made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128d          dummy_mask,cutoff_mask;
77     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
78     __m128d          one     = _mm_set1_pd(1.0);
79     __m128d          two     = _mm_set1_pd(2.0);
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = _mm_set1_pd(fr->epsfac);
92     charge           = mdatoms->chargeA;
93
94     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
95     ewtab            = fr->ic->tabq_coul_FDV0;
96     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
97     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103
104     outeriter        = 0;
105     inneriter        = 0;
106
107     /* Start outer loop over neighborlists */
108     for(iidx=0; iidx<nri; iidx++)
109     {
110         /* Load shift vector for this list */
111         i_shift_offset   = DIM*shiftidx[iidx];
112
113         /* Load limits for loop over neighbors */
114         j_index_start    = jindex[iidx];
115         j_index_end      = jindex[iidx+1];
116
117         /* Get outer coordinate index */
118         inr              = iinr[iidx];
119         i_coord_offset   = DIM*inr;
120
121         /* Load i particle coords and add shift vector */
122         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
123
124         fix0             = _mm_setzero_pd();
125         fiy0             = _mm_setzero_pd();
126         fiz0             = _mm_setzero_pd();
127
128         /* Load parameters for i particles */
129         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
130
131         /* Reset potential sums */
132         velecsum         = _mm_setzero_pd();
133
134         /* Start inner kernel loop */
135         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
136         {
137
138             /* Get j neighbor index, and coordinate index */
139             jnrA             = jjnr[jidx];
140             jnrB             = jjnr[jidx+1];
141             j_coord_offsetA  = DIM*jnrA;
142             j_coord_offsetB  = DIM*jnrB;
143
144             /* load j atom coordinates */
145             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
146                                               &jx0,&jy0,&jz0);
147
148             /* Calculate displacement vector */
149             dx00             = _mm_sub_pd(ix0,jx0);
150             dy00             = _mm_sub_pd(iy0,jy0);
151             dz00             = _mm_sub_pd(iz0,jz0);
152
153             /* Calculate squared distance and things based on it */
154             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
155
156             rinv00           = gmx_mm_invsqrt_pd(rsq00);
157
158             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
159
160             /* Load parameters for j particles */
161             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
162
163             /**************************
164              * CALCULATE INTERACTIONS *
165              **************************/
166
167             r00              = _mm_mul_pd(rsq00,rinv00);
168
169             /* Compute parameters for interactions between i and j atoms */
170             qq00             = _mm_mul_pd(iq0,jq0);
171
172             /* EWALD ELECTROSTATICS */
173
174             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
175             ewrt             = _mm_mul_pd(r00,ewtabscale);
176             ewitab           = _mm_cvttpd_epi32(ewrt);
177 #ifdef __XOP__
178             eweps            = _mm_frcz_pd(ewrt);
179 #else
180             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
181 #endif
182             twoeweps         = _mm_add_pd(eweps,eweps);
183             ewitab           = _mm_slli_epi32(ewitab,2);
184             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
185             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
186             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
187             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
188             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
189             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
190             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
191             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
192             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
193             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
194
195             /* Update potential sum for this i atom from the interaction with this j atom. */
196             velecsum         = _mm_add_pd(velecsum,velec);
197
198             fscal            = felec;
199
200             /* Update vectorial force */
201             fix0             = _mm_macc_pd(dx00,fscal,fix0);
202             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
203             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
204             
205             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
206                                                    _mm_mul_pd(dx00,fscal),
207                                                    _mm_mul_pd(dy00,fscal),
208                                                    _mm_mul_pd(dz00,fscal));
209
210             /* Inner loop uses 44 flops */
211         }
212
213         if(jidx<j_index_end)
214         {
215
216             jnrA             = jjnr[jidx];
217             j_coord_offsetA  = DIM*jnrA;
218
219             /* load j atom coordinates */
220             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
221                                               &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_pd(ix0,jx0);
225             dy00             = _mm_sub_pd(iy0,jy0);
226             dz00             = _mm_sub_pd(iz0,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230
231             rinv00           = gmx_mm_invsqrt_pd(rsq00);
232
233             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
234
235             /* Load parameters for j particles */
236             jq0              = _mm_load_sd(charge+jnrA+0);
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             r00              = _mm_mul_pd(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             qq00             = _mm_mul_pd(iq0,jq0);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _mm_mul_pd(r00,ewtabscale);
251             ewitab           = _mm_cvttpd_epi32(ewrt);
252 #ifdef __XOP__
253             eweps            = _mm_frcz_pd(ewrt);
254 #else
255             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
256 #endif
257             twoeweps         = _mm_add_pd(eweps,eweps);
258             ewitab           = _mm_slli_epi32(ewitab,2);
259             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
260             ewtabD           = _mm_setzero_pd();
261             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
262             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
263             ewtabFn          = _mm_setzero_pd();
264             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
265             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
266             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
267             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
268             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
272             velecsum         = _mm_add_pd(velecsum,velec);
273
274             fscal            = felec;
275
276             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
277
278             /* Update vectorial force */
279             fix0             = _mm_macc_pd(dx00,fscal,fix0);
280             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
281             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
282             
283             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
284                                                    _mm_mul_pd(dx00,fscal),
285                                                    _mm_mul_pd(dy00,fscal),
286                                                    _mm_mul_pd(dz00,fscal));
287
288             /* Inner loop uses 44 flops */
289         }
290
291         /* End of innermost loop */
292
293         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
294                                               f+i_coord_offset,fshift+i_shift_offset);
295
296         ggid                        = gid[iidx];
297         /* Update potential energies */
298         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
299
300         /* Increment number of inner iterations */
301         inneriter                  += j_index_end - j_index_start;
302
303         /* Outer loop uses 8 flops */
304     }
305
306     /* Increment number of outer iterations */
307     outeriter        += nri;
308
309     /* Update outer/inner flops */
310
311     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
312 }
313 /*
314  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
315  * Electrostatics interaction: Ewald
316  * VdW interaction:            None
317  * Geometry:                   Particle-Particle
318  * Calculate force/pot:        Force
319  */
320 void
321 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
322                     (t_nblist * gmx_restrict                nlist,
323                      rvec * gmx_restrict                    xx,
324                      rvec * gmx_restrict                    ff,
325                      t_forcerec * gmx_restrict              fr,
326                      t_mdatoms * gmx_restrict               mdatoms,
327                      nb_kernel_data_t * gmx_restrict        kernel_data,
328                      t_nrnb * gmx_restrict                  nrnb)
329 {
330     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
331      * just 0 for non-waters.
332      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
333      * jnr indices corresponding to data put in the four positions in the SIMD register.
334      */
335     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
336     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
337     int              jnrA,jnrB;
338     int              j_coord_offsetA,j_coord_offsetB;
339     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
340     real             rcutoff_scalar;
341     real             *shiftvec,*fshift,*x,*f;
342     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
343     int              vdwioffset0;
344     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
345     int              vdwjidx0A,vdwjidx0B;
346     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
347     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
348     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
349     real             *charge;
350     __m128i          ewitab;
351     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
352     real             *ewtab;
353     __m128d          dummy_mask,cutoff_mask;
354     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
355     __m128d          one     = _mm_set1_pd(1.0);
356     __m128d          two     = _mm_set1_pd(2.0);
357     x                = xx[0];
358     f                = ff[0];
359
360     nri              = nlist->nri;
361     iinr             = nlist->iinr;
362     jindex           = nlist->jindex;
363     jjnr             = nlist->jjnr;
364     shiftidx         = nlist->shift;
365     gid              = nlist->gid;
366     shiftvec         = fr->shift_vec[0];
367     fshift           = fr->fshift[0];
368     facel            = _mm_set1_pd(fr->epsfac);
369     charge           = mdatoms->chargeA;
370
371     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
372     ewtab            = fr->ic->tabq_coul_F;
373     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
374     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
375
376     /* Avoid stupid compiler warnings */
377     jnrA = jnrB = 0;
378     j_coord_offsetA = 0;
379     j_coord_offsetB = 0;
380
381     outeriter        = 0;
382     inneriter        = 0;
383
384     /* Start outer loop over neighborlists */
385     for(iidx=0; iidx<nri; iidx++)
386     {
387         /* Load shift vector for this list */
388         i_shift_offset   = DIM*shiftidx[iidx];
389
390         /* Load limits for loop over neighbors */
391         j_index_start    = jindex[iidx];
392         j_index_end      = jindex[iidx+1];
393
394         /* Get outer coordinate index */
395         inr              = iinr[iidx];
396         i_coord_offset   = DIM*inr;
397
398         /* Load i particle coords and add shift vector */
399         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
400
401         fix0             = _mm_setzero_pd();
402         fiy0             = _mm_setzero_pd();
403         fiz0             = _mm_setzero_pd();
404
405         /* Load parameters for i particles */
406         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
407
408         /* Start inner kernel loop */
409         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
410         {
411
412             /* Get j neighbor index, and coordinate index */
413             jnrA             = jjnr[jidx];
414             jnrB             = jjnr[jidx+1];
415             j_coord_offsetA  = DIM*jnrA;
416             j_coord_offsetB  = DIM*jnrB;
417
418             /* load j atom coordinates */
419             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
420                                               &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm_sub_pd(ix0,jx0);
424             dy00             = _mm_sub_pd(iy0,jy0);
425             dz00             = _mm_sub_pd(iz0,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
429
430             rinv00           = gmx_mm_invsqrt_pd(rsq00);
431
432             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
433
434             /* Load parameters for j particles */
435             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             r00              = _mm_mul_pd(rsq00,rinv00);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq00             = _mm_mul_pd(iq0,jq0);
445
446             /* EWALD ELECTROSTATICS */
447
448             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
449             ewrt             = _mm_mul_pd(r00,ewtabscale);
450             ewitab           = _mm_cvttpd_epi32(ewrt);
451 #ifdef __XOP__
452             eweps            = _mm_frcz_pd(ewrt);
453 #else
454             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
455 #endif
456             twoeweps         = _mm_add_pd(eweps,eweps);
457             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
458                                          &ewtabF,&ewtabFn);
459             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
460             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
461
462             fscal            = felec;
463
464             /* Update vectorial force */
465             fix0             = _mm_macc_pd(dx00,fscal,fix0);
466             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
467             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
468             
469             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
470                                                    _mm_mul_pd(dx00,fscal),
471                                                    _mm_mul_pd(dy00,fscal),
472                                                    _mm_mul_pd(dz00,fscal));
473
474             /* Inner loop uses 39 flops */
475         }
476
477         if(jidx<j_index_end)
478         {
479
480             jnrA             = jjnr[jidx];
481             j_coord_offsetA  = DIM*jnrA;
482
483             /* load j atom coordinates */
484             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_pd(ix0,jx0);
489             dy00             = _mm_sub_pd(iy0,jy0);
490             dz00             = _mm_sub_pd(iz0,jz0);
491
492             /* Calculate squared distance and things based on it */
493             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
494
495             rinv00           = gmx_mm_invsqrt_pd(rsq00);
496
497             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
498
499             /* Load parameters for j particles */
500             jq0              = _mm_load_sd(charge+jnrA+0);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r00              = _mm_mul_pd(rsq00,rinv00);
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm_mul_pd(iq0,jq0);
510
511             /* EWALD ELECTROSTATICS */
512
513             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
514             ewrt             = _mm_mul_pd(r00,ewtabscale);
515             ewitab           = _mm_cvttpd_epi32(ewrt);
516 #ifdef __XOP__
517             eweps            = _mm_frcz_pd(ewrt);
518 #else
519             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
520 #endif
521             twoeweps         = _mm_add_pd(eweps,eweps);
522             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
523             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
524             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Update vectorial force */
531             fix0             = _mm_macc_pd(dx00,fscal,fix0);
532             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
533             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
534             
535             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
536                                                    _mm_mul_pd(dx00,fscal),
537                                                    _mm_mul_pd(dy00,fscal),
538                                                    _mm_mul_pd(dz00,fscal));
539
540             /* Inner loop uses 39 flops */
541         }
542
543         /* End of innermost loop */
544
545         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
546                                               f+i_coord_offset,fshift+i_shift_offset);
547
548         /* Increment number of inner iterations */
549         inneriter                  += j_index_end - j_index_start;
550
551         /* Outer loop uses 7 flops */
552     }
553
554     /* Increment number of outer iterations */
555     outeriter        += nri;
556
557     /* Update outer/inner flops */
558
559     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
560 }