0,jx0);
159             dy00             = _mm_sub_pd(iy0,jy0);
160             dz00             = _mm_sub_pd(iz0,jz0);
161
162             /* Calculate squared distance and things based on it */
163             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
164
165             rinv00           = gmx_mm_invsqrt_pd(rsq00);
166
167             /* Load parameters for j particles */
168             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
169             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
170
171             /**************************
172              * CALCULATE INTERACTIONS *
173              **************************/
174
175             r00              = _mm_mul_pd(rsq00,rinv00);
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm_mul_pd(iq0,jq0);
179
180             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
181             isaprod          = _mm_mul_pd(isai0,isaj0);
182             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
183             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
184
185             /* Calculate generalized born table index - this is a separate table from the normal one,
186              * but we use the same procedure by multiplying r with scale and truncating to integer.
187              */
188             rt               = _mm_mul_pd(r00,gbscale);
189             gbitab           = _mm_cvttpd_epi32(rt);
190 #ifdef __XOP__
191             gbeps            = _mm_frcz_pd(rt);
192 #else
193             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
194 #endif
195             gbitab           = _mm_slli_epi32(gbitab,2);
196
197             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
198             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
199             GMX_MM_TRANSPOSE2_PD(Y,F);
200             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
201             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
202             GMX_MM_TRANSPOSE2_PD(G,H);
203             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
204             VV               = _mm_macc_pd(gbeps,Fp,Y);
205             vgb              = _mm_mul_pd(gbqqfactor,VV);
206
207             twogbeps         = _mm_add_pd(gbeps,gbeps);
208             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
209             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
210             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
211             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
212             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
213             velec            = _mm_mul_pd(qq00,rinv00);
214             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
215
216             /* Update potential sum for this i atom from the interaction with this j atom. */
217             velecsum         = _mm_add_pd(velecsum,velec);
218             vgbsum           = _mm_add_pd(vgbsum,vgb);
219
220             fscal            = felec;
221
222             /* Update vectorial force */
223             fix0             = _mm_macc_pd(dx00,fscal,fix0);
224             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
225             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
226             
227             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
228                                                    _mm_mul_pd(dx00,fscal),
229                                                    _mm_mul_pd(dy00,fscal),
230                                                    _mm_mul_pd(dz00,fscal));
231
232             /* Inner loop uses 61 flops */
233         }
234
235         if(jidx<j_index_end)
236         {
237
238             jnrA             = jjnr[jidx];
239             j_coord_offsetA  = DIM*jnrA;
240
241             /* load j atom coordinates */
242             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
243                                               &jx0,&jy0,&jz0);
244
245             /* Calculate displacement vector */
246             dx00             = _mm_sub_pd(ix0,jx0);
247             dy00             = _mm_sub_pd(iy0,jy0);
248             dz00             = _mm_sub_pd(iz0,jz0);
249
250             /* Calculate squared distance and things based on it */
251             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
252
253             rinv00           = gmx_mm_invsqrt_pd(rsq00);
254
255             /* Load parameters for j particles */
256             jq0              = _mm_load_sd(charge+jnrA+0);
257             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             r00              = _mm_mul_pd(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq00             = _mm_mul_pd(iq0,jq0);
267
268             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
269             isaprod          = _mm_mul_pd(isai0,isaj0);
270             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
271             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
272
273             /* Calculate generalized born table index - this is a separate table from the normal one,
274              * but we use the same procedure by multiplying r with scale and truncating to integer.
275              */
276             rt               = _mm_mul_pd(r00,gbscale);
277             gbitab           = _mm_cvttpd_epi32(rt);
278 #ifdef __XOP__
279             gbeps            = _mm_frcz_pd(rt);
280 #else
281             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
282 #endif
283             gbitab           = _mm_slli_epi32(gbitab,2);
284
285             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
286             F                = _mm_setzero_pd();
287             GMX_MM_TRANSPOSE2_PD(Y,F);
288             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
289             H                = _mm_setzero_pd();
290             GMX_MM_TRANSPOSE2_PD(G,H);
291             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
292             VV               = _mm_macc_pd(gbeps,Fp,Y);
293             vgb              = _mm_mul_pd(gbqqfactor,VV);
294
295             twogbeps         = _mm_add_pd(gbeps,gbeps);
296             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
297             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
298             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
299             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
300             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
301             velec            = _mm_mul_pd(qq00,rinv00);
302             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
306             velecsum         = _mm_add_pd(velecsum,velec);
307             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
308             vgbsum           = _mm_add_pd(vgbsum,vgb);
309
310             fscal            = felec;
311
312             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
313
314             /* Update vectorial force */
315             fix0             = _mm_macc_pd(dx00,fscal,fix0);
316             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
317             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
318             
319             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
320                                                    _mm_mul_pd(dx00,fscal),
321                                                    _mm_mul_pd(dy00,fscal),
322                                                    _mm_mul_pd(dz00,fscal));
323
324             /* Inner loop uses 61 flops */
325         }
326
327         /* End of innermost loop */
328
329         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
330                                               f+i_coord_offset,fshift+i_shift_offset);
331
332         ggid                        = gid[iidx];
333         /* Update potential energies */
334         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
335         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
336         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
337         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
338
339         /* Increment number of inner iterations */
340         inneriter                  += j_index_end - j_index_start;
341
342         /* Outer loop uses 9 flops */
343     }
344
345     /* Increment number of outer iterations */
346     outeriter        += nri;
347
348     /* Update outer/inner flops */
349
350     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
351 }
352 /*
353  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
354  * Electrostatics interaction: GeneralizedBorn
355  * VdW interaction:            None
356  * Geometry:                   Particle-Particle
357  * Calculate force/pot:        Force
358  */
359 void
360 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
361                     (t_nblist * gmx_restrict                nlist,
362                      rvec * gmx_restrict                    xx,
363                      rvec * gmx_restrict                    ff,
364                      t_forcerec * gmx_restrict              fr,
365                      t_mdatoms * gmx_restrict               mdatoms,
366                      nb_kernel_data_t * gmx_restrict        kernel_data,
367                      t_nrnb * gmx_restrict                  nrnb)
368 {
369     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
370      * just 0 for non-waters.
371      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
372      * jnr indices corresponding to data put in the four positions in the SIMD register.
373      */
374     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
375     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
376     int              jnrA,jnrB;
377     int              j_coord_offsetA,j_coord_offsetB;
378     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
379     real             rcutoff_scalar;
380     real             *shiftvec,*fshift,*x,*f;
381     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
382     int              vdwioffset0;
383     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
384     int              vdwjidx0A,vdwjidx0B;
385     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
386     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
387     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
388     real             *charge;
389     __m128i          gbitab;
390     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
391     __m128d          minushalf = _mm_set1_pd(-0.5);
392     real             *invsqrta,*dvda,*gbtab;
393     __m128i          vfitab;
394     __m128i          ifour       = _mm_set1_epi32(4);
395     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
396     real             *vftab;
397     __m128d          dummy_mask,cutoff_mask;
398     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
399     __m128d          one     = _mm_set1_pd(1.0);
400     __m128d          two     = _mm_set1_pd(2.0);
401     x                = xx[0];
402     f                = ff[0];
403
404     nri              = nlist->nri;
405     iinr             = nlist->iinr;
406     jindex           = nlist->jindex;
407     jjnr             = nlist->jjnr;
408     shiftidx         = nlist->shift;
409     gid              = nlist->gid;
410     shiftvec         = fr->shift_vec[0];
411     fshift           = fr->fshift[0];
412     facel            = _mm_set1_pd(fr->epsfac);
413     charge           = mdatoms->chargeA;
414
415     invsqrta         = fr->invsqrta;
416     dvda             = fr->dvda;
417     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
418     gbtab            = fr->gbtab.data;
419     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
420
421     /* Avoid stupid compiler warnings */
422     jnrA = jnrB = 0;
423     j_coord_offsetA = 0;
424     j_coord_offsetB = 0;
425
426     outeriter        = 0;
427     inneriter        = 0;
428
429     /* Start outer loop over neighborlists */
430     for(iidx=0; iidx<nri; iidx++)
431     {
432         /* Load shift vector for this list */
433         i_shift_offset   = DIM*shiftidx[iidx];
434
435         /* Load limits for loop over neighbors */
436         j_index_start    = jindex[iidx];
437         j_index_end      = jindex[iidx+1];
438
439         /* Get outer coordinate index */
440         inr              = iinr[iidx];
441         i_coord_offset   = DIM*inr;
442
443         /* Load i particle coords and add shift vector */
444         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
445
446         fix0             = _mm_setzero_pd();
447         fiy0             = _mm_setzero_pd();
448         fiz0             = _mm_setzero_pd();
449
450         /* Load parameters for i particles */
451         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
452         isai0            = _mm_load1_pd(invsqrta+inr+0);
453
454         dvdasum          = _mm_setzero_pd();
455
456         /* Start inner kernel loop */
457         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrA             = jjnr[jidx];
462             jnrB             = jjnr[jidx+1];
463             j_coord_offsetA  = DIM*jnrA;
464             j_coord_offsetB  = DIM*jnrB;
465
466             /* load j atom coordinates */
467             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
468                                               &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm_sub_pd(ix0,jx0);
472             dy00             = _mm_sub_pd(iy0,jy0);
473             dz00             = _mm_sub_pd(iz0,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
477
478             rinv00           = gmx_mm_invsqrt_pd(rsq00);
479
480             /* Load parameters for j particles */
481             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
482             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r00              = _mm_mul_pd(rsq00,rinv00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq00             = _mm_mul_pd(iq0,jq0);
492
493             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
494             isaprod          = _mm_mul_pd(isai0,isaj0);
495             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
496             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
497
498             /* Calculate generalized born table index - this is a separate table from the normal one,
499              * but we use the same procedure by multiplying r with scale and truncating to integer.
500              */
501             rt               = _mm_mul_pd(r00,gbscale);
502             gbitab           = _mm_cvttpd_epi32(rt);
503 #ifdef __XOP__
504             gbeps            = _mm_frcz_pd(rt);
505 #else
506             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
507 #endif
508             gbitab           = _mm_slli_epi32(gbitab,2);
509
510             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
511             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
512             GMX_MM_TRANSPOSE2_PD(Y,F);
513             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
514             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
515             GMX_MM_TRANSPOSE2_PD(G,H);
516             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
517             VV               = _mm_macc_pd(gbeps,Fp,Y);
518             vgb              = _mm_mul_pd(gbqqfactor,VV);
519
520             twogbeps         = _mm_add_pd(gbeps,gbeps);
521             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
522             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
523             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
524             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
525             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
526             velec            = _mm_mul_pd(qq00,rinv00);
527             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
528
529             fscal            = felec;
530
531             /* Update vectorial force */
532             fix0             = _mm_macc_pd(dx00,fscal,fix0);
533             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
534             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
535             
536             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
537                                                    _mm_mul_pd(dx00,fscal),
538                                                    _mm_mul_pd(dy00,fscal),
539                                                    _mm_mul_pd(dz00,fscal));
540
541             /* Inner loop uses 59 flops */
542         }
543
544         if(jidx<j_index_end)
545         {
546
547             jnrA             = jjnr[jidx];
548             j_coord_offsetA  = DIM*jnrA;
549
550             /* load j atom coordinates */
551             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
552                                               &jx0,&jy0,&jz0);
553
554             /* Calculate displacement vector */
555             dx00             = _mm_sub_pd(ix0,jx0);
556             dy00             = _mm_sub_pd(iy0,jy0);
557             dz00             = _mm_sub_pd(iz0,jz0);
558
559             /* Calculate squared distance and things based on it */
560             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
561
562             rinv00           = gmx_mm_invsqrt_pd(rsq00);
563
564             /* Load parameters for j particles */
565             jq0              = _mm_load_sd(charge+jnrA+0);
566             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             r00              = _mm_mul_pd(rsq00,rinv00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             qq00             = _mm_mul_pd(iq0,jq0);
576
577             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
578             isaprod          = _mm_mul_pd(isai0,isaj0);
579             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
580             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
581
582             /* Calculate generalized born table index - this is a separate table from the normal one,
583              * but we use the same procedure by multiplying r with scale and truncating to integer.
584              */
585             rt               = _mm_mul_pd(r00,gbscale);
586             gbitab           = _mm_cvttpd_epi32(rt);
587 #ifdef __XOP__
588             gbeps            = _mm_frcz_pd(rt);
589 #else
590             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
591 #endif
592             gbitab           = _mm_slli_epi32(gbitab,2);
593
594             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
595             F                = _mm_setzero_pd();
596             GMX_MM_TRANSPOSE2_PD(Y,F);
597             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
598             H                = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(G,H);
600             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
601             VV               = _mm_macc_pd(gbeps,Fp,Y);
602             vgb              = _mm_mul_pd(gbqqfactor,VV);
603
604             twogbeps         = _mm_add_pd(gbeps,gbeps);
605             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
606             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
607             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
608             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
609             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
610             velec            = _mm_mul_pd(qq00,rinv00);
611             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
612
613             fscal            = felec;
614
615             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
616
617             /* Update vectorial force */
618             fix0             = _mm_macc_pd(dx00,fscal,fix0);
619             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
620             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
621             
622             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
623                                                    _mm_mul_pd(dx00,fscal),
624                                                    _mm_mul_pd(dy00,fscal),
625                                                    _mm_mul_pd(dz00,fscal));
626
627             /* Inner loop uses 59 flops */
628         }
629
630         /* End of innermost loop */
631
632         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
633                                               f+i_coord_offset,fshift+i_shift_offset);
634
635         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
636         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
637
638         /* Increment number of inner iterations */
639         inneriter                  += j_index_end - j_index_start;
640
641         /* Outer loop uses 7 flops */
642     }
643
644     /* Increment number of outer iterations */
645     outeriter        += nri;
646
647     /* Update outer/inner flops */
648
649     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
650 }