e501a465e0df4e2bc92c496f6e05f36c23421e52
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          ewitab;
89     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
148                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153         fix1             = _mm_setzero_pd();
154         fiy1             = _mm_setzero_pd();
155         fiz1             = _mm_setzero_pd();
156         fix2             = _mm_setzero_pd();
157         fiy2             = _mm_setzero_pd();
158         fiz2             = _mm_setzero_pd();
159         fix3             = _mm_setzero_pd();
160         fiy3             = _mm_setzero_pd();
161         fiz3             = _mm_setzero_pd();
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185             dx10             = _mm_sub_pd(ix1,jx0);
186             dy10             = _mm_sub_pd(iy1,jy0);
187             dz10             = _mm_sub_pd(iz1,jz0);
188             dx20             = _mm_sub_pd(ix2,jx0);
189             dy20             = _mm_sub_pd(iy2,jy0);
190             dz20             = _mm_sub_pd(iz2,jz0);
191             dx30             = _mm_sub_pd(ix3,jx0);
192             dy30             = _mm_sub_pd(iy3,jy0);
193             dz30             = _mm_sub_pd(iz3,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
198             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
199             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
200
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203             rinv30           = gmx_mm_invsqrt_pd(rsq30);
204
205             rinvsq00         = gmx_mm_inv_pd(rsq00);
206             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
207             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
208             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214
215             fjx0             = _mm_setzero_pd();
216             fjy0             = _mm_setzero_pd();
217             fjz0             = _mm_setzero_pd();
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             /* Compute parameters for interactions between i and j atoms */
224             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
226
227             /* LENNARD-JONES DISPERSION/REPULSION */
228
229             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
230             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
231             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
232             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
233             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
234
235             /* Update potential sum for this i atom from the interaction with this j atom. */
236             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
237
238             fscal            = fvdw;
239
240             /* Update vectorial force */
241             fix0             = _mm_macc_pd(dx00,fscal,fix0);
242             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
243             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
244             
245             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
246             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
247             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r10              = _mm_mul_pd(rsq10,rinv10);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq10             = _mm_mul_pd(iq1,jq0);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm_mul_pd(r10,ewtabscale);
262             ewitab           = _mm_cvttpd_epi32(ewrt);
263 #ifdef __XOP__
264             eweps            = _mm_frcz_pd(ewrt);
265 #else
266             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
267 #endif
268             twoeweps         = _mm_add_pd(eweps,eweps);
269             ewitab           = _mm_slli_epi32(ewitab,2);
270             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
271             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
272             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
273             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
274             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
275             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
276             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
277             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
278             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
279             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283
284             fscal            = felec;
285
286             /* Update vectorial force */
287             fix1             = _mm_macc_pd(dx10,fscal,fix1);
288             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
289             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
290             
291             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
292             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
293             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r20              = _mm_mul_pd(rsq20,rinv20);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq20             = _mm_mul_pd(iq2,jq0);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _mm_mul_pd(r20,ewtabscale);
308             ewitab           = _mm_cvttpd_epi32(ewrt);
309 #ifdef __XOP__
310             eweps            = _mm_frcz_pd(ewrt);
311 #else
312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
313 #endif
314             twoeweps         = _mm_add_pd(eweps,eweps);
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
323             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
324             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Update vectorial force */
333             fix2             = _mm_macc_pd(dx20,fscal,fix2);
334             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
335             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
336             
337             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
338             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
339             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             r30              = _mm_mul_pd(rsq30,rinv30);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq30             = _mm_mul_pd(iq3,jq0);
349
350             /* EWALD ELECTROSTATICS */
351
352             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
353             ewrt             = _mm_mul_pd(r30,ewtabscale);
354             ewitab           = _mm_cvttpd_epi32(ewrt);
355 #ifdef __XOP__
356             eweps            = _mm_frcz_pd(ewrt);
357 #else
358             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
359 #endif
360             twoeweps         = _mm_add_pd(eweps,eweps);
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
364             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
365             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
366             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
367             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
368             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
369             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
370             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
371             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_pd(velecsum,velec);
375
376             fscal            = felec;
377
378             /* Update vectorial force */
379             fix3             = _mm_macc_pd(dx30,fscal,fix3);
380             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
381             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
382             
383             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
384             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
385             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
386
387             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
388
389             /* Inner loop uses 170 flops */
390         }
391
392         if(jidx<j_index_end)
393         {
394
395             jnrA             = jjnr[jidx];
396             j_coord_offsetA  = DIM*jnrA;
397
398             /* load j atom coordinates */
399             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
400                                               &jx0,&jy0,&jz0);
401
402             /* Calculate displacement vector */
403             dx00             = _mm_sub_pd(ix0,jx0);
404             dy00             = _mm_sub_pd(iy0,jy0);
405             dz00             = _mm_sub_pd(iz0,jz0);
406             dx10             = _mm_sub_pd(ix1,jx0);
407             dy10             = _mm_sub_pd(iy1,jy0);
408             dz10             = _mm_sub_pd(iz1,jz0);
409             dx20             = _mm_sub_pd(ix2,jx0);
410             dy20             = _mm_sub_pd(iy2,jy0);
411             dz20             = _mm_sub_pd(iz2,jz0);
412             dx30             = _mm_sub_pd(ix3,jx0);
413             dy30             = _mm_sub_pd(iy3,jy0);
414             dz30             = _mm_sub_pd(iz3,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
420             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
421
422             rinv10           = gmx_mm_invsqrt_pd(rsq10);
423             rinv20           = gmx_mm_invsqrt_pd(rsq20);
424             rinv30           = gmx_mm_invsqrt_pd(rsq30);
425
426             rinvsq00         = gmx_mm_inv_pd(rsq00);
427             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
428             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
429             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
430
431             /* Load parameters for j particles */
432             jq0              = _mm_load_sd(charge+jnrA+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434
435             fjx0             = _mm_setzero_pd();
436             fjy0             = _mm_setzero_pd();
437             fjz0             = _mm_setzero_pd();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             /* Compute parameters for interactions between i and j atoms */
444             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
445
446             /* LENNARD-JONES DISPERSION/REPULSION */
447
448             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
449             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
450             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
451             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
452             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
456             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
457
458             fscal            = fvdw;
459
460             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
461
462             /* Update vectorial force */
463             fix0             = _mm_macc_pd(dx00,fscal,fix0);
464             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
465             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
466             
467             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
468             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
469             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             r10              = _mm_mul_pd(rsq10,rinv10);
476
477             /* Compute parameters for interactions between i and j atoms */
478             qq10             = _mm_mul_pd(iq1,jq0);
479
480             /* EWALD ELECTROSTATICS */
481
482             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
483             ewrt             = _mm_mul_pd(r10,ewtabscale);
484             ewitab           = _mm_cvttpd_epi32(ewrt);
485 #ifdef __XOP__
486             eweps            = _mm_frcz_pd(ewrt);
487 #else
488             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
489 #endif
490             twoeweps         = _mm_add_pd(eweps,eweps);
491             ewitab           = _mm_slli_epi32(ewitab,2);
492             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
493             ewtabD           = _mm_setzero_pd();
494             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
495             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
496             ewtabFn          = _mm_setzero_pd();
497             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
498             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
499             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
500             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
501             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
505             velecsum         = _mm_add_pd(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
510
511             /* Update vectorial force */
512             fix1             = _mm_macc_pd(dx10,fscal,fix1);
513             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
514             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
515             
516             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
517             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
518             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             r20              = _mm_mul_pd(rsq20,rinv20);
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq20             = _mm_mul_pd(iq2,jq0);
528
529             /* EWALD ELECTROSTATICS */
530
531             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532             ewrt             = _mm_mul_pd(r20,ewtabscale);
533             ewitab           = _mm_cvttpd_epi32(ewrt);
534 #ifdef __XOP__
535             eweps            = _mm_frcz_pd(ewrt);
536 #else
537             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
538 #endif
539             twoeweps         = _mm_add_pd(eweps,eweps);
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm_setzero_pd();
543             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
544             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
545             ewtabFn          = _mm_setzero_pd();
546             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
547             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
548             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
549             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
550             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
554             velecsum         = _mm_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
559
560             /* Update vectorial force */
561             fix2             = _mm_macc_pd(dx20,fscal,fix2);
562             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
563             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
564             
565             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
566             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
567             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             r30              = _mm_mul_pd(rsq30,rinv30);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq30             = _mm_mul_pd(iq3,jq0);
577
578             /* EWALD ELECTROSTATICS */
579
580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
581             ewrt             = _mm_mul_pd(r30,ewtabscale);
582             ewitab           = _mm_cvttpd_epi32(ewrt);
583 #ifdef __XOP__
584             eweps            = _mm_frcz_pd(ewrt);
585 #else
586             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
587 #endif
588             twoeweps         = _mm_add_pd(eweps,eweps);
589             ewitab           = _mm_slli_epi32(ewitab,2);
590             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
591             ewtabD           = _mm_setzero_pd();
592             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
593             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
594             ewtabFn          = _mm_setzero_pd();
595             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
596             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
597             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
598             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
599             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
603             velecsum         = _mm_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Update vectorial force */
610             fix3             = _mm_macc_pd(dx30,fscal,fix3);
611             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
612             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
613             
614             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
615             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
616             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
617
618             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
619
620             /* Inner loop uses 170 flops */
621         }
622
623         /* End of innermost loop */
624
625         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
626                                               f+i_coord_offset,fshift+i_shift_offset);
627
628         ggid                        = gid[iidx];
629         /* Update potential energies */
630         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
631         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
632
633         /* Increment number of inner iterations */
634         inneriter                  += j_index_end - j_index_start;
635
636         /* Outer loop uses 26 flops */
637     }
638
639     /* Increment number of outer iterations */
640     outeriter        += nri;
641
642     /* Update outer/inner flops */
643
644     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*170);
645 }
646 /*
647  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_double
648  * Electrostatics interaction: Ewald
649  * VdW interaction:            LennardJones
650  * Geometry:                   Water4-Particle
651  * Calculate force/pot:        Force
652  */
653 void
654 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_double
655                     (t_nblist * gmx_restrict                nlist,
656                      rvec * gmx_restrict                    xx,
657                      rvec * gmx_restrict                    ff,
658                      t_forcerec * gmx_restrict              fr,
659                      t_mdatoms * gmx_restrict               mdatoms,
660                      nb_kernel_data_t * gmx_restrict        kernel_data,
661                      t_nrnb * gmx_restrict                  nrnb)
662 {
663     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
664      * just 0 for non-waters.
665      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
666      * jnr indices corresponding to data put in the four positions in the SIMD register.
667      */
668     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
669     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
670     int              jnrA,jnrB;
671     int              j_coord_offsetA,j_coord_offsetB;
672     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
673     real             rcutoff_scalar;
674     real             *shiftvec,*fshift,*x,*f;
675     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
676     int              vdwioffset0;
677     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwioffset1;
679     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
680     int              vdwioffset2;
681     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
682     int              vdwioffset3;
683     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
684     int              vdwjidx0A,vdwjidx0B;
685     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
686     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
687     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
688     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
689     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
690     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
691     real             *charge;
692     int              nvdwtype;
693     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
694     int              *vdwtype;
695     real             *vdwparam;
696     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
697     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
698     __m128i          ewitab;
699     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
700     real             *ewtab;
701     __m128d          dummy_mask,cutoff_mask;
702     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
703     __m128d          one     = _mm_set1_pd(1.0);
704     __m128d          two     = _mm_set1_pd(2.0);
705     x                = xx[0];
706     f                = ff[0];
707
708     nri              = nlist->nri;
709     iinr             = nlist->iinr;
710     jindex           = nlist->jindex;
711     jjnr             = nlist->jjnr;
712     shiftidx         = nlist->shift;
713     gid              = nlist->gid;
714     shiftvec         = fr->shift_vec[0];
715     fshift           = fr->fshift[0];
716     facel            = _mm_set1_pd(fr->epsfac);
717     charge           = mdatoms->chargeA;
718     nvdwtype         = fr->ntype;
719     vdwparam         = fr->nbfp;
720     vdwtype          = mdatoms->typeA;
721
722     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
723     ewtab            = fr->ic->tabq_coul_F;
724     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
725     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
726
727     /* Setup water-specific parameters */
728     inr              = nlist->iinr[0];
729     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
730     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
731     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
732     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
733
734     /* Avoid stupid compiler warnings */
735     jnrA = jnrB = 0;
736     j_coord_offsetA = 0;
737     j_coord_offsetB = 0;
738
739     outeriter        = 0;
740     inneriter        = 0;
741
742     /* Start outer loop over neighborlists */
743     for(iidx=0; iidx<nri; iidx++)
744     {
745         /* Load shift vector for this list */
746         i_shift_offset   = DIM*shiftidx[iidx];
747
748         /* Load limits for loop over neighbors */
749         j_index_start    = jindex[iidx];
750         j_index_end      = jindex[iidx+1];
751
752         /* Get outer coordinate index */
753         inr              = iinr[iidx];
754         i_coord_offset   = DIM*inr;
755
756         /* Load i particle coords and add shift vector */
757         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
758                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
759
760         fix0             = _mm_setzero_pd();
761         fiy0             = _mm_setzero_pd();
762         fiz0             = _mm_setzero_pd();
763         fix1             = _mm_setzero_pd();
764         fiy1             = _mm_setzero_pd();
765         fiz1             = _mm_setzero_pd();
766         fix2             = _mm_setzero_pd();
767         fiy2             = _mm_setzero_pd();
768         fiz2             = _mm_setzero_pd();
769         fix3             = _mm_setzero_pd();
770         fiy3             = _mm_setzero_pd();
771         fiz3             = _mm_setzero_pd();
772
773         /* Start inner kernel loop */
774         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
775         {
776
777             /* Get j neighbor index, and coordinate index */
778             jnrA             = jjnr[jidx];
779             jnrB             = jjnr[jidx+1];
780             j_coord_offsetA  = DIM*jnrA;
781             j_coord_offsetB  = DIM*jnrB;
782
783             /* load j atom coordinates */
784             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
785                                               &jx0,&jy0,&jz0);
786
787             /* Calculate displacement vector */
788             dx00             = _mm_sub_pd(ix0,jx0);
789             dy00             = _mm_sub_pd(iy0,jy0);
790             dz00             = _mm_sub_pd(iz0,jz0);
791             dx10             = _mm_sub_pd(ix1,jx0);
792             dy10             = _mm_sub_pd(iy1,jy0);
793             dz10             = _mm_sub_pd(iz1,jz0);
794             dx20             = _mm_sub_pd(ix2,jx0);
795             dy20             = _mm_sub_pd(iy2,jy0);
796             dz20             = _mm_sub_pd(iz2,jz0);
797             dx30             = _mm_sub_pd(ix3,jx0);
798             dy30             = _mm_sub_pd(iy3,jy0);
799             dz30             = _mm_sub_pd(iz3,jz0);
800
801             /* Calculate squared distance and things based on it */
802             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
803             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
804             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
805             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
806
807             rinv10           = gmx_mm_invsqrt_pd(rsq10);
808             rinv20           = gmx_mm_invsqrt_pd(rsq20);
809             rinv30           = gmx_mm_invsqrt_pd(rsq30);
810
811             rinvsq00         = gmx_mm_inv_pd(rsq00);
812             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
813             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
814             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
815
816             /* Load parameters for j particles */
817             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
818             vdwjidx0A        = 2*vdwtype[jnrA+0];
819             vdwjidx0B        = 2*vdwtype[jnrB+0];
820
821             fjx0             = _mm_setzero_pd();
822             fjy0             = _mm_setzero_pd();
823             fjz0             = _mm_setzero_pd();
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             /* Compute parameters for interactions between i and j atoms */
830             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
831                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
832
833             /* LENNARD-JONES DISPERSION/REPULSION */
834
835             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
836             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
837
838             fscal            = fvdw;
839
840             /* Update vectorial force */
841             fix0             = _mm_macc_pd(dx00,fscal,fix0);
842             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
843             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
844             
845             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
846             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
847             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             r10              = _mm_mul_pd(rsq10,rinv10);
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq10             = _mm_mul_pd(iq1,jq0);
857
858             /* EWALD ELECTROSTATICS */
859
860             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
861             ewrt             = _mm_mul_pd(r10,ewtabscale);
862             ewitab           = _mm_cvttpd_epi32(ewrt);
863 #ifdef __XOP__
864             eweps            = _mm_frcz_pd(ewrt);
865 #else
866             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
867 #endif
868             twoeweps         = _mm_add_pd(eweps,eweps);
869             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
870                                          &ewtabF,&ewtabFn);
871             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
872             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
873
874             fscal            = felec;
875
876             /* Update vectorial force */
877             fix1             = _mm_macc_pd(dx10,fscal,fix1);
878             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
879             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
880             
881             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
882             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
883             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r20              = _mm_mul_pd(rsq20,rinv20);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq20             = _mm_mul_pd(iq2,jq0);
893
894             /* EWALD ELECTROSTATICS */
895
896             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
897             ewrt             = _mm_mul_pd(r20,ewtabscale);
898             ewitab           = _mm_cvttpd_epi32(ewrt);
899 #ifdef __XOP__
900             eweps            = _mm_frcz_pd(ewrt);
901 #else
902             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
903 #endif
904             twoeweps         = _mm_add_pd(eweps,eweps);
905             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
906                                          &ewtabF,&ewtabFn);
907             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
908             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
909
910             fscal            = felec;
911
912             /* Update vectorial force */
913             fix2             = _mm_macc_pd(dx20,fscal,fix2);
914             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
915             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
916             
917             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
918             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
919             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r30              = _mm_mul_pd(rsq30,rinv30);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq30             = _mm_mul_pd(iq3,jq0);
929
930             /* EWALD ELECTROSTATICS */
931
932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
933             ewrt             = _mm_mul_pd(r30,ewtabscale);
934             ewitab           = _mm_cvttpd_epi32(ewrt);
935 #ifdef __XOP__
936             eweps            = _mm_frcz_pd(ewrt);
937 #else
938             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
939 #endif
940             twoeweps         = _mm_add_pd(eweps,eweps);
941             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
942                                          &ewtabF,&ewtabFn);
943             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
944             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
945
946             fscal            = felec;
947
948             /* Update vectorial force */
949             fix3             = _mm_macc_pd(dx30,fscal,fix3);
950             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
951             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
952             
953             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
954             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
955             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
956
957             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
958
959             /* Inner loop uses 150 flops */
960         }
961
962         if(jidx<j_index_end)
963         {
964
965             jnrA             = jjnr[jidx];
966             j_coord_offsetA  = DIM*jnrA;
967
968             /* load j atom coordinates */
969             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
970                                               &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm_sub_pd(ix0,jx0);
974             dy00             = _mm_sub_pd(iy0,jy0);
975             dz00             = _mm_sub_pd(iz0,jz0);
976             dx10             = _mm_sub_pd(ix1,jx0);
977             dy10             = _mm_sub_pd(iy1,jy0);
978             dz10             = _mm_sub_pd(iz1,jz0);
979             dx20             = _mm_sub_pd(ix2,jx0);
980             dy20             = _mm_sub_pd(iy2,jy0);
981             dz20             = _mm_sub_pd(iz2,jz0);
982             dx30             = _mm_sub_pd(ix3,jx0);
983             dy30             = _mm_sub_pd(iy3,jy0);
984             dz30             = _mm_sub_pd(iz3,jz0);
985
986             /* Calculate squared distance and things based on it */
987             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
988             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
989             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
990             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
991
992             rinv10           = gmx_mm_invsqrt_pd(rsq10);
993             rinv20           = gmx_mm_invsqrt_pd(rsq20);
994             rinv30           = gmx_mm_invsqrt_pd(rsq30);
995
996             rinvsq00         = gmx_mm_inv_pd(rsq00);
997             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
998             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
999             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1000
1001             /* Load parameters for j particles */
1002             jq0              = _mm_load_sd(charge+jnrA+0);
1003             vdwjidx0A        = 2*vdwtype[jnrA+0];
1004
1005             fjx0             = _mm_setzero_pd();
1006             fjy0             = _mm_setzero_pd();
1007             fjz0             = _mm_setzero_pd();
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1015
1016             /* LENNARD-JONES DISPERSION/REPULSION */
1017
1018             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1019             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1020
1021             fscal            = fvdw;
1022
1023             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1024
1025             /* Update vectorial force */
1026             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1027             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1028             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1029             
1030             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1031             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1032             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             r10              = _mm_mul_pd(rsq10,rinv10);
1039
1040             /* Compute parameters for interactions between i and j atoms */
1041             qq10             = _mm_mul_pd(iq1,jq0);
1042
1043             /* EWALD ELECTROSTATICS */
1044
1045             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1046             ewrt             = _mm_mul_pd(r10,ewtabscale);
1047             ewitab           = _mm_cvttpd_epi32(ewrt);
1048 #ifdef __XOP__
1049             eweps            = _mm_frcz_pd(ewrt);
1050 #else
1051             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1052 #endif
1053             twoeweps         = _mm_add_pd(eweps,eweps);
1054             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1055             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1056             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1061
1062             /* Update vectorial force */
1063             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1064             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1065             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1066             
1067             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1068             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1069             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             r20              = _mm_mul_pd(rsq20,rinv20);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq20             = _mm_mul_pd(iq2,jq0);
1079
1080             /* EWALD ELECTROSTATICS */
1081
1082             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1083             ewrt             = _mm_mul_pd(r20,ewtabscale);
1084             ewitab           = _mm_cvttpd_epi32(ewrt);
1085 #ifdef __XOP__
1086             eweps            = _mm_frcz_pd(ewrt);
1087 #else
1088             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1089 #endif
1090             twoeweps         = _mm_add_pd(eweps,eweps);
1091             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1092             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1098
1099             /* Update vectorial force */
1100             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1101             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1102             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1103             
1104             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1105             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1106             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             r30              = _mm_mul_pd(rsq30,rinv30);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq30             = _mm_mul_pd(iq3,jq0);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _mm_mul_pd(r30,ewtabscale);
1121             ewitab           = _mm_cvttpd_epi32(ewrt);
1122 #ifdef __XOP__
1123             eweps            = _mm_frcz_pd(ewrt);
1124 #else
1125             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1126 #endif
1127             twoeweps         = _mm_add_pd(eweps,eweps);
1128             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1129             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1130             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1135
1136             /* Update vectorial force */
1137             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1138             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1139             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1140             
1141             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1142             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1143             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1144
1145             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1146
1147             /* Inner loop uses 150 flops */
1148         }
1149
1150         /* End of innermost loop */
1151
1152         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1153                                               f+i_coord_offset,fshift+i_shift_offset);
1154
1155         /* Increment number of inner iterations */
1156         inneriter                  += j_index_end - j_index_start;
1157
1158         /* Outer loop uses 24 flops */
1159     }
1160
1161     /* Increment number of outer iterations */
1162     outeriter        += nri;
1163
1164     /* Update outer/inner flops */
1165
1166     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1167 }