ea36c2a7293495c4dfcc7ff5d0721232a22aad4e
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     invsqrta         = fr->invsqrta;
109     dvda             = fr->dvda;
110     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
111     gbtab            = fr->gbtab.data;
112     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_pd();
140         fiy0             = _mm_setzero_pd();
141         fiz0             = _mm_setzero_pd();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
145         isai0            = _mm_load1_pd(invsqrta+inr+0);
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vgbsum           = _mm_setzero_pd();
151         vvdwsum          = _mm_setzero_pd();
152         dvdasum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
198             isaprod          = _mm_mul_pd(isai0,isaj0);
199             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
200             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
201
202             /* Calculate generalized born table index - this is a separate table from the normal one,
203              * but we use the same procedure by multiplying r with scale and truncating to integer.
204              */
205             rt               = _mm_mul_pd(r00,gbscale);
206             gbitab           = _mm_cvttpd_epi32(rt);
207 #ifdef __XOP__
208             gbeps            = _mm_frcz_pd(rt);
209 #else
210             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
211 #endif
212             gbitab           = _mm_slli_epi32(gbitab,2);
213
214             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
215             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
216             GMX_MM_TRANSPOSE2_PD(Y,F);
217             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
218             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
219             GMX_MM_TRANSPOSE2_PD(G,H);
220             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
221             VV               = _mm_macc_pd(gbeps,Fp,Y);
222             vgb              = _mm_mul_pd(gbqqfactor,VV);
223
224             twogbeps         = _mm_add_pd(gbeps,gbeps);
225             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
226             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
227             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
228             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
229             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
230             velec            = _mm_mul_pd(qq00,rinv00);
231             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
232
233             /* LENNARD-JONES DISPERSION/REPULSION */
234
235             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
236             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
237             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
238             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
239             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             velecsum         = _mm_add_pd(velecsum,velec);
243             vgbsum           = _mm_add_pd(vgbsum,vgb);
244             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
245
246             fscal            = _mm_add_pd(felec,fvdw);
247
248             /* Update vectorial force */
249             fix0             = _mm_macc_pd(dx00,fscal,fix0);
250             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
251             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
252             
253             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
254                                                    _mm_mul_pd(dx00,fscal),
255                                                    _mm_mul_pd(dy00,fscal),
256                                                    _mm_mul_pd(dz00,fscal));
257
258             /* Inner loop uses 74 flops */
259         }
260
261         if(jidx<j_index_end)
262         {
263
264             jnrA             = jjnr[jidx];
265             j_coord_offsetA  = DIM*jnrA;
266
267             /* load j atom coordinates */
268             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
269                                               &jx0,&jy0,&jz0);
270
271             /* Calculate displacement vector */
272             dx00             = _mm_sub_pd(ix0,jx0);
273             dy00             = _mm_sub_pd(iy0,jy0);
274             dz00             = _mm_sub_pd(iz0,jz0);
275
276             /* Calculate squared distance and things based on it */
277             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
278
279             rinv00           = gmx_mm_invsqrt_pd(rsq00);
280
281             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
282
283             /* Load parameters for j particles */
284             jq0              = _mm_load_sd(charge+jnrA+0);
285             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
286             vdwjidx0A        = 2*vdwtype[jnrA+0];
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r00              = _mm_mul_pd(rsq00,rinv00);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq00             = _mm_mul_pd(iq0,jq0);
296             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
297
298             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
299             isaprod          = _mm_mul_pd(isai0,isaj0);
300             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
301             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
302
303             /* Calculate generalized born table index - this is a separate table from the normal one,
304              * but we use the same procedure by multiplying r with scale and truncating to integer.
305              */
306             rt               = _mm_mul_pd(r00,gbscale);
307             gbitab           = _mm_cvttpd_epi32(rt);
308 #ifdef __XOP__
309             gbeps            = _mm_frcz_pd(rt);
310 #else
311             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
312 #endif
313             gbitab           = _mm_slli_epi32(gbitab,2);
314
315             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
316             F                = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(Y,F);
318             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
319             H                = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(G,H);
321             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
322             VV               = _mm_macc_pd(gbeps,Fp,Y);
323             vgb              = _mm_mul_pd(gbqqfactor,VV);
324
325             twogbeps         = _mm_add_pd(gbeps,gbeps);
326             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
327             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
328             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
329             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
330             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
331             velec            = _mm_mul_pd(qq00,rinv00);
332             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
333
334             /* LENNARD-JONES DISPERSION/REPULSION */
335
336             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
337             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
338             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
339             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
340             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
344             velecsum         = _mm_add_pd(velecsum,velec);
345             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
346             vgbsum           = _mm_add_pd(vgbsum,vgb);
347             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
348             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
349
350             fscal            = _mm_add_pd(felec,fvdw);
351
352             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
353
354             /* Update vectorial force */
355             fix0             = _mm_macc_pd(dx00,fscal,fix0);
356             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
357             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
358             
359             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
360                                                    _mm_mul_pd(dx00,fscal),
361                                                    _mm_mul_pd(dy00,fscal),
362                                                    _mm_mul_pd(dz00,fscal));
363
364             /* Inner loop uses 74 flops */
365         }
366
367         /* End of innermost loop */
368
369         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
370                                               f+i_coord_offset,fshift+i_shift_offset);
371
372         ggid                        = gid[iidx];
373         /* Update potential energies */
374         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
375         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
376         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
377         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
378         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
379
380         /* Increment number of inner iterations */
381         inneriter                  += j_index_end - j_index_start;
382
383         /* Outer loop uses 10 flops */
384     }
385
386     /* Increment number of outer iterations */
387     outeriter        += nri;
388
389     /* Update outer/inner flops */
390
391     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
392 }
393 /*
394  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
395  * Electrostatics interaction: GeneralizedBorn
396  * VdW interaction:            LennardJones
397  * Geometry:                   Particle-Particle
398  * Calculate force/pot:        Force
399  */
400 void
401 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
402                     (t_nblist * gmx_restrict                nlist,
403                      rvec * gmx_restrict                    xx,
404                      rvec * gmx_restrict                    ff,
405                      t_forcerec * gmx_restrict              fr,
406                      t_mdatoms * gmx_restrict               mdatoms,
407                      nb_kernel_data_t * gmx_restrict        kernel_data,
408                      t_nrnb * gmx_restrict                  nrnb)
409 {
410     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
411      * just 0 for non-waters.
412      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
413      * jnr indices corresponding to data put in the four positions in the SIMD register.
414      */
415     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
416     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
417     int              jnrA,jnrB;
418     int              j_coord_offsetA,j_coord_offsetB;
419     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
420     real             rcutoff_scalar;
421     real             *shiftvec,*fshift,*x,*f;
422     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
423     int              vdwioffset0;
424     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
425     int              vdwjidx0A,vdwjidx0B;
426     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
427     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
428     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
429     real             *charge;
430     __m128i          gbitab;
431     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
432     __m128d          minushalf = _mm_set1_pd(-0.5);
433     real             *invsqrta,*dvda,*gbtab;
434     int              nvdwtype;
435     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
436     int              *vdwtype;
437     real             *vdwparam;
438     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
439     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
440     __m128i          vfitab;
441     __m128i          ifour       = _mm_set1_epi32(4);
442     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
443     real             *vftab;
444     __m128d          dummy_mask,cutoff_mask;
445     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
446     __m128d          one     = _mm_set1_pd(1.0);
447     __m128d          two     = _mm_set1_pd(2.0);
448     x                = xx[0];
449     f                = ff[0];
450
451     nri              = nlist->nri;
452     iinr             = nlist->iinr;
453     jindex           = nlist->jindex;
454     jjnr             = nlist->jjnr;
455     shiftidx         = nlist->shift;
456     gid              = nlist->gid;
457     shiftvec         = fr->shift_vec[0];
458     fshift           = fr->fshift[0];
459     facel            = _mm_set1_pd(fr->epsfac);
460     charge           = mdatoms->chargeA;
461     nvdwtype         = fr->ntype;
462     vdwparam         = fr->nbfp;
463     vdwtype          = mdatoms->typeA;
464
465     invsqrta         = fr->invsqrta;
466     dvda             = fr->dvda;
467     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
468     gbtab            = fr->gbtab.data;
469     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
470
471     /* Avoid stupid compiler warnings */
472     jnrA = jnrB = 0;
473     j_coord_offsetA = 0;
474     j_coord_offsetB = 0;
475
476     outeriter        = 0;
477     inneriter        = 0;
478
479     /* Start outer loop over neighborlists */
480     for(iidx=0; iidx<nri; iidx++)
481     {
482         /* Load shift vector for this list */
483         i_shift_offset   = DIM*shiftidx[iidx];
484
485         /* Load limits for loop over neighbors */
486         j_index_start    = jindex[iidx];
487         j_index_end      = jindex[iidx+1];
488
489         /* Get outer coordinate index */
490         inr              = iinr[iidx];
491         i_coord_offset   = DIM*inr;
492
493         /* Load i particle coords and add shift vector */
494         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
495
496         fix0             = _mm_setzero_pd();
497         fiy0             = _mm_setzero_pd();
498         fiz0             = _mm_setzero_pd();
499
500         /* Load parameters for i particles */
501         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
502         isai0            = _mm_load1_pd(invsqrta+inr+0);
503         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
504
505         dvdasum          = _mm_setzero_pd();
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             j_coord_offsetA  = DIM*jnrA;
515             j_coord_offsetB  = DIM*jnrB;
516
517             /* load j atom coordinates */
518             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
519                                               &jx0,&jy0,&jz0);
520
521             /* Calculate displacement vector */
522             dx00             = _mm_sub_pd(ix0,jx0);
523             dy00             = _mm_sub_pd(iy0,jy0);
524             dz00             = _mm_sub_pd(iz0,jz0);
525
526             /* Calculate squared distance and things based on it */
527             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
528
529             rinv00           = gmx_mm_invsqrt_pd(rsq00);
530
531             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
535             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
536             vdwjidx0A        = 2*vdwtype[jnrA+0];
537             vdwjidx0B        = 2*vdwtype[jnrB+0];
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             r00              = _mm_mul_pd(rsq00,rinv00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq00             = _mm_mul_pd(iq0,jq0);
547             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
548                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
549
550             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
551             isaprod          = _mm_mul_pd(isai0,isaj0);
552             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
553             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
554
555             /* Calculate generalized born table index - this is a separate table from the normal one,
556              * but we use the same procedure by multiplying r with scale and truncating to integer.
557              */
558             rt               = _mm_mul_pd(r00,gbscale);
559             gbitab           = _mm_cvttpd_epi32(rt);
560 #ifdef __XOP__
561             gbeps            = _mm_frcz_pd(rt);
562 #else
563             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
564 #endif
565             gbitab           = _mm_slli_epi32(gbitab,2);
566
567             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
568             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
569             GMX_MM_TRANSPOSE2_PD(Y,F);
570             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
571             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
572             GMX_MM_TRANSPOSE2_PD(G,H);
573             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
574             VV               = _mm_macc_pd(gbeps,Fp,Y);
575             vgb              = _mm_mul_pd(gbqqfactor,VV);
576
577             twogbeps         = _mm_add_pd(gbeps,gbeps);
578             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
579             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
580             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
581             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
582             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
583             velec            = _mm_mul_pd(qq00,rinv00);
584             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
585
586             /* LENNARD-JONES DISPERSION/REPULSION */
587
588             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
589             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
590
591             fscal            = _mm_add_pd(felec,fvdw);
592
593             /* Update vectorial force */
594             fix0             = _mm_macc_pd(dx00,fscal,fix0);
595             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
596             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
597             
598             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
599                                                    _mm_mul_pd(dx00,fscal),
600                                                    _mm_mul_pd(dy00,fscal),
601                                                    _mm_mul_pd(dz00,fscal));
602
603             /* Inner loop uses 67 flops */
604         }
605
606         if(jidx<j_index_end)
607         {
608
609             jnrA             = jjnr[jidx];
610             j_coord_offsetA  = DIM*jnrA;
611
612             /* load j atom coordinates */
613             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
614                                               &jx0,&jy0,&jz0);
615
616             /* Calculate displacement vector */
617             dx00             = _mm_sub_pd(ix0,jx0);
618             dy00             = _mm_sub_pd(iy0,jy0);
619             dz00             = _mm_sub_pd(iz0,jz0);
620
621             /* Calculate squared distance and things based on it */
622             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
623
624             rinv00           = gmx_mm_invsqrt_pd(rsq00);
625
626             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
627
628             /* Load parameters for j particles */
629             jq0              = _mm_load_sd(charge+jnrA+0);
630             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
631             vdwjidx0A        = 2*vdwtype[jnrA+0];
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             r00              = _mm_mul_pd(rsq00,rinv00);
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq00             = _mm_mul_pd(iq0,jq0);
641             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
642
643             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
644             isaprod          = _mm_mul_pd(isai0,isaj0);
645             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
646             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
647
648             /* Calculate generalized born table index - this is a separate table from the normal one,
649              * but we use the same procedure by multiplying r with scale and truncating to integer.
650              */
651             rt               = _mm_mul_pd(r00,gbscale);
652             gbitab           = _mm_cvttpd_epi32(rt);
653 #ifdef __XOP__
654             gbeps            = _mm_frcz_pd(rt);
655 #else
656             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
657 #endif
658             gbitab           = _mm_slli_epi32(gbitab,2);
659
660             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
661             F                = _mm_setzero_pd();
662             GMX_MM_TRANSPOSE2_PD(Y,F);
663             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
664             H                = _mm_setzero_pd();
665             GMX_MM_TRANSPOSE2_PD(G,H);
666             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
667             VV               = _mm_macc_pd(gbeps,Fp,Y);
668             vgb              = _mm_mul_pd(gbqqfactor,VV);
669
670             twogbeps         = _mm_add_pd(gbeps,gbeps);
671             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
672             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
673             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
674             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
675             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
676             velec            = _mm_mul_pd(qq00,rinv00);
677             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
678
679             /* LENNARD-JONES DISPERSION/REPULSION */
680
681             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
682             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
683
684             fscal            = _mm_add_pd(felec,fvdw);
685
686             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
687
688             /* Update vectorial force */
689             fix0             = _mm_macc_pd(dx00,fscal,fix0);
690             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
691             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
692             
693             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
694                                                    _mm_mul_pd(dx00,fscal),
695                                                    _mm_mul_pd(dy00,fscal),
696                                                    _mm_mul_pd(dz00,fscal));
697
698             /* Inner loop uses 67 flops */
699         }
700
701         /* End of innermost loop */
702
703         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
704                                               f+i_coord_offset,fshift+i_shift_offset);
705
706         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
707         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 7 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
721 }