Update copyright statements and change license to LGPL
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
127     gbtab            = fr->gbtab.data;
128     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         isai0            = _mm_load1_pd(invsqrta+inr+0);
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vgbsum           = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168         dvdasum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             r00              = _mm_mul_pd(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_pd(iq0,jq0);
210             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
212
213             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
214             isaprod          = _mm_mul_pd(isai0,isaj0);
215             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
216             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
217
218             /* Calculate generalized born table index - this is a separate table from the normal one,
219              * but we use the same procedure by multiplying r with scale and truncating to integer.
220              */
221             rt               = _mm_mul_pd(r00,gbscale);
222             gbitab           = _mm_cvttpd_epi32(rt);
223 #ifdef __XOP__
224             gbeps            = _mm_frcz_pd(rt);
225 #else
226             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
227 #endif
228             gbitab           = _mm_slli_epi32(gbitab,2);
229
230             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
231             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
232             GMX_MM_TRANSPOSE2_PD(Y,F);
233             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
234             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
235             GMX_MM_TRANSPOSE2_PD(G,H);
236             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
237             VV               = _mm_macc_pd(gbeps,Fp,Y);
238             vgb              = _mm_mul_pd(gbqqfactor,VV);
239
240             twogbeps         = _mm_add_pd(gbeps,gbeps);
241             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
242             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
243             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
244             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
245             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
246             velec            = _mm_mul_pd(qq00,rinv00);
247             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
248
249             /* LENNARD-JONES DISPERSION/REPULSION */
250
251             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
252             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
253             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
254             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
255             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm_add_pd(velecsum,velec);
259             vgbsum           = _mm_add_pd(vgbsum,vgb);
260             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
261
262             fscal            = _mm_add_pd(felec,fvdw);
263
264             /* Update vectorial force */
265             fix0             = _mm_macc_pd(dx00,fscal,fix0);
266             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
267             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
268             
269             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
270                                                    _mm_mul_pd(dx00,fscal),
271                                                    _mm_mul_pd(dy00,fscal),
272                                                    _mm_mul_pd(dz00,fscal));
273
274             /* Inner loop uses 74 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             jnrA             = jjnr[jidx];
281             j_coord_offsetA  = DIM*jnrA;
282
283             /* load j atom coordinates */
284             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
285                                               &jx0,&jy0,&jz0);
286
287             /* Calculate displacement vector */
288             dx00             = _mm_sub_pd(ix0,jx0);
289             dy00             = _mm_sub_pd(iy0,jy0);
290             dz00             = _mm_sub_pd(iz0,jz0);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
294
295             rinv00           = gmx_mm_invsqrt_pd(rsq00);
296
297             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
298
299             /* Load parameters for j particles */
300             jq0              = _mm_load_sd(charge+jnrA+0);
301             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
302             vdwjidx0A        = 2*vdwtype[jnrA+0];
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r00              = _mm_mul_pd(rsq00,rinv00);
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq00             = _mm_mul_pd(iq0,jq0);
312             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
313
314             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
315             isaprod          = _mm_mul_pd(isai0,isaj0);
316             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
317             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
318
319             /* Calculate generalized born table index - this is a separate table from the normal one,
320              * but we use the same procedure by multiplying r with scale and truncating to integer.
321              */
322             rt               = _mm_mul_pd(r00,gbscale);
323             gbitab           = _mm_cvttpd_epi32(rt);
324 #ifdef __XOP__
325             gbeps            = _mm_frcz_pd(rt);
326 #else
327             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
328 #endif
329             gbitab           = _mm_slli_epi32(gbitab,2);
330
331             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
332             F                = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(Y,F);
334             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
335             H                = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(G,H);
337             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
338             VV               = _mm_macc_pd(gbeps,Fp,Y);
339             vgb              = _mm_mul_pd(gbqqfactor,VV);
340
341             twogbeps         = _mm_add_pd(gbeps,gbeps);
342             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
343             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
344             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
345             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
346             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
347             velec            = _mm_mul_pd(qq00,rinv00);
348             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
349
350             /* LENNARD-JONES DISPERSION/REPULSION */
351
352             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
353             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
354             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
355             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
356             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
360             velecsum         = _mm_add_pd(velecsum,velec);
361             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
362             vgbsum           = _mm_add_pd(vgbsum,vgb);
363             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
364             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
365
366             fscal            = _mm_add_pd(felec,fvdw);
367
368             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
369
370             /* Update vectorial force */
371             fix0             = _mm_macc_pd(dx00,fscal,fix0);
372             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
373             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
374             
375             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
376                                                    _mm_mul_pd(dx00,fscal),
377                                                    _mm_mul_pd(dy00,fscal),
378                                                    _mm_mul_pd(dz00,fscal));
379
380             /* Inner loop uses 74 flops */
381         }
382
383         /* End of innermost loop */
384
385         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
386                                               f+i_coord_offset,fshift+i_shift_offset);
387
388         ggid                        = gid[iidx];
389         /* Update potential energies */
390         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
391         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
392         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
393         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
394         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
395
396         /* Increment number of inner iterations */
397         inneriter                  += j_index_end - j_index_start;
398
399         /* Outer loop uses 10 flops */
400     }
401
402     /* Increment number of outer iterations */
403     outeriter        += nri;
404
405     /* Update outer/inner flops */
406
407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
408 }
409 /*
410  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
411  * Electrostatics interaction: GeneralizedBorn
412  * VdW interaction:            LennardJones
413  * Geometry:                   Particle-Particle
414  * Calculate force/pot:        Force
415  */
416 void
417 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
418                     (t_nblist * gmx_restrict                nlist,
419                      rvec * gmx_restrict                    xx,
420                      rvec * gmx_restrict                    ff,
421                      t_forcerec * gmx_restrict              fr,
422                      t_mdatoms * gmx_restrict               mdatoms,
423                      nb_kernel_data_t * gmx_restrict        kernel_data,
424                      t_nrnb * gmx_restrict                  nrnb)
425 {
426     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
427      * just 0 for non-waters.
428      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
429      * jnr indices corresponding to data put in the four positions in the SIMD register.
430      */
431     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
432     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433     int              jnrA,jnrB;
434     int              j_coord_offsetA,j_coord_offsetB;
435     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
436     real             rcutoff_scalar;
437     real             *shiftvec,*fshift,*x,*f;
438     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
439     int              vdwioffset0;
440     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
441     int              vdwjidx0A,vdwjidx0B;
442     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
443     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
444     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
445     real             *charge;
446     __m128i          gbitab;
447     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
448     __m128d          minushalf = _mm_set1_pd(-0.5);
449     real             *invsqrta,*dvda,*gbtab;
450     int              nvdwtype;
451     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
452     int              *vdwtype;
453     real             *vdwparam;
454     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
455     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
456     __m128i          vfitab;
457     __m128i          ifour       = _mm_set1_epi32(4);
458     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
459     real             *vftab;
460     __m128d          dummy_mask,cutoff_mask;
461     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
462     __m128d          one     = _mm_set1_pd(1.0);
463     __m128d          two     = _mm_set1_pd(2.0);
464     x                = xx[0];
465     f                = ff[0];
466
467     nri              = nlist->nri;
468     iinr             = nlist->iinr;
469     jindex           = nlist->jindex;
470     jjnr             = nlist->jjnr;
471     shiftidx         = nlist->shift;
472     gid              = nlist->gid;
473     shiftvec         = fr->shift_vec[0];
474     fshift           = fr->fshift[0];
475     facel            = _mm_set1_pd(fr->epsfac);
476     charge           = mdatoms->chargeA;
477     nvdwtype         = fr->ntype;
478     vdwparam         = fr->nbfp;
479     vdwtype          = mdatoms->typeA;
480
481     invsqrta         = fr->invsqrta;
482     dvda             = fr->dvda;
483     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
484     gbtab            = fr->gbtab.data;
485     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
486
487     /* Avoid stupid compiler warnings */
488     jnrA = jnrB = 0;
489     j_coord_offsetA = 0;
490     j_coord_offsetB = 0;
491
492     outeriter        = 0;
493     inneriter        = 0;
494
495     /* Start outer loop over neighborlists */
496     for(iidx=0; iidx<nri; iidx++)
497     {
498         /* Load shift vector for this list */
499         i_shift_offset   = DIM*shiftidx[iidx];
500
501         /* Load limits for loop over neighbors */
502         j_index_start    = jindex[iidx];
503         j_index_end      = jindex[iidx+1];
504
505         /* Get outer coordinate index */
506         inr              = iinr[iidx];
507         i_coord_offset   = DIM*inr;
508
509         /* Load i particle coords and add shift vector */
510         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
511
512         fix0             = _mm_setzero_pd();
513         fiy0             = _mm_setzero_pd();
514         fiz0             = _mm_setzero_pd();
515
516         /* Load parameters for i particles */
517         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
518         isai0            = _mm_load1_pd(invsqrta+inr+0);
519         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
520
521         dvdasum          = _mm_setzero_pd();
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
525         {
526
527             /* Get j neighbor index, and coordinate index */
528             jnrA             = jjnr[jidx];
529             jnrB             = jjnr[jidx+1];
530             j_coord_offsetA  = DIM*jnrA;
531             j_coord_offsetB  = DIM*jnrB;
532
533             /* load j atom coordinates */
534             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
535                                               &jx0,&jy0,&jz0);
536
537             /* Calculate displacement vector */
538             dx00             = _mm_sub_pd(ix0,jx0);
539             dy00             = _mm_sub_pd(iy0,jy0);
540             dz00             = _mm_sub_pd(iz0,jz0);
541
542             /* Calculate squared distance and things based on it */
543             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
544
545             rinv00           = gmx_mm_invsqrt_pd(rsq00);
546
547             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
548
549             /* Load parameters for j particles */
550             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
551             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
552             vdwjidx0A        = 2*vdwtype[jnrA+0];
553             vdwjidx0B        = 2*vdwtype[jnrB+0];
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r00              = _mm_mul_pd(rsq00,rinv00);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq00             = _mm_mul_pd(iq0,jq0);
563             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
564                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
565
566             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
567             isaprod          = _mm_mul_pd(isai0,isaj0);
568             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
569             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
570
571             /* Calculate generalized born table index - this is a separate table from the normal one,
572              * but we use the same procedure by multiplying r with scale and truncating to integer.
573              */
574             rt               = _mm_mul_pd(r00,gbscale);
575             gbitab           = _mm_cvttpd_epi32(rt);
576 #ifdef __XOP__
577             gbeps            = _mm_frcz_pd(rt);
578 #else
579             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
580 #endif
581             gbitab           = _mm_slli_epi32(gbitab,2);
582
583             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
584             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
585             GMX_MM_TRANSPOSE2_PD(Y,F);
586             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
587             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
588             GMX_MM_TRANSPOSE2_PD(G,H);
589             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
590             VV               = _mm_macc_pd(gbeps,Fp,Y);
591             vgb              = _mm_mul_pd(gbqqfactor,VV);
592
593             twogbeps         = _mm_add_pd(gbeps,gbeps);
594             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
595             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
596             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
597             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
598             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
599             velec            = _mm_mul_pd(qq00,rinv00);
600             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
601
602             /* LENNARD-JONES DISPERSION/REPULSION */
603
604             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
605             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
606
607             fscal            = _mm_add_pd(felec,fvdw);
608
609             /* Update vectorial force */
610             fix0             = _mm_macc_pd(dx00,fscal,fix0);
611             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
612             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
613             
614             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
615                                                    _mm_mul_pd(dx00,fscal),
616                                                    _mm_mul_pd(dy00,fscal),
617                                                    _mm_mul_pd(dz00,fscal));
618
619             /* Inner loop uses 67 flops */
620         }
621
622         if(jidx<j_index_end)
623         {
624
625             jnrA             = jjnr[jidx];
626             j_coord_offsetA  = DIM*jnrA;
627
628             /* load j atom coordinates */
629             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
630                                               &jx0,&jy0,&jz0);
631
632             /* Calculate displacement vector */
633             dx00             = _mm_sub_pd(ix0,jx0);
634             dy00             = _mm_sub_pd(iy0,jy0);
635             dz00             = _mm_sub_pd(iz0,jz0);
636
637             /* Calculate squared distance and things based on it */
638             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
639
640             rinv00           = gmx_mm_invsqrt_pd(rsq00);
641
642             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
643
644             /* Load parameters for j particles */
645             jq0              = _mm_load_sd(charge+jnrA+0);
646             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
647             vdwjidx0A        = 2*vdwtype[jnrA+0];
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             r00              = _mm_mul_pd(rsq00,rinv00);
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq00             = _mm_mul_pd(iq0,jq0);
657             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
658
659             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
660             isaprod          = _mm_mul_pd(isai0,isaj0);
661             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
662             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
663
664             /* Calculate generalized born table index - this is a separate table from the normal one,
665              * but we use the same procedure by multiplying r with scale and truncating to integer.
666              */
667             rt               = _mm_mul_pd(r00,gbscale);
668             gbitab           = _mm_cvttpd_epi32(rt);
669 #ifdef __XOP__
670             gbeps            = _mm_frcz_pd(rt);
671 #else
672             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
673 #endif
674             gbitab           = _mm_slli_epi32(gbitab,2);
675
676             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
677             F                = _mm_setzero_pd();
678             GMX_MM_TRANSPOSE2_PD(Y,F);
679             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
680             H                = _mm_setzero_pd();
681             GMX_MM_TRANSPOSE2_PD(G,H);
682             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
683             VV               = _mm_macc_pd(gbeps,Fp,Y);
684             vgb              = _mm_mul_pd(gbqqfactor,VV);
685
686             twogbeps         = _mm_add_pd(gbeps,gbeps);
687             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
688             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
689             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
690             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
691             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
692             velec            = _mm_mul_pd(qq00,rinv00);
693             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
694
695             /* LENNARD-JONES DISPERSION/REPULSION */
696
697             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
698             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
699
700             fscal            = _mm_add_pd(felec,fvdw);
701
702             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
703
704             /* Update vectorial force */
705             fix0             = _mm_macc_pd(dx00,fscal,fix0);
706             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
707             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
708             
709             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
710                                                    _mm_mul_pd(dx00,fscal),
711                                                    _mm_mul_pd(dy00,fscal),
712                                                    _mm_mul_pd(dz00,fscal));
713
714             /* Inner loop uses 67 flops */
715         }
716
717         /* End of innermost loop */
718
719         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
720                                               f+i_coord_offset,fshift+i_shift_offset);
721
722         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
723         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
724
725         /* Increment number of inner iterations */
726         inneriter                  += j_index_end - j_index_start;
727
728         /* Outer loop uses 7 flops */
729     }
730
731     /* Increment number of outer iterations */
732     outeriter        += nri;
733
734     /* Update outer/inner flops */
735
736     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
737 }