0ded4dccc80b356974a29d739ac3066b16849e1a
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomW3W3_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Water3
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     int              vdwjidx1A,vdwjidx1B;
75     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
76     int              vdwjidx2A,vdwjidx2B;
77     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
78     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
80     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
81     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
83     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
84     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
86     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
118     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
119     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
120
121     jq0              = _mm_set1_pd(charge[inr+0]);
122     jq1              = _mm_set1_pd(charge[inr+1]);
123     jq2              = _mm_set1_pd(charge[inr+2]);
124     qq00             = _mm_mul_pd(iq0,jq0);
125     qq01             = _mm_mul_pd(iq0,jq1);
126     qq02             = _mm_mul_pd(iq0,jq2);
127     qq10             = _mm_mul_pd(iq1,jq0);
128     qq11             = _mm_mul_pd(iq1,jq1);
129     qq12             = _mm_mul_pd(iq1,jq2);
130     qq20             = _mm_mul_pd(iq2,jq0);
131     qq21             = _mm_mul_pd(iq2,jq1);
132     qq22             = _mm_mul_pd(iq2,jq2);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx01             = _mm_sub_pd(ix0,jx1);
192             dy01             = _mm_sub_pd(iy0,jy1);
193             dz01             = _mm_sub_pd(iz0,jz1);
194             dx02             = _mm_sub_pd(ix0,jx2);
195             dy02             = _mm_sub_pd(iy0,jy2);
196             dz02             = _mm_sub_pd(iz0,jz2);
197             dx10             = _mm_sub_pd(ix1,jx0);
198             dy10             = _mm_sub_pd(iy1,jy0);
199             dz10             = _mm_sub_pd(iz1,jz0);
200             dx11             = _mm_sub_pd(ix1,jx1);
201             dy11             = _mm_sub_pd(iy1,jy1);
202             dz11             = _mm_sub_pd(iz1,jz1);
203             dx12             = _mm_sub_pd(ix1,jx2);
204             dy12             = _mm_sub_pd(iy1,jy2);
205             dz12             = _mm_sub_pd(iz1,jz2);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209             dx21             = _mm_sub_pd(ix2,jx1);
210             dy21             = _mm_sub_pd(iy2,jy1);
211             dz21             = _mm_sub_pd(iz2,jz1);
212             dx22             = _mm_sub_pd(ix2,jx2);
213             dy22             = _mm_sub_pd(iy2,jy2);
214             dz22             = _mm_sub_pd(iz2,jz2);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
218             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
219             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
222             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
223             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
224             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
225             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
226
227             rinv00           = gmx_mm_invsqrt_pd(rsq00);
228             rinv01           = gmx_mm_invsqrt_pd(rsq01);
229             rinv02           = gmx_mm_invsqrt_pd(rsq02);
230             rinv10           = gmx_mm_invsqrt_pd(rsq10);
231             rinv11           = gmx_mm_invsqrt_pd(rsq11);
232             rinv12           = gmx_mm_invsqrt_pd(rsq12);
233             rinv20           = gmx_mm_invsqrt_pd(rsq20);
234             rinv21           = gmx_mm_invsqrt_pd(rsq21);
235             rinv22           = gmx_mm_invsqrt_pd(rsq22);
236
237             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
238             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
239             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
240             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
241             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
242             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
243             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
244             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
245             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
246
247             fjx0             = _mm_setzero_pd();
248             fjy0             = _mm_setzero_pd();
249             fjz0             = _mm_setzero_pd();
250             fjx1             = _mm_setzero_pd();
251             fjy1             = _mm_setzero_pd();
252             fjz1             = _mm_setzero_pd();
253             fjx2             = _mm_setzero_pd();
254             fjy2             = _mm_setzero_pd();
255             fjz2             = _mm_setzero_pd();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm_mul_pd(r00,ewtabscale);
267             ewitab           = _mm_cvttpd_epi32(ewrt);
268 #ifdef __XOP__
269             eweps            = _mm_frcz_pd(ewrt);
270 #else
271             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
272 #endif
273             twoeweps         = _mm_add_pd(eweps,eweps);
274             ewitab           = _mm_slli_epi32(ewitab,2);
275             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
276             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
277             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
278             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
279             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
281             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
282             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
283             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
284             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm_add_pd(velecsum,velec);
288
289             fscal            = felec;
290
291             /* Update vectorial force */
292             fix0             = _mm_macc_pd(dx00,fscal,fix0);
293             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
294             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
295             
296             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
297             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
298             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r01              = _mm_mul_pd(rsq01,rinv01);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r01,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311 #ifdef __XOP__
312             eweps            = _mm_frcz_pd(ewrt);
313 #else
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315 #endif
316             twoeweps         = _mm_add_pd(eweps,eweps);
317             ewitab           = _mm_slli_epi32(ewitab,2);
318             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
319             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
320             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
321             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
322             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
323             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
324             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
325             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
326             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
327             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Update vectorial force */
335             fix0             = _mm_macc_pd(dx01,fscal,fix0);
336             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
337             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
338             
339             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
340             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
341             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r02              = _mm_mul_pd(rsq02,rinv02);
348
349             /* EWALD ELECTROSTATICS */
350
351             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
352             ewrt             = _mm_mul_pd(r02,ewtabscale);
353             ewitab           = _mm_cvttpd_epi32(ewrt);
354 #ifdef __XOP__
355             eweps            = _mm_frcz_pd(ewrt);
356 #else
357             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
358 #endif
359             twoeweps         = _mm_add_pd(eweps,eweps);
360             ewitab           = _mm_slli_epi32(ewitab,2);
361             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
362             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
363             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
364             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
365             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
366             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
367             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
368             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
369             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
370             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_pd(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Update vectorial force */
378             fix0             = _mm_macc_pd(dx02,fscal,fix0);
379             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
380             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
381             
382             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
383             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
384             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r10              = _mm_mul_pd(rsq10,rinv10);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm_mul_pd(r10,ewtabscale);
396             ewitab           = _mm_cvttpd_epi32(ewrt);
397 #ifdef __XOP__
398             eweps            = _mm_frcz_pd(ewrt);
399 #else
400             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
401 #endif
402             twoeweps         = _mm_add_pd(eweps,eweps);
403             ewitab           = _mm_slli_epi32(ewitab,2);
404             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
405             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
406             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
407             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
408             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
409             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
410             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
411             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
412             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
413             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
414
415             /* Update potential sum for this i atom from the interaction with this j atom. */
416             velecsum         = _mm_add_pd(velecsum,velec);
417
418             fscal            = felec;
419
420             /* Update vectorial force */
421             fix1             = _mm_macc_pd(dx10,fscal,fix1);
422             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
423             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
424             
425             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
426             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
427             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             r11              = _mm_mul_pd(rsq11,rinv11);
434
435             /* EWALD ELECTROSTATICS */
436
437             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
438             ewrt             = _mm_mul_pd(r11,ewtabscale);
439             ewitab           = _mm_cvttpd_epi32(ewrt);
440 #ifdef __XOP__
441             eweps            = _mm_frcz_pd(ewrt);
442 #else
443             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
444 #endif
445             twoeweps         = _mm_add_pd(eweps,eweps);
446             ewitab           = _mm_slli_epi32(ewitab,2);
447             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
448             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
449             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
450             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
451             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
452             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
453             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
454             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
455             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
456             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velecsum         = _mm_add_pd(velecsum,velec);
460
461             fscal            = felec;
462
463             /* Update vectorial force */
464             fix1             = _mm_macc_pd(dx11,fscal,fix1);
465             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
466             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
467             
468             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
469             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
470             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             r12              = _mm_mul_pd(rsq12,rinv12);
477
478             /* EWALD ELECTROSTATICS */
479
480             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
481             ewrt             = _mm_mul_pd(r12,ewtabscale);
482             ewitab           = _mm_cvttpd_epi32(ewrt);
483 #ifdef __XOP__
484             eweps            = _mm_frcz_pd(ewrt);
485 #else
486             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
487 #endif
488             twoeweps         = _mm_add_pd(eweps,eweps);
489             ewitab           = _mm_slli_epi32(ewitab,2);
490             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
491             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
492             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
493             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
494             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
495             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
496             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
497             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
498             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
499             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velecsum         = _mm_add_pd(velecsum,velec);
503
504             fscal            = felec;
505
506             /* Update vectorial force */
507             fix1             = _mm_macc_pd(dx12,fscal,fix1);
508             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
509             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
510             
511             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
512             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
513             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r20              = _mm_mul_pd(rsq20,rinv20);
520
521             /* EWALD ELECTROSTATICS */
522
523             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
524             ewrt             = _mm_mul_pd(r20,ewtabscale);
525             ewitab           = _mm_cvttpd_epi32(ewrt);
526 #ifdef __XOP__
527             eweps            = _mm_frcz_pd(ewrt);
528 #else
529             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
530 #endif
531             twoeweps         = _mm_add_pd(eweps,eweps);
532             ewitab           = _mm_slli_epi32(ewitab,2);
533             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
534             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
535             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
536             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
537             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
538             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
539             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
540             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
541             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
542             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velecsum         = _mm_add_pd(velecsum,velec);
546
547             fscal            = felec;
548
549             /* Update vectorial force */
550             fix2             = _mm_macc_pd(dx20,fscal,fix2);
551             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
552             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
553             
554             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
555             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
556             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r21              = _mm_mul_pd(rsq21,rinv21);
563
564             /* EWALD ELECTROSTATICS */
565
566             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
567             ewrt             = _mm_mul_pd(r21,ewtabscale);
568             ewitab           = _mm_cvttpd_epi32(ewrt);
569 #ifdef __XOP__
570             eweps            = _mm_frcz_pd(ewrt);
571 #else
572             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
573 #endif
574             twoeweps         = _mm_add_pd(eweps,eweps);
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
578             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
579             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
580             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
581             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
582             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
583             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
584             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
585             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velecsum         = _mm_add_pd(velecsum,velec);
589
590             fscal            = felec;
591
592             /* Update vectorial force */
593             fix2             = _mm_macc_pd(dx21,fscal,fix2);
594             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
595             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
596             
597             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
598             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
599             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r22              = _mm_mul_pd(rsq22,rinv22);
606
607             /* EWALD ELECTROSTATICS */
608
609             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
610             ewrt             = _mm_mul_pd(r22,ewtabscale);
611             ewitab           = _mm_cvttpd_epi32(ewrt);
612 #ifdef __XOP__
613             eweps            = _mm_frcz_pd(ewrt);
614 #else
615             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
616 #endif
617             twoeweps         = _mm_add_pd(eweps,eweps);
618             ewitab           = _mm_slli_epi32(ewitab,2);
619             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
620             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
621             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
622             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
623             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
624             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
625             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
626             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
627             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
628             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velecsum         = _mm_add_pd(velecsum,velec);
632
633             fscal            = felec;
634
635             /* Update vectorial force */
636             fix2             = _mm_macc_pd(dx22,fscal,fix2);
637             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
638             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
639             
640             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
641             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
642             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
643
644             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
645
646             /* Inner loop uses 396 flops */
647         }
648
649         if(jidx<j_index_end)
650         {
651
652             jnrA             = jjnr[jidx];
653             j_coord_offsetA  = DIM*jnrA;
654
655             /* load j atom coordinates */
656             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
657                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
658
659             /* Calculate displacement vector */
660             dx00             = _mm_sub_pd(ix0,jx0);
661             dy00             = _mm_sub_pd(iy0,jy0);
662             dz00             = _mm_sub_pd(iz0,jz0);
663             dx01             = _mm_sub_pd(ix0,jx1);
664             dy01             = _mm_sub_pd(iy0,jy1);
665             dz01             = _mm_sub_pd(iz0,jz1);
666             dx02             = _mm_sub_pd(ix0,jx2);
667             dy02             = _mm_sub_pd(iy0,jy2);
668             dz02             = _mm_sub_pd(iz0,jz2);
669             dx10             = _mm_sub_pd(ix1,jx0);
670             dy10             = _mm_sub_pd(iy1,jy0);
671             dz10             = _mm_sub_pd(iz1,jz0);
672             dx11             = _mm_sub_pd(ix1,jx1);
673             dy11             = _mm_sub_pd(iy1,jy1);
674             dz11             = _mm_sub_pd(iz1,jz1);
675             dx12             = _mm_sub_pd(ix1,jx2);
676             dy12             = _mm_sub_pd(iy1,jy2);
677             dz12             = _mm_sub_pd(iz1,jz2);
678             dx20             = _mm_sub_pd(ix2,jx0);
679             dy20             = _mm_sub_pd(iy2,jy0);
680             dz20             = _mm_sub_pd(iz2,jz0);
681             dx21             = _mm_sub_pd(ix2,jx1);
682             dy21             = _mm_sub_pd(iy2,jy1);
683             dz21             = _mm_sub_pd(iz2,jz1);
684             dx22             = _mm_sub_pd(ix2,jx2);
685             dy22             = _mm_sub_pd(iy2,jy2);
686             dz22             = _mm_sub_pd(iz2,jz2);
687
688             /* Calculate squared distance and things based on it */
689             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
690             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
691             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
692             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
693             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
694             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
695             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
696             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
697             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
698
699             rinv00           = gmx_mm_invsqrt_pd(rsq00);
700             rinv01           = gmx_mm_invsqrt_pd(rsq01);
701             rinv02           = gmx_mm_invsqrt_pd(rsq02);
702             rinv10           = gmx_mm_invsqrt_pd(rsq10);
703             rinv11           = gmx_mm_invsqrt_pd(rsq11);
704             rinv12           = gmx_mm_invsqrt_pd(rsq12);
705             rinv20           = gmx_mm_invsqrt_pd(rsq20);
706             rinv21           = gmx_mm_invsqrt_pd(rsq21);
707             rinv22           = gmx_mm_invsqrt_pd(rsq22);
708
709             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
710             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
711             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
712             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
713             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
714             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
715             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
716             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
717             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
718
719             fjx0             = _mm_setzero_pd();
720             fjy0             = _mm_setzero_pd();
721             fjz0             = _mm_setzero_pd();
722             fjx1             = _mm_setzero_pd();
723             fjy1             = _mm_setzero_pd();
724             fjz1             = _mm_setzero_pd();
725             fjx2             = _mm_setzero_pd();
726             fjy2             = _mm_setzero_pd();
727             fjz2             = _mm_setzero_pd();
728
729             /**************************
730              * CALCULATE INTERACTIONS *
731              **************************/
732
733             r00              = _mm_mul_pd(rsq00,rinv00);
734
735             /* EWALD ELECTROSTATICS */
736
737             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
738             ewrt             = _mm_mul_pd(r00,ewtabscale);
739             ewitab           = _mm_cvttpd_epi32(ewrt);
740 #ifdef __XOP__
741             eweps            = _mm_frcz_pd(ewrt);
742 #else
743             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
744 #endif
745             twoeweps         = _mm_add_pd(eweps,eweps);
746             ewitab           = _mm_slli_epi32(ewitab,2);
747             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
748             ewtabD           = _mm_setzero_pd();
749             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
750             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
751             ewtabFn          = _mm_setzero_pd();
752             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
753             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
754             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
755             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
756             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
757
758             /* Update potential sum for this i atom from the interaction with this j atom. */
759             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
760             velecsum         = _mm_add_pd(velecsum,velec);
761
762             fscal            = felec;
763
764             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
765
766             /* Update vectorial force */
767             fix0             = _mm_macc_pd(dx00,fscal,fix0);
768             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
769             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
770             
771             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
772             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
773             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             r01              = _mm_mul_pd(rsq01,rinv01);
780
781             /* EWALD ELECTROSTATICS */
782
783             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
784             ewrt             = _mm_mul_pd(r01,ewtabscale);
785             ewitab           = _mm_cvttpd_epi32(ewrt);
786 #ifdef __XOP__
787             eweps            = _mm_frcz_pd(ewrt);
788 #else
789             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
790 #endif
791             twoeweps         = _mm_add_pd(eweps,eweps);
792             ewitab           = _mm_slli_epi32(ewitab,2);
793             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
794             ewtabD           = _mm_setzero_pd();
795             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
796             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
797             ewtabFn          = _mm_setzero_pd();
798             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
799             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
800             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
801             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
802             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
803
804             /* Update potential sum for this i atom from the interaction with this j atom. */
805             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
806             velecsum         = _mm_add_pd(velecsum,velec);
807
808             fscal            = felec;
809
810             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
811
812             /* Update vectorial force */
813             fix0             = _mm_macc_pd(dx01,fscal,fix0);
814             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
815             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
816             
817             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
818             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
819             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             r02              = _mm_mul_pd(rsq02,rinv02);
826
827             /* EWALD ELECTROSTATICS */
828
829             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
830             ewrt             = _mm_mul_pd(r02,ewtabscale);
831             ewitab           = _mm_cvttpd_epi32(ewrt);
832 #ifdef __XOP__
833             eweps            = _mm_frcz_pd(ewrt);
834 #else
835             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
836 #endif
837             twoeweps         = _mm_add_pd(eweps,eweps);
838             ewitab           = _mm_slli_epi32(ewitab,2);
839             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
840             ewtabD           = _mm_setzero_pd();
841             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
842             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
843             ewtabFn          = _mm_setzero_pd();
844             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
845             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
846             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
847             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
848             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
849
850             /* Update potential sum for this i atom from the interaction with this j atom. */
851             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
852             velecsum         = _mm_add_pd(velecsum,velec);
853
854             fscal            = felec;
855
856             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
857
858             /* Update vectorial force */
859             fix0             = _mm_macc_pd(dx02,fscal,fix0);
860             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
861             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
862             
863             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
864             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
865             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             r10              = _mm_mul_pd(rsq10,rinv10);
872
873             /* EWALD ELECTROSTATICS */
874
875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876             ewrt             = _mm_mul_pd(r10,ewtabscale);
877             ewitab           = _mm_cvttpd_epi32(ewrt);
878 #ifdef __XOP__
879             eweps            = _mm_frcz_pd(ewrt);
880 #else
881             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
882 #endif
883             twoeweps         = _mm_add_pd(eweps,eweps);
884             ewitab           = _mm_slli_epi32(ewitab,2);
885             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
886             ewtabD           = _mm_setzero_pd();
887             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
888             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
889             ewtabFn          = _mm_setzero_pd();
890             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
891             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
892             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
893             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
894             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
895
896             /* Update potential sum for this i atom from the interaction with this j atom. */
897             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
898             velecsum         = _mm_add_pd(velecsum,velec);
899
900             fscal            = felec;
901
902             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
903
904             /* Update vectorial force */
905             fix1             = _mm_macc_pd(dx10,fscal,fix1);
906             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
907             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
908             
909             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
910             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
911             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r11              = _mm_mul_pd(rsq11,rinv11);
918
919             /* EWALD ELECTROSTATICS */
920
921             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
922             ewrt             = _mm_mul_pd(r11,ewtabscale);
923             ewitab           = _mm_cvttpd_epi32(ewrt);
924 #ifdef __XOP__
925             eweps            = _mm_frcz_pd(ewrt);
926 #else
927             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
928 #endif
929             twoeweps         = _mm_add_pd(eweps,eweps);
930             ewitab           = _mm_slli_epi32(ewitab,2);
931             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
932             ewtabD           = _mm_setzero_pd();
933             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
934             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
935             ewtabFn          = _mm_setzero_pd();
936             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
937             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
938             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
939             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
940             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
941
942             /* Update potential sum for this i atom from the interaction with this j atom. */
943             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
944             velecsum         = _mm_add_pd(velecsum,velec);
945
946             fscal            = felec;
947
948             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
949
950             /* Update vectorial force */
951             fix1             = _mm_macc_pd(dx11,fscal,fix1);
952             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
953             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
954             
955             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
956             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
957             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r12              = _mm_mul_pd(rsq12,rinv12);
964
965             /* EWALD ELECTROSTATICS */
966
967             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968             ewrt             = _mm_mul_pd(r12,ewtabscale);
969             ewitab           = _mm_cvttpd_epi32(ewrt);
970 #ifdef __XOP__
971             eweps            = _mm_frcz_pd(ewrt);
972 #else
973             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
974 #endif
975             twoeweps         = _mm_add_pd(eweps,eweps);
976             ewitab           = _mm_slli_epi32(ewitab,2);
977             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
978             ewtabD           = _mm_setzero_pd();
979             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
980             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
981             ewtabFn          = _mm_setzero_pd();
982             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
983             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
984             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
985             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
986             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
987
988             /* Update potential sum for this i atom from the interaction with this j atom. */
989             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
990             velecsum         = _mm_add_pd(velecsum,velec);
991
992             fscal            = felec;
993
994             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
995
996             /* Update vectorial force */
997             fix1             = _mm_macc_pd(dx12,fscal,fix1);
998             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
999             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1000             
1001             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1002             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1003             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r20              = _mm_mul_pd(rsq20,rinv20);
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = _mm_mul_pd(r20,ewtabscale);
1015             ewitab           = _mm_cvttpd_epi32(ewrt);
1016 #ifdef __XOP__
1017             eweps            = _mm_frcz_pd(ewrt);
1018 #else
1019             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1020 #endif
1021             twoeweps         = _mm_add_pd(eweps,eweps);
1022             ewitab           = _mm_slli_epi32(ewitab,2);
1023             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1024             ewtabD           = _mm_setzero_pd();
1025             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1026             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1027             ewtabFn          = _mm_setzero_pd();
1028             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1029             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1030             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1031             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1032             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1033
1034             /* Update potential sum for this i atom from the interaction with this j atom. */
1035             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1036             velecsum         = _mm_add_pd(velecsum,velec);
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1041
1042             /* Update vectorial force */
1043             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1044             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1045             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1046             
1047             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1048             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1049             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r21              = _mm_mul_pd(rsq21,rinv21);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r21,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062 #ifdef __XOP__
1063             eweps            = _mm_frcz_pd(ewrt);
1064 #else
1065             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1066 #endif
1067             twoeweps         = _mm_add_pd(eweps,eweps);
1068             ewitab           = _mm_slli_epi32(ewitab,2);
1069             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1070             ewtabD           = _mm_setzero_pd();
1071             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1072             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1073             ewtabFn          = _mm_setzero_pd();
1074             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1075             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1076             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1077             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1078             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1079
1080             /* Update potential sum for this i atom from the interaction with this j atom. */
1081             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1082             velecsum         = _mm_add_pd(velecsum,velec);
1083
1084             fscal            = felec;
1085
1086             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1087
1088             /* Update vectorial force */
1089             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1090             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1091             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1092             
1093             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1094             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1095             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r22              = _mm_mul_pd(rsq22,rinv22);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _mm_mul_pd(r22,ewtabscale);
1107             ewitab           = _mm_cvttpd_epi32(ewrt);
1108 #ifdef __XOP__
1109             eweps            = _mm_frcz_pd(ewrt);
1110 #else
1111             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1112 #endif
1113             twoeweps         = _mm_add_pd(eweps,eweps);
1114             ewitab           = _mm_slli_epi32(ewitab,2);
1115             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1116             ewtabD           = _mm_setzero_pd();
1117             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1118             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1119             ewtabFn          = _mm_setzero_pd();
1120             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1121             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1122             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1123             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1124             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1125
1126             /* Update potential sum for this i atom from the interaction with this j atom. */
1127             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1128             velecsum         = _mm_add_pd(velecsum,velec);
1129
1130             fscal            = felec;
1131
1132             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1133
1134             /* Update vectorial force */
1135             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1136             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1137             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1138             
1139             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1140             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1141             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1142
1143             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1144
1145             /* Inner loop uses 396 flops */
1146         }
1147
1148         /* End of innermost loop */
1149
1150         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1151                                               f+i_coord_offset,fshift+i_shift_offset);
1152
1153         ggid                        = gid[iidx];
1154         /* Update potential energies */
1155         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1156
1157         /* Increment number of inner iterations */
1158         inneriter                  += j_index_end - j_index_start;
1159
1160         /* Outer loop uses 19 flops */
1161     }
1162
1163     /* Increment number of outer iterations */
1164     outeriter        += nri;
1165
1166     /* Update outer/inner flops */
1167
1168     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*396);
1169 }
1170 /*
1171  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_F_avx_128_fma_double
1172  * Electrostatics interaction: Ewald
1173  * VdW interaction:            None
1174  * Geometry:                   Water3-Water3
1175  * Calculate force/pot:        Force
1176  */
1177 void
1178 nb_kernel_ElecEw_VdwNone_GeomW3W3_F_avx_128_fma_double
1179                     (t_nblist * gmx_restrict                nlist,
1180                      rvec * gmx_restrict                    xx,
1181                      rvec * gmx_restrict                    ff,
1182                      t_forcerec * gmx_restrict              fr,
1183                      t_mdatoms * gmx_restrict               mdatoms,
1184                      nb_kernel_data_t * gmx_restrict        kernel_data,
1185                      t_nrnb * gmx_restrict                  nrnb)
1186 {
1187     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1188      * just 0 for non-waters.
1189      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1190      * jnr indices corresponding to data put in the four positions in the SIMD register.
1191      */
1192     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1193     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1194     int              jnrA,jnrB;
1195     int              j_coord_offsetA,j_coord_offsetB;
1196     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1197     real             rcutoff_scalar;
1198     real             *shiftvec,*fshift,*x,*f;
1199     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1200     int              vdwioffset0;
1201     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1202     int              vdwioffset1;
1203     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1204     int              vdwioffset2;
1205     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1206     int              vdwjidx0A,vdwjidx0B;
1207     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1208     int              vdwjidx1A,vdwjidx1B;
1209     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1210     int              vdwjidx2A,vdwjidx2B;
1211     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1212     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1213     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1214     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1215     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1216     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1217     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1218     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1219     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1220     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1221     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1222     real             *charge;
1223     __m128i          ewitab;
1224     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1225     real             *ewtab;
1226     __m128d          dummy_mask,cutoff_mask;
1227     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1228     __m128d          one     = _mm_set1_pd(1.0);
1229     __m128d          two     = _mm_set1_pd(2.0);
1230     x                = xx[0];
1231     f                = ff[0];
1232
1233     nri              = nlist->nri;
1234     iinr             = nlist->iinr;
1235     jindex           = nlist->jindex;
1236     jjnr             = nlist->jjnr;
1237     shiftidx         = nlist->shift;
1238     gid              = nlist->gid;
1239     shiftvec         = fr->shift_vec[0];
1240     fshift           = fr->fshift[0];
1241     facel            = _mm_set1_pd(fr->epsfac);
1242     charge           = mdatoms->chargeA;
1243
1244     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1245     ewtab            = fr->ic->tabq_coul_F;
1246     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1247     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1248
1249     /* Setup water-specific parameters */
1250     inr              = nlist->iinr[0];
1251     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1252     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1253     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1254
1255     jq0              = _mm_set1_pd(charge[inr+0]);
1256     jq1              = _mm_set1_pd(charge[inr+1]);
1257     jq2              = _mm_set1_pd(charge[inr+2]);
1258     qq00             = _mm_mul_pd(iq0,jq0);
1259     qq01             = _mm_mul_pd(iq0,jq1);
1260     qq02             = _mm_mul_pd(iq0,jq2);
1261     qq10             = _mm_mul_pd(iq1,jq0);
1262     qq11             = _mm_mul_pd(iq1,jq1);
1263     qq12             = _mm_mul_pd(iq1,jq2);
1264     qq20             = _mm_mul_pd(iq2,jq0);
1265     qq21             = _mm_mul_pd(iq2,jq1);
1266     qq22             = _mm_mul_pd(iq2,jq2);
1267
1268     /* Avoid stupid compiler warnings */
1269     jnrA = jnrB = 0;
1270     j_coord_offsetA = 0;
1271     j_coord_offsetB = 0;
1272
1273     outeriter        = 0;
1274     inneriter        = 0;
1275
1276     /* Start outer loop over neighborlists */
1277     for(iidx=0; iidx<nri; iidx++)
1278     {
1279         /* Load shift vector for this list */
1280         i_shift_offset   = DIM*shiftidx[iidx];
1281
1282         /* Load limits for loop over neighbors */
1283         j_index_start    = jindex[iidx];
1284         j_index_end      = jindex[iidx+1];
1285
1286         /* Get outer coordinate index */
1287         inr              = iinr[iidx];
1288         i_coord_offset   = DIM*inr;
1289
1290         /* Load i particle coords and add shift vector */
1291         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1292                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1293
1294         fix0             = _mm_setzero_pd();
1295         fiy0             = _mm_setzero_pd();
1296         fiz0             = _mm_setzero_pd();
1297         fix1             = _mm_setzero_pd();
1298         fiy1             = _mm_setzero_pd();
1299         fiz1             = _mm_setzero_pd();
1300         fix2             = _mm_setzero_pd();
1301         fiy2             = _mm_setzero_pd();
1302         fiz2             = _mm_setzero_pd();
1303
1304         /* Start inner kernel loop */
1305         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1306         {
1307
1308             /* Get j neighbor index, and coordinate index */
1309             jnrA             = jjnr[jidx];
1310             jnrB             = jjnr[jidx+1];
1311             j_coord_offsetA  = DIM*jnrA;
1312             j_coord_offsetB  = DIM*jnrB;
1313
1314             /* load j atom coordinates */
1315             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1316                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1317
1318             /* Calculate displacement vector */
1319             dx00             = _mm_sub_pd(ix0,jx0);
1320             dy00             = _mm_sub_pd(iy0,jy0);
1321             dz00             = _mm_sub_pd(iz0,jz0);
1322             dx01             = _mm_sub_pd(ix0,jx1);
1323             dy01             = _mm_sub_pd(iy0,jy1);
1324             dz01             = _mm_sub_pd(iz0,jz1);
1325             dx02             = _mm_sub_pd(ix0,jx2);
1326             dy02             = _mm_sub_pd(iy0,jy2);
1327             dz02             = _mm_sub_pd(iz0,jz2);
1328             dx10             = _mm_sub_pd(ix1,jx0);
1329             dy10             = _mm_sub_pd(iy1,jy0);
1330             dz10             = _mm_sub_pd(iz1,jz0);
1331             dx11             = _mm_sub_pd(ix1,jx1);
1332             dy11             = _mm_sub_pd(iy1,jy1);
1333             dz11             = _mm_sub_pd(iz1,jz1);
1334             dx12             = _mm_sub_pd(ix1,jx2);
1335             dy12             = _mm_sub_pd(iy1,jy2);
1336             dz12             = _mm_sub_pd(iz1,jz2);
1337             dx20             = _mm_sub_pd(ix2,jx0);
1338             dy20             = _mm_sub_pd(iy2,jy0);
1339             dz20             = _mm_sub_pd(iz2,jz0);
1340             dx21             = _mm_sub_pd(ix2,jx1);
1341             dy21             = _mm_sub_pd(iy2,jy1);
1342             dz21             = _mm_sub_pd(iz2,jz1);
1343             dx22             = _mm_sub_pd(ix2,jx2);
1344             dy22             = _mm_sub_pd(iy2,jy2);
1345             dz22             = _mm_sub_pd(iz2,jz2);
1346
1347             /* Calculate squared distance and things based on it */
1348             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1349             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1350             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1351             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1352             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1353             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1354             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1355             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1356             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1357
1358             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1359             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1360             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1361             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1362             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1363             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1364             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1365             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1366             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1367
1368             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1369             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1370             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1371             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1372             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1373             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1374             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1375             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1376             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1377
1378             fjx0             = _mm_setzero_pd();
1379             fjy0             = _mm_setzero_pd();
1380             fjz0             = _mm_setzero_pd();
1381             fjx1             = _mm_setzero_pd();
1382             fjy1             = _mm_setzero_pd();
1383             fjz1             = _mm_setzero_pd();
1384             fjx2             = _mm_setzero_pd();
1385             fjy2             = _mm_setzero_pd();
1386             fjz2             = _mm_setzero_pd();
1387
1388             /**************************
1389              * CALCULATE INTERACTIONS *
1390              **************************/
1391
1392             r00              = _mm_mul_pd(rsq00,rinv00);
1393
1394             /* EWALD ELECTROSTATICS */
1395
1396             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1397             ewrt             = _mm_mul_pd(r00,ewtabscale);
1398             ewitab           = _mm_cvttpd_epi32(ewrt);
1399 #ifdef __XOP__
1400             eweps            = _mm_frcz_pd(ewrt);
1401 #else
1402             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1403 #endif
1404             twoeweps         = _mm_add_pd(eweps,eweps);
1405             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1406                                          &ewtabF,&ewtabFn);
1407             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1408             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1409
1410             fscal            = felec;
1411
1412             /* Update vectorial force */
1413             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1414             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1415             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1416             
1417             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1418             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1419             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1420
1421             /**************************
1422              * CALCULATE INTERACTIONS *
1423              **************************/
1424
1425             r01              = _mm_mul_pd(rsq01,rinv01);
1426
1427             /* EWALD ELECTROSTATICS */
1428
1429             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1430             ewrt             = _mm_mul_pd(r01,ewtabscale);
1431             ewitab           = _mm_cvttpd_epi32(ewrt);
1432 #ifdef __XOP__
1433             eweps            = _mm_frcz_pd(ewrt);
1434 #else
1435             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1436 #endif
1437             twoeweps         = _mm_add_pd(eweps,eweps);
1438             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1439                                          &ewtabF,&ewtabFn);
1440             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1441             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1442
1443             fscal            = felec;
1444
1445             /* Update vectorial force */
1446             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1447             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1448             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1449             
1450             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1451             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1452             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1453
1454             /**************************
1455              * CALCULATE INTERACTIONS *
1456              **************************/
1457
1458             r02              = _mm_mul_pd(rsq02,rinv02);
1459
1460             /* EWALD ELECTROSTATICS */
1461
1462             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1463             ewrt             = _mm_mul_pd(r02,ewtabscale);
1464             ewitab           = _mm_cvttpd_epi32(ewrt);
1465 #ifdef __XOP__
1466             eweps            = _mm_frcz_pd(ewrt);
1467 #else
1468             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1469 #endif
1470             twoeweps         = _mm_add_pd(eweps,eweps);
1471             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1472                                          &ewtabF,&ewtabFn);
1473             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1474             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1475
1476             fscal            = felec;
1477
1478             /* Update vectorial force */
1479             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1480             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1481             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1482             
1483             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1484             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1485             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1486
1487             /**************************
1488              * CALCULATE INTERACTIONS *
1489              **************************/
1490
1491             r10              = _mm_mul_pd(rsq10,rinv10);
1492
1493             /* EWALD ELECTROSTATICS */
1494
1495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1496             ewrt             = _mm_mul_pd(r10,ewtabscale);
1497             ewitab           = _mm_cvttpd_epi32(ewrt);
1498 #ifdef __XOP__
1499             eweps            = _mm_frcz_pd(ewrt);
1500 #else
1501             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1502 #endif
1503             twoeweps         = _mm_add_pd(eweps,eweps);
1504             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1505                                          &ewtabF,&ewtabFn);
1506             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1507             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1508
1509             fscal            = felec;
1510
1511             /* Update vectorial force */
1512             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1513             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1514             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1515             
1516             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1517             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1518             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1519
1520             /**************************
1521              * CALCULATE INTERACTIONS *
1522              **************************/
1523
1524             r11              = _mm_mul_pd(rsq11,rinv11);
1525
1526             /* EWALD ELECTROSTATICS */
1527
1528             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1529             ewrt             = _mm_mul_pd(r11,ewtabscale);
1530             ewitab           = _mm_cvttpd_epi32(ewrt);
1531 #ifdef __XOP__
1532             eweps            = _mm_frcz_pd(ewrt);
1533 #else
1534             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1535 #endif
1536             twoeweps         = _mm_add_pd(eweps,eweps);
1537             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1538                                          &ewtabF,&ewtabFn);
1539             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1540             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1541
1542             fscal            = felec;
1543
1544             /* Update vectorial force */
1545             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1546             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1547             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1548             
1549             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1550             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1551             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1552
1553             /**************************
1554              * CALCULATE INTERACTIONS *
1555              **************************/
1556
1557             r12              = _mm_mul_pd(rsq12,rinv12);
1558
1559             /* EWALD ELECTROSTATICS */
1560
1561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1562             ewrt             = _mm_mul_pd(r12,ewtabscale);
1563             ewitab           = _mm_cvttpd_epi32(ewrt);
1564 #ifdef __XOP__
1565             eweps            = _mm_frcz_pd(ewrt);
1566 #else
1567             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1568 #endif
1569             twoeweps         = _mm_add_pd(eweps,eweps);
1570             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1571                                          &ewtabF,&ewtabFn);
1572             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1573             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1574
1575             fscal            = felec;
1576
1577             /* Update vectorial force */
1578             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1579             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1580             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1581             
1582             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1583             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1584             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1585
1586             /**************************
1587              * CALCULATE INTERACTIONS *
1588              **************************/
1589
1590             r20              = _mm_mul_pd(rsq20,rinv20);
1591
1592             /* EWALD ELECTROSTATICS */
1593
1594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1595             ewrt             = _mm_mul_pd(r20,ewtabscale);
1596             ewitab           = _mm_cvttpd_epi32(ewrt);
1597 #ifdef __XOP__
1598             eweps            = _mm_frcz_pd(ewrt);
1599 #else
1600             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1601 #endif
1602             twoeweps         = _mm_add_pd(eweps,eweps);
1603             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1604                                          &ewtabF,&ewtabFn);
1605             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1606             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1607
1608             fscal            = felec;
1609
1610             /* Update vectorial force */
1611             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1612             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1613             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1614             
1615             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1616             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1617             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1618
1619             /**************************
1620              * CALCULATE INTERACTIONS *
1621              **************************/
1622
1623             r21              = _mm_mul_pd(rsq21,rinv21);
1624
1625             /* EWALD ELECTROSTATICS */
1626
1627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1628             ewrt             = _mm_mul_pd(r21,ewtabscale);
1629             ewitab           = _mm_cvttpd_epi32(ewrt);
1630 #ifdef __XOP__
1631             eweps            = _mm_frcz_pd(ewrt);
1632 #else
1633             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1634 #endif
1635             twoeweps         = _mm_add_pd(eweps,eweps);
1636             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1637                                          &ewtabF,&ewtabFn);
1638             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1639             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1640
1641             fscal            = felec;
1642
1643             /* Update vectorial force */
1644             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1645             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1646             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1647             
1648             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1649             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1650             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1651
1652             /**************************
1653              * CALCULATE INTERACTIONS *
1654              **************************/
1655
1656             r22              = _mm_mul_pd(rsq22,rinv22);
1657
1658             /* EWALD ELECTROSTATICS */
1659
1660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1661             ewrt             = _mm_mul_pd(r22,ewtabscale);
1662             ewitab           = _mm_cvttpd_epi32(ewrt);
1663 #ifdef __XOP__
1664             eweps            = _mm_frcz_pd(ewrt);
1665 #else
1666             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1667 #endif
1668             twoeweps         = _mm_add_pd(eweps,eweps);
1669             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1670                                          &ewtabF,&ewtabFn);
1671             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1672             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1673
1674             fscal            = felec;
1675
1676             /* Update vectorial force */
1677             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1678             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1679             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1680             
1681             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1682             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1683             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1684
1685             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1686
1687             /* Inner loop uses 351 flops */
1688         }
1689
1690         if(jidx<j_index_end)
1691         {
1692
1693             jnrA             = jjnr[jidx];
1694             j_coord_offsetA  = DIM*jnrA;
1695
1696             /* load j atom coordinates */
1697             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1698                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1699
1700             /* Calculate displacement vector */
1701             dx00             = _mm_sub_pd(ix0,jx0);
1702             dy00             = _mm_sub_pd(iy0,jy0);
1703             dz00             = _mm_sub_pd(iz0,jz0);
1704             dx01             = _mm_sub_pd(ix0,jx1);
1705             dy01             = _mm_sub_pd(iy0,jy1);
1706             dz01             = _mm_sub_pd(iz0,jz1);
1707             dx02             = _mm_sub_pd(ix0,jx2);
1708             dy02             = _mm_sub_pd(iy0,jy2);
1709             dz02             = _mm_sub_pd(iz0,jz2);
1710             dx10             = _mm_sub_pd(ix1,jx0);
1711             dy10             = _mm_sub_pd(iy1,jy0);
1712             dz10             = _mm_sub_pd(iz1,jz0);
1713             dx11             = _mm_sub_pd(ix1,jx1);
1714             dy11             = _mm_sub_pd(iy1,jy1);
1715             dz11             = _mm_sub_pd(iz1,jz1);
1716             dx12             = _mm_sub_pd(ix1,jx2);
1717             dy12             = _mm_sub_pd(iy1,jy2);
1718             dz12             = _mm_sub_pd(iz1,jz2);
1719             dx20             = _mm_sub_pd(ix2,jx0);
1720             dy20             = _mm_sub_pd(iy2,jy0);
1721             dz20             = _mm_sub_pd(iz2,jz0);
1722             dx21             = _mm_sub_pd(ix2,jx1);
1723             dy21             = _mm_sub_pd(iy2,jy1);
1724             dz21             = _mm_sub_pd(iz2,jz1);
1725             dx22             = _mm_sub_pd(ix2,jx2);
1726             dy22             = _mm_sub_pd(iy2,jy2);
1727             dz22             = _mm_sub_pd(iz2,jz2);
1728
1729             /* Calculate squared distance and things based on it */
1730             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1731             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1732             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1733             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1734             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1735             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1736             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1737             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1738             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1739
1740             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1741             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1742             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1743             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1744             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1745             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1746             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1747             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1748             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1749
1750             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1751             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1752             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1753             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1754             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1755             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1756             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1757             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1758             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1759
1760             fjx0             = _mm_setzero_pd();
1761             fjy0             = _mm_setzero_pd();
1762             fjz0             = _mm_setzero_pd();
1763             fjx1             = _mm_setzero_pd();
1764             fjy1             = _mm_setzero_pd();
1765             fjz1             = _mm_setzero_pd();
1766             fjx2             = _mm_setzero_pd();
1767             fjy2             = _mm_setzero_pd();
1768             fjz2             = _mm_setzero_pd();
1769
1770             /**************************
1771              * CALCULATE INTERACTIONS *
1772              **************************/
1773
1774             r00              = _mm_mul_pd(rsq00,rinv00);
1775
1776             /* EWALD ELECTROSTATICS */
1777
1778             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1779             ewrt             = _mm_mul_pd(r00,ewtabscale);
1780             ewitab           = _mm_cvttpd_epi32(ewrt);
1781 #ifdef __XOP__
1782             eweps            = _mm_frcz_pd(ewrt);
1783 #else
1784             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1785 #endif
1786             twoeweps         = _mm_add_pd(eweps,eweps);
1787             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1788             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1789             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1790
1791             fscal            = felec;
1792
1793             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1794
1795             /* Update vectorial force */
1796             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1797             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1798             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1799             
1800             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1801             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1802             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1803
1804             /**************************
1805              * CALCULATE INTERACTIONS *
1806              **************************/
1807
1808             r01              = _mm_mul_pd(rsq01,rinv01);
1809
1810             /* EWALD ELECTROSTATICS */
1811
1812             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1813             ewrt             = _mm_mul_pd(r01,ewtabscale);
1814             ewitab           = _mm_cvttpd_epi32(ewrt);
1815 #ifdef __XOP__
1816             eweps            = _mm_frcz_pd(ewrt);
1817 #else
1818             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1819 #endif
1820             twoeweps         = _mm_add_pd(eweps,eweps);
1821             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1822             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1823             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1824
1825             fscal            = felec;
1826
1827             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1828
1829             /* Update vectorial force */
1830             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1831             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1832             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1833             
1834             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1835             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1836             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1837
1838             /**************************
1839              * CALCULATE INTERACTIONS *
1840              **************************/
1841
1842             r02              = _mm_mul_pd(rsq02,rinv02);
1843
1844             /* EWALD ELECTROSTATICS */
1845
1846             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1847             ewrt             = _mm_mul_pd(r02,ewtabscale);
1848             ewitab           = _mm_cvttpd_epi32(ewrt);
1849 #ifdef __XOP__
1850             eweps            = _mm_frcz_pd(ewrt);
1851 #else
1852             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1853 #endif
1854             twoeweps         = _mm_add_pd(eweps,eweps);
1855             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1856             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1857             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1858
1859             fscal            = felec;
1860
1861             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1862
1863             /* Update vectorial force */
1864             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1865             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1866             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1867             
1868             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1869             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1870             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1871
1872             /**************************
1873              * CALCULATE INTERACTIONS *
1874              **************************/
1875
1876             r10              = _mm_mul_pd(rsq10,rinv10);
1877
1878             /* EWALD ELECTROSTATICS */
1879
1880             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1881             ewrt             = _mm_mul_pd(r10,ewtabscale);
1882             ewitab           = _mm_cvttpd_epi32(ewrt);
1883 #ifdef __XOP__
1884             eweps            = _mm_frcz_pd(ewrt);
1885 #else
1886             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1887 #endif
1888             twoeweps         = _mm_add_pd(eweps,eweps);
1889             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1890             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1891             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1892
1893             fscal            = felec;
1894
1895             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1896
1897             /* Update vectorial force */
1898             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1899             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1900             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1901             
1902             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1903             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1904             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1905
1906             /**************************
1907              * CALCULATE INTERACTIONS *
1908              **************************/
1909
1910             r11              = _mm_mul_pd(rsq11,rinv11);
1911
1912             /* EWALD ELECTROSTATICS */
1913
1914             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1915             ewrt             = _mm_mul_pd(r11,ewtabscale);
1916             ewitab           = _mm_cvttpd_epi32(ewrt);
1917 #ifdef __XOP__
1918             eweps            = _mm_frcz_pd(ewrt);
1919 #else
1920             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1921 #endif
1922             twoeweps         = _mm_add_pd(eweps,eweps);
1923             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1924             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1925             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1926
1927             fscal            = felec;
1928
1929             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1930
1931             /* Update vectorial force */
1932             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1933             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1934             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1935             
1936             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1937             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1938             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1939
1940             /**************************
1941              * CALCULATE INTERACTIONS *
1942              **************************/
1943
1944             r12              = _mm_mul_pd(rsq12,rinv12);
1945
1946             /* EWALD ELECTROSTATICS */
1947
1948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1949             ewrt             = _mm_mul_pd(r12,ewtabscale);
1950             ewitab           = _mm_cvttpd_epi32(ewrt);
1951 #ifdef __XOP__
1952             eweps            = _mm_frcz_pd(ewrt);
1953 #else
1954             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1955 #endif
1956             twoeweps         = _mm_add_pd(eweps,eweps);
1957             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1958             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1959             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1960
1961             fscal            = felec;
1962
1963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1964
1965             /* Update vectorial force */
1966             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1967             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1968             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1969             
1970             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1971             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1972             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1973
1974             /**************************
1975              * CALCULATE INTERACTIONS *
1976              **************************/
1977
1978             r20              = _mm_mul_pd(rsq20,rinv20);
1979
1980             /* EWALD ELECTROSTATICS */
1981
1982             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1983             ewrt             = _mm_mul_pd(r20,ewtabscale);
1984             ewitab           = _mm_cvttpd_epi32(ewrt);
1985 #ifdef __XOP__
1986             eweps            = _mm_frcz_pd(ewrt);
1987 #else
1988             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1989 #endif
1990             twoeweps         = _mm_add_pd(eweps,eweps);
1991             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1992             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1993             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1994
1995             fscal            = felec;
1996
1997             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1998
1999             /* Update vectorial force */
2000             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2001             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2002             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2003             
2004             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2005             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2006             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2007
2008             /**************************
2009              * CALCULATE INTERACTIONS *
2010              **************************/
2011
2012             r21              = _mm_mul_pd(rsq21,rinv21);
2013
2014             /* EWALD ELECTROSTATICS */
2015
2016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2017             ewrt             = _mm_mul_pd(r21,ewtabscale);
2018             ewitab           = _mm_cvttpd_epi32(ewrt);
2019 #ifdef __XOP__
2020             eweps            = _mm_frcz_pd(ewrt);
2021 #else
2022             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2023 #endif
2024             twoeweps         = _mm_add_pd(eweps,eweps);
2025             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2026             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2027             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2028
2029             fscal            = felec;
2030
2031             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2032
2033             /* Update vectorial force */
2034             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2035             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2036             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2037             
2038             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2039             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2040             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2041
2042             /**************************
2043              * CALCULATE INTERACTIONS *
2044              **************************/
2045
2046             r22              = _mm_mul_pd(rsq22,rinv22);
2047
2048             /* EWALD ELECTROSTATICS */
2049
2050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2051             ewrt             = _mm_mul_pd(r22,ewtabscale);
2052             ewitab           = _mm_cvttpd_epi32(ewrt);
2053 #ifdef __XOP__
2054             eweps            = _mm_frcz_pd(ewrt);
2055 #else
2056             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2057 #endif
2058             twoeweps         = _mm_add_pd(eweps,eweps);
2059             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2060             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2061             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2062
2063             fscal            = felec;
2064
2065             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2066
2067             /* Update vectorial force */
2068             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2069             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2070             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2071             
2072             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2073             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2074             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2075
2076             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2077
2078             /* Inner loop uses 351 flops */
2079         }
2080
2081         /* End of innermost loop */
2082
2083         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2084                                               f+i_coord_offset,fshift+i_shift_offset);
2085
2086         /* Increment number of inner iterations */
2087         inneriter                  += j_index_end - j_index_start;
2088
2089         /* Outer loop uses 18 flops */
2090     }
2091
2092     /* Increment number of outer iterations */
2093     outeriter        += nri;
2094
2095     /* Update outer/inner flops */
2096
2097     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*351);
2098 }