made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     /* Start outer loop over neighborlists */
117     for(iidx=0; iidx<nri; iidx++)
118     {
119         /* Load shift vector for this list */
120         i_shift_offset   = DIM*shiftidx[iidx];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
132
133         fix0             = _mm_setzero_pd();
134         fiy0             = _mm_setzero_pd();
135         fiz0             = _mm_setzero_pd();
136
137         /* Load parameters for i particles */
138         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
139         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
140
141         /* Reset potential sums */
142         velecsum         = _mm_setzero_pd();
143         vvdwsum          = _mm_setzero_pd();
144
145         /* Start inner kernel loop */
146         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
147         {
148
149             /* Get j neighbor index, and coordinate index */
150             jnrA             = jjnr[jidx];
151             jnrB             = jjnr[jidx+1];
152             j_coord_offsetA  = DIM*jnrA;
153             j_coord_offsetB  = DIM*jnrB;
154
155             /* load j atom coordinates */
156             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
157                                               &jx0,&jy0,&jz0);
158
159             /* Calculate displacement vector */
160             dx00             = _mm_sub_pd(ix0,jx0);
161             dy00             = _mm_sub_pd(iy0,jy0);
162             dz00             = _mm_sub_pd(iz0,jz0);
163
164             /* Calculate squared distance and things based on it */
165             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
166
167             rinv00           = gmx_mm_invsqrt_pd(rsq00);
168
169             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
170
171             /* Load parameters for j particles */
172             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
173             vdwjidx0A        = 2*vdwtype[jnrA+0];
174             vdwjidx0B        = 2*vdwtype[jnrB+0];
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             r00              = _mm_mul_pd(rsq00,rinv00);
181
182             /* Compute parameters for interactions between i and j atoms */
183             qq00             = _mm_mul_pd(iq0,jq0);
184             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
185                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
186
187             /* EWALD ELECTROSTATICS */
188
189             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
190             ewrt             = _mm_mul_pd(r00,ewtabscale);
191             ewitab           = _mm_cvttpd_epi32(ewrt);
192 #ifdef __XOP__
193             eweps            = _mm_frcz_pd(ewrt);
194 #else
195             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
196 #endif
197             twoeweps         = _mm_add_pd(eweps,eweps);
198             ewitab           = _mm_slli_epi32(ewitab,2);
199             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
200             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
201             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
202             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
203             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
204             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
205             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
206             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
207             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
208             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
209
210             /* LENNARD-JONES DISPERSION/REPULSION */
211
212             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
213             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
214             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
215             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
216             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
217
218             /* Update potential sum for this i atom from the interaction with this j atom. */
219             velecsum         = _mm_add_pd(velecsum,velec);
220             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
221
222             fscal            = _mm_add_pd(felec,fvdw);
223
224             /* Update vectorial force */
225             fix0             = _mm_macc_pd(dx00,fscal,fix0);
226             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
227             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
228             
229             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
230                                                    _mm_mul_pd(dx00,fscal),
231                                                    _mm_mul_pd(dy00,fscal),
232                                                    _mm_mul_pd(dz00,fscal));
233
234             /* Inner loop uses 56 flops */
235         }
236
237         if(jidx<j_index_end)
238         {
239
240             jnrA             = jjnr[jidx];
241             j_coord_offsetA  = DIM*jnrA;
242
243             /* load j atom coordinates */
244             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
245                                               &jx0,&jy0,&jz0);
246
247             /* Calculate displacement vector */
248             dx00             = _mm_sub_pd(ix0,jx0);
249             dy00             = _mm_sub_pd(iy0,jy0);
250             dz00             = _mm_sub_pd(iz0,jz0);
251
252             /* Calculate squared distance and things based on it */
253             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
254
255             rinv00           = gmx_mm_invsqrt_pd(rsq00);
256
257             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
258
259             /* Load parameters for j particles */
260             jq0              = _mm_load_sd(charge+jnrA+0);
261             vdwjidx0A        = 2*vdwtype[jnrA+0];
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r00              = _mm_mul_pd(rsq00,rinv00);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq00             = _mm_mul_pd(iq0,jq0);
271             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
272
273             /* EWALD ELECTROSTATICS */
274
275             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
276             ewrt             = _mm_mul_pd(r00,ewtabscale);
277             ewitab           = _mm_cvttpd_epi32(ewrt);
278 #ifdef __XOP__
279             eweps            = _mm_frcz_pd(ewrt);
280 #else
281             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
282 #endif
283             twoeweps         = _mm_add_pd(eweps,eweps);
284             ewitab           = _mm_slli_epi32(ewitab,2);
285             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
286             ewtabD           = _mm_setzero_pd();
287             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
288             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
289             ewtabFn          = _mm_setzero_pd();
290             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
291             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
292             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
293             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
294             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
295
296             /* LENNARD-JONES DISPERSION/REPULSION */
297
298             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
299             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
300             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
301             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
302             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
306             velecsum         = _mm_add_pd(velecsum,velec);
307             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
308             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
309
310             fscal            = _mm_add_pd(felec,fvdw);
311
312             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
313
314             /* Update vectorial force */
315             fix0             = _mm_macc_pd(dx00,fscal,fix0);
316             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
317             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
318             
319             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
320                                                    _mm_mul_pd(dx00,fscal),
321                                                    _mm_mul_pd(dy00,fscal),
322                                                    _mm_mul_pd(dz00,fscal));
323
324             /* Inner loop uses 56 flops */
325         }
326
327         /* End of innermost loop */
328
329         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
330                                               f+i_coord_offset,fshift+i_shift_offset);
331
332         ggid                        = gid[iidx];
333         /* Update potential energies */
334         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
335         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
336
337         /* Increment number of inner iterations */
338         inneriter                  += j_index_end - j_index_start;
339
340         /* Outer loop uses 9 flops */
341     }
342
343     /* Increment number of outer iterations */
344     outeriter        += nri;
345
346     /* Update outer/inner flops */
347
348     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
349 }
350 /*
351  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
352  * Electrostatics interaction: Ewald
353  * VdW interaction:            LennardJones
354  * Geometry:                   Particle-Particle
355  * Calculate force/pot:        Force
356  */
357 void
358 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
359                     (t_nblist * gmx_restrict                nlist,
360                      rvec * gmx_restrict                    xx,
361                      rvec * gmx_restrict                    ff,
362                      t_forcerec * gmx_restrict              fr,
363                      t_mdatoms * gmx_restrict               mdatoms,
364                      nb_kernel_data_t * gmx_restrict        kernel_data,
365                      t_nrnb * gmx_restrict                  nrnb)
366 {
367     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
368      * just 0 for non-waters.
369      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
370      * jnr indices corresponding to data put in the four positions in the SIMD register.
371      */
372     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
373     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
374     int              jnrA,jnrB;
375     int              j_coord_offsetA,j_coord_offsetB;
376     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
377     real             rcutoff_scalar;
378     real             *shiftvec,*fshift,*x,*f;
379     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
380     int              vdwioffset0;
381     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
382     int              vdwjidx0A,vdwjidx0B;
383     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
384     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
385     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
386     real             *charge;
387     int              nvdwtype;
388     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
389     int              *vdwtype;
390     real             *vdwparam;
391     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
392     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
393     __m128i          ewitab;
394     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
395     real             *ewtab;
396     __m128d          dummy_mask,cutoff_mask;
397     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
398     __m128d          one     = _mm_set1_pd(1.0);
399     __m128d          two     = _mm_set1_pd(2.0);
400     x                = xx[0];
401     f                = ff[0];
402
403     nri              = nlist->nri;
404     iinr             = nlist->iinr;
405     jindex           = nlist->jindex;
406     jjnr             = nlist->jjnr;
407     shiftidx         = nlist->shift;
408     gid              = nlist->gid;
409     shiftvec         = fr->shift_vec[0];
410     fshift           = fr->fshift[0];
411     facel            = _mm_set1_pd(fr->epsfac);
412     charge           = mdatoms->chargeA;
413     nvdwtype         = fr->ntype;
414     vdwparam         = fr->nbfp;
415     vdwtype          = mdatoms->typeA;
416
417     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
418     ewtab            = fr->ic->tabq_coul_F;
419     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
420     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
421
422     /* Avoid stupid compiler warnings */
423     jnrA = jnrB = 0;
424     j_coord_offsetA = 0;
425     j_coord_offsetB = 0;
426
427     outeriter        = 0;
428     inneriter        = 0;
429
430     /* Start outer loop over neighborlists */
431     for(iidx=0; iidx<nri; iidx++)
432     {
433         /* Load shift vector for this list */
434         i_shift_offset   = DIM*shiftidx[iidx];
435
436         /* Load limits for loop over neighbors */
437         j_index_start    = jindex[iidx];
438         j_index_end      = jindex[iidx+1];
439
440         /* Get outer coordinate index */
441         inr              = iinr[iidx];
442         i_coord_offset   = DIM*inr;
443
444         /* Load i particle coords and add shift vector */
445         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
446
447         fix0             = _mm_setzero_pd();
448         fiy0             = _mm_setzero_pd();
449         fiz0             = _mm_setzero_pd();
450
451         /* Load parameters for i particles */
452         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
453         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
454
455         /* Start inner kernel loop */
456         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrA             = jjnr[jidx];
461             jnrB             = jjnr[jidx+1];
462             j_coord_offsetA  = DIM*jnrA;
463             j_coord_offsetB  = DIM*jnrB;
464
465             /* load j atom coordinates */
466             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
467                                               &jx0,&jy0,&jz0);
468
469             /* Calculate displacement vector */
470             dx00             = _mm_sub_pd(ix0,jx0);
471             dy00             = _mm_sub_pd(iy0,jy0);
472             dz00             = _mm_sub_pd(iz0,jz0);
473
474             /* Calculate squared distance and things based on it */
475             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
476
477             rinv00           = gmx_mm_invsqrt_pd(rsq00);
478
479             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
480
481             /* Load parameters for j particles */
482             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
483             vdwjidx0A        = 2*vdwtype[jnrA+0];
484             vdwjidx0B        = 2*vdwtype[jnrB+0];
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             r00              = _mm_mul_pd(rsq00,rinv00);
491
492             /* Compute parameters for interactions between i and j atoms */
493             qq00             = _mm_mul_pd(iq0,jq0);
494             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
495                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = _mm_mul_pd(r00,ewtabscale);
501             ewitab           = _mm_cvttpd_epi32(ewrt);
502 #ifdef __XOP__
503             eweps            = _mm_frcz_pd(ewrt);
504 #else
505             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
506 #endif
507             twoeweps         = _mm_add_pd(eweps,eweps);
508             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
509                                          &ewtabF,&ewtabFn);
510             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
511             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
512
513             /* LENNARD-JONES DISPERSION/REPULSION */
514
515             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
516             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
517
518             fscal            = _mm_add_pd(felec,fvdw);
519
520             /* Update vectorial force */
521             fix0             = _mm_macc_pd(dx00,fscal,fix0);
522             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
523             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
524             
525             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
526                                                    _mm_mul_pd(dx00,fscal),
527                                                    _mm_mul_pd(dy00,fscal),
528                                                    _mm_mul_pd(dz00,fscal));
529
530             /* Inner loop uses 46 flops */
531         }
532
533         if(jidx<j_index_end)
534         {
535
536             jnrA             = jjnr[jidx];
537             j_coord_offsetA  = DIM*jnrA;
538
539             /* load j atom coordinates */
540             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
541                                               &jx0,&jy0,&jz0);
542
543             /* Calculate displacement vector */
544             dx00             = _mm_sub_pd(ix0,jx0);
545             dy00             = _mm_sub_pd(iy0,jy0);
546             dz00             = _mm_sub_pd(iz0,jz0);
547
548             /* Calculate squared distance and things based on it */
549             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
550
551             rinv00           = gmx_mm_invsqrt_pd(rsq00);
552
553             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
554
555             /* Load parameters for j particles */
556             jq0              = _mm_load_sd(charge+jnrA+0);
557             vdwjidx0A        = 2*vdwtype[jnrA+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _mm_mul_pd(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq00             = _mm_mul_pd(iq0,jq0);
567             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_pd(r00,ewtabscale);
573             ewitab           = _mm_cvttpd_epi32(ewrt);
574 #ifdef __XOP__
575             eweps            = _mm_frcz_pd(ewrt);
576 #else
577             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
578 #endif
579             twoeweps         = _mm_add_pd(eweps,eweps);
580             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
581             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
582             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
583
584             /* LENNARD-JONES DISPERSION/REPULSION */
585
586             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
587             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
588
589             fscal            = _mm_add_pd(felec,fvdw);
590
591             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
592
593             /* Update vectorial force */
594             fix0             = _mm_macc_pd(dx00,fscal,fix0);
595             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
596             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
597             
598             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
599                                                    _mm_mul_pd(dx00,fscal),
600                                                    _mm_mul_pd(dy00,fscal),
601                                                    _mm_mul_pd(dz00,fscal));
602
603             /* Inner loop uses 46 flops */
604         }
605
606         /* End of innermost loop */
607
608         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
609                                               f+i_coord_offset,fshift+i_shift_offset);
610
611         /* Increment number of inner iterations */
612         inneriter                  += j_index_end - j_index_start;
613
614         /* Outer loop uses 7 flops */
615     }
616
617     /* Increment number of outer iterations */
618     outeriter        += nri;
619
620     /* Update outer/inner flops */
621
622     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
623 }