346bf8489dc6d09dfd53feb2b1ccc33df3aa2177
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
91     real             *vftab;
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
118
119     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
127     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
128     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
156
157         fix0             = _mm_setzero_pd();
158         fiy0             = _mm_setzero_pd();
159         fiz0             = _mm_setzero_pd();
160         fix1             = _mm_setzero_pd();
161         fiy1             = _mm_setzero_pd();
162         fiz1             = _mm_setzero_pd();
163         fix2             = _mm_setzero_pd();
164         fiy2             = _mm_setzero_pd();
165         fiz2             = _mm_setzero_pd();
166         fix3             = _mm_setzero_pd();
167         fiy3             = _mm_setzero_pd();
168         fiz3             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198             dx30             = _mm_sub_pd(ix3,jx0);
199             dy30             = _mm_sub_pd(iy3,jy0);
200             dz30             = _mm_sub_pd(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
207
208             rinv00           = gmx_mm_invsqrt_pd(rsq00);
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
214             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
215             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221
222             fjx0             = _mm_setzero_pd();
223             fjy0             = _mm_setzero_pd();
224             fjz0             = _mm_setzero_pd();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* Calculate table index by multiplying r with table scale and truncate to integer */
237             rt               = _mm_mul_pd(r00,vftabscale);
238             vfitab           = _mm_cvttpd_epi32(rt);
239 #ifdef __XOP__
240             vfeps            = _mm_frcz_pd(rt);
241 #else
242             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
243 #endif
244             twovfeps         = _mm_add_pd(vfeps,vfeps);
245             vfitab           = _mm_slli_epi32(vfitab,3);
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
255             VV               = _mm_macc_pd(vfeps,Fp,Y);
256             vvdw6            = _mm_mul_pd(c6_00,VV);
257             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
258             fvdw6            = _mm_mul_pd(c6_00,FF);
259
260             /* CUBIC SPLINE TABLE REPULSION */
261             vfitab           = _mm_add_epi32(vfitab,ifour);
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw12           = _mm_mul_pd(c12_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw12           = _mm_mul_pd(c12_00,FF);
273             vvdw             = _mm_add_pd(vvdw12,vvdw6);
274             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
278
279             fscal            = fvdw;
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
287             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
288             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r10              = _mm_mul_pd(rsq10,rinv10);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq10             = _mm_mul_pd(iq1,jq0);
298
299             /* EWALD ELECTROSTATICS */
300
301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
302             ewrt             = _mm_mul_pd(r10,ewtabscale);
303             ewitab           = _mm_cvttpd_epi32(ewrt);
304 #ifdef __XOP__
305             eweps            = _mm_frcz_pd(ewrt);
306 #else
307             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
308 #endif
309             twoeweps         = _mm_add_pd(eweps,eweps);
310             ewitab           = _mm_slli_epi32(ewitab,2);
311             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
312             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
313             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
314             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
315             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
316             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
317             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
318             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
319             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
320             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velecsum         = _mm_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             /* Update vectorial force */
328             fix1             = _mm_macc_pd(dx10,fscal,fix1);
329             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
330             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
331             
332             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
333             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
334             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r20              = _mm_mul_pd(rsq20,rinv20);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq20             = _mm_mul_pd(iq2,jq0);
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = _mm_mul_pd(r20,ewtabscale);
349             ewitab           = _mm_cvttpd_epi32(ewrt);
350 #ifdef __XOP__
351             eweps            = _mm_frcz_pd(ewrt);
352 #else
353             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
354 #endif
355             twoeweps         = _mm_add_pd(eweps,eweps);
356             ewitab           = _mm_slli_epi32(ewitab,2);
357             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
358             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
359             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
360             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
361             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
362             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
363             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
364             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
365             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
366             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velecsum         = _mm_add_pd(velecsum,velec);
370
371             fscal            = felec;
372
373             /* Update vectorial force */
374             fix2             = _mm_macc_pd(dx20,fscal,fix2);
375             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
376             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
377             
378             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
379             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
380             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             r30              = _mm_mul_pd(rsq30,rinv30);
387
388             /* Compute parameters for interactions between i and j atoms */
389             qq30             = _mm_mul_pd(iq3,jq0);
390
391             /* EWALD ELECTROSTATICS */
392
393             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
394             ewrt             = _mm_mul_pd(r30,ewtabscale);
395             ewitab           = _mm_cvttpd_epi32(ewrt);
396 #ifdef __XOP__
397             eweps            = _mm_frcz_pd(ewrt);
398 #else
399             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
400 #endif
401             twoeweps         = _mm_add_pd(eweps,eweps);
402             ewitab           = _mm_slli_epi32(ewitab,2);
403             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
404             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
405             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
406             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
407             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
408             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
409             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
410             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
411             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
412             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velecsum         = _mm_add_pd(velecsum,velec);
416
417             fscal            = felec;
418
419             /* Update vectorial force */
420             fix3             = _mm_macc_pd(dx30,fscal,fix3);
421             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
422             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
423             
424             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
425             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
426             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
427
428             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 194 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             jnrA             = jjnr[jidx];
437             j_coord_offsetA  = DIM*jnrA;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_pd(ix0,jx0);
445             dy00             = _mm_sub_pd(iy0,jy0);
446             dz00             = _mm_sub_pd(iz0,jz0);
447             dx10             = _mm_sub_pd(ix1,jx0);
448             dy10             = _mm_sub_pd(iy1,jy0);
449             dz10             = _mm_sub_pd(iz1,jz0);
450             dx20             = _mm_sub_pd(ix2,jx0);
451             dy20             = _mm_sub_pd(iy2,jy0);
452             dz20             = _mm_sub_pd(iz2,jz0);
453             dx30             = _mm_sub_pd(ix3,jx0);
454             dy30             = _mm_sub_pd(iy3,jy0);
455             dz30             = _mm_sub_pd(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
461             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
462
463             rinv00           = gmx_mm_invsqrt_pd(rsq00);
464             rinv10           = gmx_mm_invsqrt_pd(rsq10);
465             rinv20           = gmx_mm_invsqrt_pd(rsq20);
466             rinv30           = gmx_mm_invsqrt_pd(rsq30);
467
468             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
469             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
470             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
471
472             /* Load parameters for j particles */
473             jq0              = _mm_load_sd(charge+jnrA+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475
476             fjx0             = _mm_setzero_pd();
477             fjy0             = _mm_setzero_pd();
478             fjz0             = _mm_setzero_pd();
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
488
489             /* Calculate table index by multiplying r with table scale and truncate to integer */
490             rt               = _mm_mul_pd(r00,vftabscale);
491             vfitab           = _mm_cvttpd_epi32(rt);
492 #ifdef __XOP__
493             vfeps            = _mm_frcz_pd(rt);
494 #else
495             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
496 #endif
497             twovfeps         = _mm_add_pd(vfeps,vfeps);
498             vfitab           = _mm_slli_epi32(vfitab,3);
499
500             /* CUBIC SPLINE TABLE DISPERSION */
501             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
502             F                = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(Y,F);
504             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
505             H                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(G,H);
507             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
508             VV               = _mm_macc_pd(vfeps,Fp,Y);
509             vvdw6            = _mm_mul_pd(c6_00,VV);
510             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
511             fvdw6            = _mm_mul_pd(c6_00,FF);
512
513             /* CUBIC SPLINE TABLE REPULSION */
514             vfitab           = _mm_add_epi32(vfitab,ifour);
515             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
516             F                = _mm_setzero_pd();
517             GMX_MM_TRANSPOSE2_PD(Y,F);
518             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
519             H                = _mm_setzero_pd();
520             GMX_MM_TRANSPOSE2_PD(G,H);
521             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
522             VV               = _mm_macc_pd(vfeps,Fp,Y);
523             vvdw12           = _mm_mul_pd(c12_00,VV);
524             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
525             fvdw12           = _mm_mul_pd(c12_00,FF);
526             vvdw             = _mm_add_pd(vvdw12,vvdw6);
527             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
531             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
532
533             fscal            = fvdw;
534
535             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
536
537             /* Update vectorial force */
538             fix0             = _mm_macc_pd(dx00,fscal,fix0);
539             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
540             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
541             
542             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
543             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
544             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             r10              = _mm_mul_pd(rsq10,rinv10);
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq10             = _mm_mul_pd(iq1,jq0);
554
555             /* EWALD ELECTROSTATICS */
556
557             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
558             ewrt             = _mm_mul_pd(r10,ewtabscale);
559             ewitab           = _mm_cvttpd_epi32(ewrt);
560 #ifdef __XOP__
561             eweps            = _mm_frcz_pd(ewrt);
562 #else
563             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
564 #endif
565             twoeweps         = _mm_add_pd(eweps,eweps);
566             ewitab           = _mm_slli_epi32(ewitab,2);
567             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
568             ewtabD           = _mm_setzero_pd();
569             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
570             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
571             ewtabFn          = _mm_setzero_pd();
572             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
573             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
574             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
575             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
576             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
577
578             /* Update potential sum for this i atom from the interaction with this j atom. */
579             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
580             velecsum         = _mm_add_pd(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
585
586             /* Update vectorial force */
587             fix1             = _mm_macc_pd(dx10,fscal,fix1);
588             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
589             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
590             
591             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
592             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
593             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             r20              = _mm_mul_pd(rsq20,rinv20);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq20             = _mm_mul_pd(iq2,jq0);
603
604             /* EWALD ELECTROSTATICS */
605
606             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
607             ewrt             = _mm_mul_pd(r20,ewtabscale);
608             ewitab           = _mm_cvttpd_epi32(ewrt);
609 #ifdef __XOP__
610             eweps            = _mm_frcz_pd(ewrt);
611 #else
612             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
613 #endif
614             twoeweps         = _mm_add_pd(eweps,eweps);
615             ewitab           = _mm_slli_epi32(ewitab,2);
616             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
617             ewtabD           = _mm_setzero_pd();
618             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
619             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
620             ewtabFn          = _mm_setzero_pd();
621             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
622             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
623             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
624             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
625             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
629             velecsum         = _mm_add_pd(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
634
635             /* Update vectorial force */
636             fix2             = _mm_macc_pd(dx20,fscal,fix2);
637             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
638             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
639             
640             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
641             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
642             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r30              = _mm_mul_pd(rsq30,rinv30);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq30             = _mm_mul_pd(iq3,jq0);
652
653             /* EWALD ELECTROSTATICS */
654
655             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
656             ewrt             = _mm_mul_pd(r30,ewtabscale);
657             ewitab           = _mm_cvttpd_epi32(ewrt);
658 #ifdef __XOP__
659             eweps            = _mm_frcz_pd(ewrt);
660 #else
661             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
662 #endif
663             twoeweps         = _mm_add_pd(eweps,eweps);
664             ewitab           = _mm_slli_epi32(ewitab,2);
665             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
666             ewtabD           = _mm_setzero_pd();
667             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
668             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
669             ewtabFn          = _mm_setzero_pd();
670             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
671             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
672             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
673             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
674             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
678             velecsum         = _mm_add_pd(velecsum,velec);
679
680             fscal            = felec;
681
682             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
683
684             /* Update vectorial force */
685             fix3             = _mm_macc_pd(dx30,fscal,fix3);
686             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
687             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
688             
689             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
690             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
691             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
692
693             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
694
695             /* Inner loop uses 194 flops */
696         }
697
698         /* End of innermost loop */
699
700         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
701                                               f+i_coord_offset,fshift+i_shift_offset);
702
703         ggid                        = gid[iidx];
704         /* Update potential energies */
705         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
706         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
707
708         /* Increment number of inner iterations */
709         inneriter                  += j_index_end - j_index_start;
710
711         /* Outer loop uses 26 flops */
712     }
713
714     /* Increment number of outer iterations */
715     outeriter        += nri;
716
717     /* Update outer/inner flops */
718
719     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
720 }
721 /*
722  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
723  * Electrostatics interaction: Ewald
724  * VdW interaction:            CubicSplineTable
725  * Geometry:                   Water4-Particle
726  * Calculate force/pot:        Force
727  */
728 void
729 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
730                     (t_nblist * gmx_restrict                nlist,
731                      rvec * gmx_restrict                    xx,
732                      rvec * gmx_restrict                    ff,
733                      t_forcerec * gmx_restrict              fr,
734                      t_mdatoms * gmx_restrict               mdatoms,
735                      nb_kernel_data_t * gmx_restrict        kernel_data,
736                      t_nrnb * gmx_restrict                  nrnb)
737 {
738     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
739      * just 0 for non-waters.
740      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
741      * jnr indices corresponding to data put in the four positions in the SIMD register.
742      */
743     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
744     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
745     int              jnrA,jnrB;
746     int              j_coord_offsetA,j_coord_offsetB;
747     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
748     real             rcutoff_scalar;
749     real             *shiftvec,*fshift,*x,*f;
750     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
751     int              vdwioffset0;
752     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
753     int              vdwioffset1;
754     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
755     int              vdwioffset2;
756     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
757     int              vdwioffset3;
758     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
759     int              vdwjidx0A,vdwjidx0B;
760     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
761     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
762     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
763     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
764     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
765     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
766     real             *charge;
767     int              nvdwtype;
768     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
769     int              *vdwtype;
770     real             *vdwparam;
771     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
772     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
773     __m128i          vfitab;
774     __m128i          ifour       = _mm_set1_epi32(4);
775     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
776     real             *vftab;
777     __m128i          ewitab;
778     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
779     real             *ewtab;
780     __m128d          dummy_mask,cutoff_mask;
781     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
782     __m128d          one     = _mm_set1_pd(1.0);
783     __m128d          two     = _mm_set1_pd(2.0);
784     x                = xx[0];
785     f                = ff[0];
786
787     nri              = nlist->nri;
788     iinr             = nlist->iinr;
789     jindex           = nlist->jindex;
790     jjnr             = nlist->jjnr;
791     shiftidx         = nlist->shift;
792     gid              = nlist->gid;
793     shiftvec         = fr->shift_vec[0];
794     fshift           = fr->fshift[0];
795     facel            = _mm_set1_pd(fr->epsfac);
796     charge           = mdatoms->chargeA;
797     nvdwtype         = fr->ntype;
798     vdwparam         = fr->nbfp;
799     vdwtype          = mdatoms->typeA;
800
801     vftab            = kernel_data->table_vdw->data;
802     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
803
804     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
805     ewtab            = fr->ic->tabq_coul_F;
806     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
807     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
808
809     /* Setup water-specific parameters */
810     inr              = nlist->iinr[0];
811     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
812     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
813     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
814     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
815
816     /* Avoid stupid compiler warnings */
817     jnrA = jnrB = 0;
818     j_coord_offsetA = 0;
819     j_coord_offsetB = 0;
820
821     outeriter        = 0;
822     inneriter        = 0;
823
824     /* Start outer loop over neighborlists */
825     for(iidx=0; iidx<nri; iidx++)
826     {
827         /* Load shift vector for this list */
828         i_shift_offset   = DIM*shiftidx[iidx];
829
830         /* Load limits for loop over neighbors */
831         j_index_start    = jindex[iidx];
832         j_index_end      = jindex[iidx+1];
833
834         /* Get outer coordinate index */
835         inr              = iinr[iidx];
836         i_coord_offset   = DIM*inr;
837
838         /* Load i particle coords and add shift vector */
839         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
840                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
841
842         fix0             = _mm_setzero_pd();
843         fiy0             = _mm_setzero_pd();
844         fiz0             = _mm_setzero_pd();
845         fix1             = _mm_setzero_pd();
846         fiy1             = _mm_setzero_pd();
847         fiz1             = _mm_setzero_pd();
848         fix2             = _mm_setzero_pd();
849         fiy2             = _mm_setzero_pd();
850         fiz2             = _mm_setzero_pd();
851         fix3             = _mm_setzero_pd();
852         fiy3             = _mm_setzero_pd();
853         fiz3             = _mm_setzero_pd();
854
855         /* Start inner kernel loop */
856         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
857         {
858
859             /* Get j neighbor index, and coordinate index */
860             jnrA             = jjnr[jidx];
861             jnrB             = jjnr[jidx+1];
862             j_coord_offsetA  = DIM*jnrA;
863             j_coord_offsetB  = DIM*jnrB;
864
865             /* load j atom coordinates */
866             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
867                                               &jx0,&jy0,&jz0);
868
869             /* Calculate displacement vector */
870             dx00             = _mm_sub_pd(ix0,jx0);
871             dy00             = _mm_sub_pd(iy0,jy0);
872             dz00             = _mm_sub_pd(iz0,jz0);
873             dx10             = _mm_sub_pd(ix1,jx0);
874             dy10             = _mm_sub_pd(iy1,jy0);
875             dz10             = _mm_sub_pd(iz1,jz0);
876             dx20             = _mm_sub_pd(ix2,jx0);
877             dy20             = _mm_sub_pd(iy2,jy0);
878             dz20             = _mm_sub_pd(iz2,jz0);
879             dx30             = _mm_sub_pd(ix3,jx0);
880             dy30             = _mm_sub_pd(iy3,jy0);
881             dz30             = _mm_sub_pd(iz3,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
885             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
886             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
887             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
888
889             rinv00           = gmx_mm_invsqrt_pd(rsq00);
890             rinv10           = gmx_mm_invsqrt_pd(rsq10);
891             rinv20           = gmx_mm_invsqrt_pd(rsq20);
892             rinv30           = gmx_mm_invsqrt_pd(rsq30);
893
894             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
895             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
896             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
897
898             /* Load parameters for j particles */
899             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
900             vdwjidx0A        = 2*vdwtype[jnrA+0];
901             vdwjidx0B        = 2*vdwtype[jnrB+0];
902
903             fjx0             = _mm_setzero_pd();
904             fjy0             = _mm_setzero_pd();
905             fjz0             = _mm_setzero_pd();
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             r00              = _mm_mul_pd(rsq00,rinv00);
912
913             /* Compute parameters for interactions between i and j atoms */
914             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
915                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
916
917             /* Calculate table index by multiplying r with table scale and truncate to integer */
918             rt               = _mm_mul_pd(r00,vftabscale);
919             vfitab           = _mm_cvttpd_epi32(rt);
920 #ifdef __XOP__
921             vfeps            = _mm_frcz_pd(rt);
922 #else
923             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
924 #endif
925             twovfeps         = _mm_add_pd(vfeps,vfeps);
926             vfitab           = _mm_slli_epi32(vfitab,3);
927
928             /* CUBIC SPLINE TABLE DISPERSION */
929             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
930             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
931             GMX_MM_TRANSPOSE2_PD(Y,F);
932             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
933             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
934             GMX_MM_TRANSPOSE2_PD(G,H);
935             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
936             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
937             fvdw6            = _mm_mul_pd(c6_00,FF);
938
939             /* CUBIC SPLINE TABLE REPULSION */
940             vfitab           = _mm_add_epi32(vfitab,ifour);
941             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
942             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
943             GMX_MM_TRANSPOSE2_PD(Y,F);
944             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
945             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
946             GMX_MM_TRANSPOSE2_PD(G,H);
947             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
948             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
949             fvdw12           = _mm_mul_pd(c12_00,FF);
950             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
951
952             fscal            = fvdw;
953
954             /* Update vectorial force */
955             fix0             = _mm_macc_pd(dx00,fscal,fix0);
956             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
957             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
958             
959             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
960             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
961             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r10              = _mm_mul_pd(rsq10,rinv10);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq10             = _mm_mul_pd(iq1,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975             ewrt             = _mm_mul_pd(r10,ewtabscale);
976             ewitab           = _mm_cvttpd_epi32(ewrt);
977 #ifdef __XOP__
978             eweps            = _mm_frcz_pd(ewrt);
979 #else
980             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
981 #endif
982             twoeweps         = _mm_add_pd(eweps,eweps);
983             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
984                                          &ewtabF,&ewtabFn);
985             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
986             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
987
988             fscal            = felec;
989
990             /* Update vectorial force */
991             fix1             = _mm_macc_pd(dx10,fscal,fix1);
992             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
993             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
994             
995             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
996             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
997             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             r20              = _mm_mul_pd(rsq20,rinv20);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq20             = _mm_mul_pd(iq2,jq0);
1007
1008             /* EWALD ELECTROSTATICS */
1009
1010             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1011             ewrt             = _mm_mul_pd(r20,ewtabscale);
1012             ewitab           = _mm_cvttpd_epi32(ewrt);
1013 #ifdef __XOP__
1014             eweps            = _mm_frcz_pd(ewrt);
1015 #else
1016             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1017 #endif
1018             twoeweps         = _mm_add_pd(eweps,eweps);
1019             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1020                                          &ewtabF,&ewtabFn);
1021             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1022             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1023
1024             fscal            = felec;
1025
1026             /* Update vectorial force */
1027             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1028             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1029             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1030             
1031             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1032             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1033             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r30              = _mm_mul_pd(rsq30,rinv30);
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq30             = _mm_mul_pd(iq3,jq0);
1043
1044             /* EWALD ELECTROSTATICS */
1045
1046             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1047             ewrt             = _mm_mul_pd(r30,ewtabscale);
1048             ewitab           = _mm_cvttpd_epi32(ewrt);
1049 #ifdef __XOP__
1050             eweps            = _mm_frcz_pd(ewrt);
1051 #else
1052             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1053 #endif
1054             twoeweps         = _mm_add_pd(eweps,eweps);
1055             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1056                                          &ewtabF,&ewtabFn);
1057             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1058             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1059
1060             fscal            = felec;
1061
1062             /* Update vectorial force */
1063             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1064             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1065             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1066             
1067             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1068             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1069             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1070
1071             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1072
1073             /* Inner loop uses 171 flops */
1074         }
1075
1076         if(jidx<j_index_end)
1077         {
1078
1079             jnrA             = jjnr[jidx];
1080             j_coord_offsetA  = DIM*jnrA;
1081
1082             /* load j atom coordinates */
1083             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1084                                               &jx0,&jy0,&jz0);
1085
1086             /* Calculate displacement vector */
1087             dx00             = _mm_sub_pd(ix0,jx0);
1088             dy00             = _mm_sub_pd(iy0,jy0);
1089             dz00             = _mm_sub_pd(iz0,jz0);
1090             dx10             = _mm_sub_pd(ix1,jx0);
1091             dy10             = _mm_sub_pd(iy1,jy0);
1092             dz10             = _mm_sub_pd(iz1,jz0);
1093             dx20             = _mm_sub_pd(ix2,jx0);
1094             dy20             = _mm_sub_pd(iy2,jy0);
1095             dz20             = _mm_sub_pd(iz2,jz0);
1096             dx30             = _mm_sub_pd(ix3,jx0);
1097             dy30             = _mm_sub_pd(iy3,jy0);
1098             dz30             = _mm_sub_pd(iz3,jz0);
1099
1100             /* Calculate squared distance and things based on it */
1101             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1102             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1103             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1104             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1105
1106             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1107             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1108             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1109             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1110
1111             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1112             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1113             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1114
1115             /* Load parameters for j particles */
1116             jq0              = _mm_load_sd(charge+jnrA+0);
1117             vdwjidx0A        = 2*vdwtype[jnrA+0];
1118
1119             fjx0             = _mm_setzero_pd();
1120             fjy0             = _mm_setzero_pd();
1121             fjz0             = _mm_setzero_pd();
1122
1123             /**************************
1124              * CALCULATE INTERACTIONS *
1125              **************************/
1126
1127             r00              = _mm_mul_pd(rsq00,rinv00);
1128
1129             /* Compute parameters for interactions between i and j atoms */
1130             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1131
1132             /* Calculate table index by multiplying r with table scale and truncate to integer */
1133             rt               = _mm_mul_pd(r00,vftabscale);
1134             vfitab           = _mm_cvttpd_epi32(rt);
1135 #ifdef __XOP__
1136             vfeps            = _mm_frcz_pd(rt);
1137 #else
1138             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1139 #endif
1140             twovfeps         = _mm_add_pd(vfeps,vfeps);
1141             vfitab           = _mm_slli_epi32(vfitab,3);
1142
1143             /* CUBIC SPLINE TABLE DISPERSION */
1144             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1145             F                = _mm_setzero_pd();
1146             GMX_MM_TRANSPOSE2_PD(Y,F);
1147             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1148             H                = _mm_setzero_pd();
1149             GMX_MM_TRANSPOSE2_PD(G,H);
1150             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1151             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1152             fvdw6            = _mm_mul_pd(c6_00,FF);
1153
1154             /* CUBIC SPLINE TABLE REPULSION */
1155             vfitab           = _mm_add_epi32(vfitab,ifour);
1156             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1157             F                = _mm_setzero_pd();
1158             GMX_MM_TRANSPOSE2_PD(Y,F);
1159             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1160             H                = _mm_setzero_pd();
1161             GMX_MM_TRANSPOSE2_PD(G,H);
1162             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1163             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1164             fvdw12           = _mm_mul_pd(c12_00,FF);
1165             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1166
1167             fscal            = fvdw;
1168
1169             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1170
1171             /* Update vectorial force */
1172             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1173             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1174             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1175             
1176             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1177             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1178             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1179
1180             /**************************
1181              * CALCULATE INTERACTIONS *
1182              **************************/
1183
1184             r10              = _mm_mul_pd(rsq10,rinv10);
1185
1186             /* Compute parameters for interactions between i and j atoms */
1187             qq10             = _mm_mul_pd(iq1,jq0);
1188
1189             /* EWALD ELECTROSTATICS */
1190
1191             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1192             ewrt             = _mm_mul_pd(r10,ewtabscale);
1193             ewitab           = _mm_cvttpd_epi32(ewrt);
1194 #ifdef __XOP__
1195             eweps            = _mm_frcz_pd(ewrt);
1196 #else
1197             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1198 #endif
1199             twoeweps         = _mm_add_pd(eweps,eweps);
1200             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1201             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1202             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1207
1208             /* Update vectorial force */
1209             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1210             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1211             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1212             
1213             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1214             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1215             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1216
1217             /**************************
1218              * CALCULATE INTERACTIONS *
1219              **************************/
1220
1221             r20              = _mm_mul_pd(rsq20,rinv20);
1222
1223             /* Compute parameters for interactions between i and j atoms */
1224             qq20             = _mm_mul_pd(iq2,jq0);
1225
1226             /* EWALD ELECTROSTATICS */
1227
1228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1229             ewrt             = _mm_mul_pd(r20,ewtabscale);
1230             ewitab           = _mm_cvttpd_epi32(ewrt);
1231 #ifdef __XOP__
1232             eweps            = _mm_frcz_pd(ewrt);
1233 #else
1234             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1235 #endif
1236             twoeweps         = _mm_add_pd(eweps,eweps);
1237             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1238             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1239             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1240
1241             fscal            = felec;
1242
1243             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1244
1245             /* Update vectorial force */
1246             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1247             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1248             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1249             
1250             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1251             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1252             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1253
1254             /**************************
1255              * CALCULATE INTERACTIONS *
1256              **************************/
1257
1258             r30              = _mm_mul_pd(rsq30,rinv30);
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             qq30             = _mm_mul_pd(iq3,jq0);
1262
1263             /* EWALD ELECTROSTATICS */
1264
1265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1266             ewrt             = _mm_mul_pd(r30,ewtabscale);
1267             ewitab           = _mm_cvttpd_epi32(ewrt);
1268 #ifdef __XOP__
1269             eweps            = _mm_frcz_pd(ewrt);
1270 #else
1271             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1272 #endif
1273             twoeweps         = _mm_add_pd(eweps,eweps);
1274             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1275             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1276             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1277
1278             fscal            = felec;
1279
1280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1281
1282             /* Update vectorial force */
1283             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1284             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1285             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1286             
1287             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1288             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1289             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1290
1291             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1292
1293             /* Inner loop uses 171 flops */
1294         }
1295
1296         /* End of innermost loop */
1297
1298         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1299                                               f+i_coord_offset,fshift+i_shift_offset);
1300
1301         /* Increment number of inner iterations */
1302         inneriter                  += j_index_end - j_index_start;
1303
1304         /* Outer loop uses 24 flops */
1305     }
1306
1307     /* Increment number of outer iterations */
1308     outeriter        += nri;
1309
1310     /* Update outer/inner flops */
1311
1312     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1313 }