Update copyright statements and change license to LGPL
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
130     gbtab            = fr->gbtab.data;
131     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         isai0            = _mm_load1_pd(invsqrta+inr+0);
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_pd();
169         vgbsum           = _mm_setzero_pd();
170         vvdwsum          = _mm_setzero_pd();
171         dvdasum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_pd(rsq00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = _mm_mul_pd(r00,vftabscale);
216             vfitab           = _mm_cvttpd_epi32(rt);
217 #ifdef __XOP__
218             vfeps            = _mm_frcz_pd(rt);
219 #else
220             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
221 #endif
222             twovfeps         = _mm_add_pd(vfeps,vfeps);
223             vfitab           = _mm_slli_epi32(vfitab,3);
224
225             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
226             isaprod          = _mm_mul_pd(isai0,isaj0);
227             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
228             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
229
230             /* Calculate generalized born table index - this is a separate table from the normal one,
231              * but we use the same procedure by multiplying r with scale and truncating to integer.
232              */
233             rt               = _mm_mul_pd(r00,gbscale);
234             gbitab           = _mm_cvttpd_epi32(rt);
235 #ifdef __XOP__
236             gbeps            = _mm_frcz_pd(rt);
237 #else
238             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
239 #endif
240             gbitab           = _mm_slli_epi32(gbitab,2);
241
242             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
243             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
244             GMX_MM_TRANSPOSE2_PD(Y,F);
245             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
246             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
247             GMX_MM_TRANSPOSE2_PD(G,H);
248             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
249             VV               = _mm_macc_pd(gbeps,Fp,Y);
250             vgb              = _mm_mul_pd(gbqqfactor,VV);
251
252             twogbeps         = _mm_add_pd(gbeps,gbeps);
253             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
254             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
255             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
256             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
257             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
258             velec            = _mm_mul_pd(qq00,rinv00);
259             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
260
261             /* CUBIC SPLINE TABLE DISPERSION */
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw6            = _mm_mul_pd(c6_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw6            = _mm_mul_pd(c6_00,FF);
273
274             /* CUBIC SPLINE TABLE REPULSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
278             GMX_MM_TRANSPOSE2_PD(Y,F);
279             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
280             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
281             GMX_MM_TRANSPOSE2_PD(G,H);
282             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
283             VV               = _mm_macc_pd(vfeps,Fp,Y);
284             vvdw12           = _mm_mul_pd(c12_00,VV);
285             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
286             fvdw12           = _mm_mul_pd(c12_00,FF);
287             vvdw             = _mm_add_pd(vvdw12,vvdw6);
288             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velecsum         = _mm_add_pd(velecsum,velec);
292             vgbsum           = _mm_add_pd(vgbsum,vgb);
293             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
294
295             fscal            = _mm_add_pd(felec,fvdw);
296
297             /* Update vectorial force */
298             fix0             = _mm_macc_pd(dx00,fscal,fix0);
299             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
300             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
301             
302             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
303                                                    _mm_mul_pd(dx00,fscal),
304                                                    _mm_mul_pd(dy00,fscal),
305                                                    _mm_mul_pd(dz00,fscal));
306
307             /* Inner loop uses 95 flops */
308         }
309
310         if(jidx<j_index_end)
311         {
312
313             jnrA             = jjnr[jidx];
314             j_coord_offsetA  = DIM*jnrA;
315
316             /* load j atom coordinates */
317             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
318                                               &jx0,&jy0,&jz0);
319
320             /* Calculate displacement vector */
321             dx00             = _mm_sub_pd(ix0,jx0);
322             dy00             = _mm_sub_pd(iy0,jy0);
323             dz00             = _mm_sub_pd(iz0,jz0);
324
325             /* Calculate squared distance and things based on it */
326             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
327
328             rinv00           = gmx_mm_invsqrt_pd(rsq00);
329
330             /* Load parameters for j particles */
331             jq0              = _mm_load_sd(charge+jnrA+0);
332             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             r00              = _mm_mul_pd(rsq00,rinv00);
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq00             = _mm_mul_pd(iq0,jq0);
343             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
344
345             /* Calculate table index by multiplying r with table scale and truncate to integer */
346             rt               = _mm_mul_pd(r00,vftabscale);
347             vfitab           = _mm_cvttpd_epi32(rt);
348 #ifdef __XOP__
349             vfeps            = _mm_frcz_pd(rt);
350 #else
351             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
352 #endif
353             twovfeps         = _mm_add_pd(vfeps,vfeps);
354             vfitab           = _mm_slli_epi32(vfitab,3);
355
356             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
357             isaprod          = _mm_mul_pd(isai0,isaj0);
358             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
359             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
360
361             /* Calculate generalized born table index - this is a separate table from the normal one,
362              * but we use the same procedure by multiplying r with scale and truncating to integer.
363              */
364             rt               = _mm_mul_pd(r00,gbscale);
365             gbitab           = _mm_cvttpd_epi32(rt);
366 #ifdef __XOP__
367             gbeps            = _mm_frcz_pd(rt);
368 #else
369             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
370 #endif
371             gbitab           = _mm_slli_epi32(gbitab,2);
372
373             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
374             F                = _mm_setzero_pd();
375             GMX_MM_TRANSPOSE2_PD(Y,F);
376             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
377             H                = _mm_setzero_pd();
378             GMX_MM_TRANSPOSE2_PD(G,H);
379             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
380             VV               = _mm_macc_pd(gbeps,Fp,Y);
381             vgb              = _mm_mul_pd(gbqqfactor,VV);
382
383             twogbeps         = _mm_add_pd(gbeps,gbeps);
384             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
385             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
386             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
387             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
388             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
389             velec            = _mm_mul_pd(qq00,rinv00);
390             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
391
392             /* CUBIC SPLINE TABLE DISPERSION */
393             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
394             F                = _mm_setzero_pd();
395             GMX_MM_TRANSPOSE2_PD(Y,F);
396             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
397             H                = _mm_setzero_pd();
398             GMX_MM_TRANSPOSE2_PD(G,H);
399             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
400             VV               = _mm_macc_pd(vfeps,Fp,Y);
401             vvdw6            = _mm_mul_pd(c6_00,VV);
402             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
403             fvdw6            = _mm_mul_pd(c6_00,FF);
404
405             /* CUBIC SPLINE TABLE REPULSION */
406             vfitab           = _mm_add_epi32(vfitab,ifour);
407             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
408             F                = _mm_setzero_pd();
409             GMX_MM_TRANSPOSE2_PD(Y,F);
410             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
411             H                = _mm_setzero_pd();
412             GMX_MM_TRANSPOSE2_PD(G,H);
413             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
414             VV               = _mm_macc_pd(vfeps,Fp,Y);
415             vvdw12           = _mm_mul_pd(c12_00,VV);
416             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
417             fvdw12           = _mm_mul_pd(c12_00,FF);
418             vvdw             = _mm_add_pd(vvdw12,vvdw6);
419             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
423             velecsum         = _mm_add_pd(velecsum,velec);
424             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
425             vgbsum           = _mm_add_pd(vgbsum,vgb);
426             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
427             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
428
429             fscal            = _mm_add_pd(felec,fvdw);
430
431             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
432
433             /* Update vectorial force */
434             fix0             = _mm_macc_pd(dx00,fscal,fix0);
435             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
436             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
437             
438             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
439                                                    _mm_mul_pd(dx00,fscal),
440                                                    _mm_mul_pd(dy00,fscal),
441                                                    _mm_mul_pd(dz00,fscal));
442
443             /* Inner loop uses 95 flops */
444         }
445
446         /* End of innermost loop */
447
448         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
449                                               f+i_coord_offset,fshift+i_shift_offset);
450
451         ggid                        = gid[iidx];
452         /* Update potential energies */
453         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
454         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
455         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
456         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
457         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
458
459         /* Increment number of inner iterations */
460         inneriter                  += j_index_end - j_index_start;
461
462         /* Outer loop uses 10 flops */
463     }
464
465     /* Increment number of outer iterations */
466     outeriter        += nri;
467
468     /* Update outer/inner flops */
469
470     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
471 }
472 /*
473  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
474  * Electrostatics interaction: GeneralizedBorn
475  * VdW interaction:            CubicSplineTable
476  * Geometry:                   Particle-Particle
477  * Calculate force/pot:        Force
478  */
479 void
480 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
481                     (t_nblist * gmx_restrict                nlist,
482                      rvec * gmx_restrict                    xx,
483                      rvec * gmx_restrict                    ff,
484                      t_forcerec * gmx_restrict              fr,
485                      t_mdatoms * gmx_restrict               mdatoms,
486                      nb_kernel_data_t * gmx_restrict        kernel_data,
487                      t_nrnb * gmx_restrict                  nrnb)
488 {
489     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
490      * just 0 for non-waters.
491      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
492      * jnr indices corresponding to data put in the four positions in the SIMD register.
493      */
494     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
495     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
496     int              jnrA,jnrB;
497     int              j_coord_offsetA,j_coord_offsetB;
498     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
499     real             rcutoff_scalar;
500     real             *shiftvec,*fshift,*x,*f;
501     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
502     int              vdwioffset0;
503     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
504     int              vdwjidx0A,vdwjidx0B;
505     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
506     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
507     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
508     real             *charge;
509     __m128i          gbitab;
510     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
511     __m128d          minushalf = _mm_set1_pd(-0.5);
512     real             *invsqrta,*dvda,*gbtab;
513     int              nvdwtype;
514     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
515     int              *vdwtype;
516     real             *vdwparam;
517     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
518     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
519     __m128i          vfitab;
520     __m128i          ifour       = _mm_set1_epi32(4);
521     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
522     real             *vftab;
523     __m128d          dummy_mask,cutoff_mask;
524     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
525     __m128d          one     = _mm_set1_pd(1.0);
526     __m128d          two     = _mm_set1_pd(2.0);
527     x                = xx[0];
528     f                = ff[0];
529
530     nri              = nlist->nri;
531     iinr             = nlist->iinr;
532     jindex           = nlist->jindex;
533     jjnr             = nlist->jjnr;
534     shiftidx         = nlist->shift;
535     gid              = nlist->gid;
536     shiftvec         = fr->shift_vec[0];
537     fshift           = fr->fshift[0];
538     facel            = _mm_set1_pd(fr->epsfac);
539     charge           = mdatoms->chargeA;
540     nvdwtype         = fr->ntype;
541     vdwparam         = fr->nbfp;
542     vdwtype          = mdatoms->typeA;
543
544     vftab            = kernel_data->table_vdw->data;
545     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
546
547     invsqrta         = fr->invsqrta;
548     dvda             = fr->dvda;
549     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
550     gbtab            = fr->gbtab.data;
551     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
552
553     /* Avoid stupid compiler warnings */
554     jnrA = jnrB = 0;
555     j_coord_offsetA = 0;
556     j_coord_offsetB = 0;
557
558     outeriter        = 0;
559     inneriter        = 0;
560
561     /* Start outer loop over neighborlists */
562     for(iidx=0; iidx<nri; iidx++)
563     {
564         /* Load shift vector for this list */
565         i_shift_offset   = DIM*shiftidx[iidx];
566
567         /* Load limits for loop over neighbors */
568         j_index_start    = jindex[iidx];
569         j_index_end      = jindex[iidx+1];
570
571         /* Get outer coordinate index */
572         inr              = iinr[iidx];
573         i_coord_offset   = DIM*inr;
574
575         /* Load i particle coords and add shift vector */
576         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
577
578         fix0             = _mm_setzero_pd();
579         fiy0             = _mm_setzero_pd();
580         fiz0             = _mm_setzero_pd();
581
582         /* Load parameters for i particles */
583         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
584         isai0            = _mm_load1_pd(invsqrta+inr+0);
585         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
586
587         dvdasum          = _mm_setzero_pd();
588
589         /* Start inner kernel loop */
590         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
591         {
592
593             /* Get j neighbor index, and coordinate index */
594             jnrA             = jjnr[jidx];
595             jnrB             = jjnr[jidx+1];
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598
599             /* load j atom coordinates */
600             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
601                                               &jx0,&jy0,&jz0);
602
603             /* Calculate displacement vector */
604             dx00             = _mm_sub_pd(ix0,jx0);
605             dy00             = _mm_sub_pd(iy0,jy0);
606             dz00             = _mm_sub_pd(iz0,jz0);
607
608             /* Calculate squared distance and things based on it */
609             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
610
611             rinv00           = gmx_mm_invsqrt_pd(rsq00);
612
613             /* Load parameters for j particles */
614             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
615             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
616             vdwjidx0A        = 2*vdwtype[jnrA+0];
617             vdwjidx0B        = 2*vdwtype[jnrB+0];
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r00              = _mm_mul_pd(rsq00,rinv00);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq00             = _mm_mul_pd(iq0,jq0);
627             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
628                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
629
630             /* Calculate table index by multiplying r with table scale and truncate to integer */
631             rt               = _mm_mul_pd(r00,vftabscale);
632             vfitab           = _mm_cvttpd_epi32(rt);
633 #ifdef __XOP__
634             vfeps            = _mm_frcz_pd(rt);
635 #else
636             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
637 #endif
638             twovfeps         = _mm_add_pd(vfeps,vfeps);
639             vfitab           = _mm_slli_epi32(vfitab,3);
640
641             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
642             isaprod          = _mm_mul_pd(isai0,isaj0);
643             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
644             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
645
646             /* Calculate generalized born table index - this is a separate table from the normal one,
647              * but we use the same procedure by multiplying r with scale and truncating to integer.
648              */
649             rt               = _mm_mul_pd(r00,gbscale);
650             gbitab           = _mm_cvttpd_epi32(rt);
651 #ifdef __XOP__
652             gbeps            = _mm_frcz_pd(rt);
653 #else
654             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
655 #endif
656             gbitab           = _mm_slli_epi32(gbitab,2);
657
658             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
659             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
660             GMX_MM_TRANSPOSE2_PD(Y,F);
661             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
662             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
663             GMX_MM_TRANSPOSE2_PD(G,H);
664             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
665             VV               = _mm_macc_pd(gbeps,Fp,Y);
666             vgb              = _mm_mul_pd(gbqqfactor,VV);
667
668             twogbeps         = _mm_add_pd(gbeps,gbeps);
669             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
670             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
671             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
672             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
673             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
674             velec            = _mm_mul_pd(qq00,rinv00);
675             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
676
677             /* CUBIC SPLINE TABLE DISPERSION */
678             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
679             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
680             GMX_MM_TRANSPOSE2_PD(Y,F);
681             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
682             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
683             GMX_MM_TRANSPOSE2_PD(G,H);
684             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
685             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
686             fvdw6            = _mm_mul_pd(c6_00,FF);
687
688             /* CUBIC SPLINE TABLE REPULSION */
689             vfitab           = _mm_add_epi32(vfitab,ifour);
690             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
691             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
692             GMX_MM_TRANSPOSE2_PD(Y,F);
693             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
694             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
695             GMX_MM_TRANSPOSE2_PD(G,H);
696             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
697             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
698             fvdw12           = _mm_mul_pd(c12_00,FF);
699             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
700
701             fscal            = _mm_add_pd(felec,fvdw);
702
703             /* Update vectorial force */
704             fix0             = _mm_macc_pd(dx00,fscal,fix0);
705             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
706             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
707             
708             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
709                                                    _mm_mul_pd(dx00,fscal),
710                                                    _mm_mul_pd(dy00,fscal),
711                                                    _mm_mul_pd(dz00,fscal));
712
713             /* Inner loop uses 85 flops */
714         }
715
716         if(jidx<j_index_end)
717         {
718
719             jnrA             = jjnr[jidx];
720             j_coord_offsetA  = DIM*jnrA;
721
722             /* load j atom coordinates */
723             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
724                                               &jx0,&jy0,&jz0);
725
726             /* Calculate displacement vector */
727             dx00             = _mm_sub_pd(ix0,jx0);
728             dy00             = _mm_sub_pd(iy0,jy0);
729             dz00             = _mm_sub_pd(iz0,jz0);
730
731             /* Calculate squared distance and things based on it */
732             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
733
734             rinv00           = gmx_mm_invsqrt_pd(rsq00);
735
736             /* Load parameters for j particles */
737             jq0              = _mm_load_sd(charge+jnrA+0);
738             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
739             vdwjidx0A        = 2*vdwtype[jnrA+0];
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             r00              = _mm_mul_pd(rsq00,rinv00);
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq00             = _mm_mul_pd(iq0,jq0);
749             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
750
751             /* Calculate table index by multiplying r with table scale and truncate to integer */
752             rt               = _mm_mul_pd(r00,vftabscale);
753             vfitab           = _mm_cvttpd_epi32(rt);
754 #ifdef __XOP__
755             vfeps            = _mm_frcz_pd(rt);
756 #else
757             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
758 #endif
759             twovfeps         = _mm_add_pd(vfeps,vfeps);
760             vfitab           = _mm_slli_epi32(vfitab,3);
761
762             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
763             isaprod          = _mm_mul_pd(isai0,isaj0);
764             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
765             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
766
767             /* Calculate generalized born table index - this is a separate table from the normal one,
768              * but we use the same procedure by multiplying r with scale and truncating to integer.
769              */
770             rt               = _mm_mul_pd(r00,gbscale);
771             gbitab           = _mm_cvttpd_epi32(rt);
772 #ifdef __XOP__
773             gbeps            = _mm_frcz_pd(rt);
774 #else
775             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
776 #endif
777             gbitab           = _mm_slli_epi32(gbitab,2);
778
779             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
780             F                = _mm_setzero_pd();
781             GMX_MM_TRANSPOSE2_PD(Y,F);
782             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
783             H                = _mm_setzero_pd();
784             GMX_MM_TRANSPOSE2_PD(G,H);
785             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
786             VV               = _mm_macc_pd(gbeps,Fp,Y);
787             vgb              = _mm_mul_pd(gbqqfactor,VV);
788
789             twogbeps         = _mm_add_pd(gbeps,gbeps);
790             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
791             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
792             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
793             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
794             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
795             velec            = _mm_mul_pd(qq00,rinv00);
796             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
797
798             /* CUBIC SPLINE TABLE DISPERSION */
799             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
800             F                = _mm_setzero_pd();
801             GMX_MM_TRANSPOSE2_PD(Y,F);
802             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
803             H                = _mm_setzero_pd();
804             GMX_MM_TRANSPOSE2_PD(G,H);
805             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
806             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
807             fvdw6            = _mm_mul_pd(c6_00,FF);
808
809             /* CUBIC SPLINE TABLE REPULSION */
810             vfitab           = _mm_add_epi32(vfitab,ifour);
811             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
812             F                = _mm_setzero_pd();
813             GMX_MM_TRANSPOSE2_PD(Y,F);
814             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
815             H                = _mm_setzero_pd();
816             GMX_MM_TRANSPOSE2_PD(G,H);
817             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
818             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
819             fvdw12           = _mm_mul_pd(c12_00,FF);
820             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
821
822             fscal            = _mm_add_pd(felec,fvdw);
823
824             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
825
826             /* Update vectorial force */
827             fix0             = _mm_macc_pd(dx00,fscal,fix0);
828             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
829             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
830             
831             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
832                                                    _mm_mul_pd(dx00,fscal),
833                                                    _mm_mul_pd(dy00,fscal),
834                                                    _mm_mul_pd(dz00,fscal));
835
836             /* Inner loop uses 85 flops */
837         }
838
839         /* End of innermost loop */
840
841         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
842                                               f+i_coord_offset,fshift+i_shift_offset);
843
844         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
845         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
846
847         /* Increment number of inner iterations */
848         inneriter                  += j_index_end - j_index_start;
849
850         /* Outer loop uses 7 flops */
851     }
852
853     /* Increment number of outer iterations */
854     outeriter        += nri;
855
856     /* Update outer/inner flops */
857
858     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
859 }