made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Water3
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     int              vdwjidx1A,vdwjidx1B;
75     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
76     int              vdwjidx2A,vdwjidx2B;
77     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
78     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
80     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
81     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
83     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
84     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
86     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     __m128i          ewitab;
100     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     jq0              = _mm_set1_pd(charge[inr+0]);
139     jq1              = _mm_set1_pd(charge[inr+1]);
140     jq2              = _mm_set1_pd(charge[inr+2]);
141     vdwjidx0A        = 2*vdwtype[inr+0];
142     qq00             = _mm_mul_pd(iq0,jq0);
143     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
144     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
145     qq01             = _mm_mul_pd(iq0,jq1);
146     qq02             = _mm_mul_pd(iq0,jq2);
147     qq10             = _mm_mul_pd(iq1,jq0);
148     qq11             = _mm_mul_pd(iq1,jq1);
149     qq12             = _mm_mul_pd(iq1,jq2);
150     qq20             = _mm_mul_pd(iq2,jq0);
151     qq21             = _mm_mul_pd(iq2,jq1);
152     qq22             = _mm_mul_pd(iq2,jq2);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_pd();
181         fiy0             = _mm_setzero_pd();
182         fiz0             = _mm_setzero_pd();
183         fix1             = _mm_setzero_pd();
184         fiy1             = _mm_setzero_pd();
185         fiz1             = _mm_setzero_pd();
186         fix2             = _mm_setzero_pd();
187         fiy2             = _mm_setzero_pd();
188         fiz2             = _mm_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_pd();
192         vvdwsum          = _mm_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_pd(ix0,jx0);
210             dy00             = _mm_sub_pd(iy0,jy0);
211             dz00             = _mm_sub_pd(iz0,jz0);
212             dx01             = _mm_sub_pd(ix0,jx1);
213             dy01             = _mm_sub_pd(iy0,jy1);
214             dz01             = _mm_sub_pd(iz0,jz1);
215             dx02             = _mm_sub_pd(ix0,jx2);
216             dy02             = _mm_sub_pd(iy0,jy2);
217             dz02             = _mm_sub_pd(iz0,jz2);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx11             = _mm_sub_pd(ix1,jx1);
222             dy11             = _mm_sub_pd(iy1,jy1);
223             dz11             = _mm_sub_pd(iz1,jz1);
224             dx12             = _mm_sub_pd(ix1,jx2);
225             dy12             = _mm_sub_pd(iy1,jy2);
226             dz12             = _mm_sub_pd(iz1,jz2);
227             dx20             = _mm_sub_pd(ix2,jx0);
228             dy20             = _mm_sub_pd(iy2,jy0);
229             dz20             = _mm_sub_pd(iz2,jz0);
230             dx21             = _mm_sub_pd(ix2,jx1);
231             dy21             = _mm_sub_pd(iy2,jy1);
232             dz21             = _mm_sub_pd(iz2,jz1);
233             dx22             = _mm_sub_pd(ix2,jx2);
234             dy22             = _mm_sub_pd(iy2,jy2);
235             dz22             = _mm_sub_pd(iz2,jz2);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
239             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
240             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
241             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
242             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
243             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
244             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
245             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
246             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
247
248             rinv00           = gmx_mm_invsqrt_pd(rsq00);
249             rinv01           = gmx_mm_invsqrt_pd(rsq01);
250             rinv02           = gmx_mm_invsqrt_pd(rsq02);
251             rinv10           = gmx_mm_invsqrt_pd(rsq10);
252             rinv11           = gmx_mm_invsqrt_pd(rsq11);
253             rinv12           = gmx_mm_invsqrt_pd(rsq12);
254             rinv20           = gmx_mm_invsqrt_pd(rsq20);
255             rinv21           = gmx_mm_invsqrt_pd(rsq21);
256             rinv22           = gmx_mm_invsqrt_pd(rsq22);
257
258             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
259             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
260             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
261             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
262             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
263             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
264             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
265             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
266             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
267
268             fjx0             = _mm_setzero_pd();
269             fjy0             = _mm_setzero_pd();
270             fjz0             = _mm_setzero_pd();
271             fjx1             = _mm_setzero_pd();
272             fjy1             = _mm_setzero_pd();
273             fjz1             = _mm_setzero_pd();
274             fjx2             = _mm_setzero_pd();
275             fjy2             = _mm_setzero_pd();
276             fjz2             = _mm_setzero_pd();
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             r00              = _mm_mul_pd(rsq00,rinv00);
283
284             /* Calculate table index by multiplying r with table scale and truncate to integer */
285             rt               = _mm_mul_pd(r00,vftabscale);
286             vfitab           = _mm_cvttpd_epi32(rt);
287 #ifdef __XOP__
288             vfeps            = _mm_frcz_pd(rt);
289 #else
290             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
291 #endif
292             twovfeps         = _mm_add_pd(vfeps,vfeps);
293             vfitab           = _mm_slli_epi32(vfitab,3);
294
295             /* EWALD ELECTROSTATICS */
296
297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
298             ewrt             = _mm_mul_pd(r00,ewtabscale);
299             ewitab           = _mm_cvttpd_epi32(ewrt);
300 #ifdef __XOP__
301             eweps            = _mm_frcz_pd(ewrt);
302 #else
303             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
304 #endif
305             twoeweps         = _mm_add_pd(eweps,eweps);
306             ewitab           = _mm_slli_epi32(ewitab,2);
307             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
308             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
309             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
310             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
311             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
312             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
313             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
314             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
315             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
316             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
317
318             /* CUBIC SPLINE TABLE DISPERSION */
319             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
320             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
321             GMX_MM_TRANSPOSE2_PD(Y,F);
322             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
323             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
324             GMX_MM_TRANSPOSE2_PD(G,H);
325             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
326             VV               = _mm_macc_pd(vfeps,Fp,Y);
327             vvdw6            = _mm_mul_pd(c6_00,VV);
328             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
329             fvdw6            = _mm_mul_pd(c6_00,FF);
330
331             /* CUBIC SPLINE TABLE REPULSION */
332             vfitab           = _mm_add_epi32(vfitab,ifour);
333             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
334             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
335             GMX_MM_TRANSPOSE2_PD(Y,F);
336             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
337             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
338             GMX_MM_TRANSPOSE2_PD(G,H);
339             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
340             VV               = _mm_macc_pd(vfeps,Fp,Y);
341             vvdw12           = _mm_mul_pd(c12_00,VV);
342             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
343             fvdw12           = _mm_mul_pd(c12_00,FF);
344             vvdw             = _mm_add_pd(vvdw12,vvdw6);
345             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm_add_pd(velecsum,velec);
349             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
350
351             fscal            = _mm_add_pd(felec,fvdw);
352
353             /* Update vectorial force */
354             fix0             = _mm_macc_pd(dx00,fscal,fix0);
355             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
356             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
357             
358             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
359             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
360             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r01              = _mm_mul_pd(rsq01,rinv01);
367
368             /* EWALD ELECTROSTATICS */
369
370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
371             ewrt             = _mm_mul_pd(r01,ewtabscale);
372             ewitab           = _mm_cvttpd_epi32(ewrt);
373 #ifdef __XOP__
374             eweps            = _mm_frcz_pd(ewrt);
375 #else
376             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
377 #endif
378             twoeweps         = _mm_add_pd(eweps,eweps);
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
382             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
383             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
384             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
385             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
386             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
387             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
388             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
389             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm_add_pd(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Update vectorial force */
397             fix0             = _mm_macc_pd(dx01,fscal,fix0);
398             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
399             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
400             
401             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
402             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
403             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r02              = _mm_mul_pd(rsq02,rinv02);
410
411             /* EWALD ELECTROSTATICS */
412
413             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
414             ewrt             = _mm_mul_pd(r02,ewtabscale);
415             ewitab           = _mm_cvttpd_epi32(ewrt);
416 #ifdef __XOP__
417             eweps            = _mm_frcz_pd(ewrt);
418 #else
419             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
420 #endif
421             twoeweps         = _mm_add_pd(eweps,eweps);
422             ewitab           = _mm_slli_epi32(ewitab,2);
423             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
424             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
425             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
426             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
427             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
428             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
429             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
430             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
431             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
432             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velecsum         = _mm_add_pd(velecsum,velec);
436
437             fscal            = felec;
438
439             /* Update vectorial force */
440             fix0             = _mm_macc_pd(dx02,fscal,fix0);
441             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
442             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
443             
444             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
445             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
446             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             r10              = _mm_mul_pd(rsq10,rinv10);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457             ewrt             = _mm_mul_pd(r10,ewtabscale);
458             ewitab           = _mm_cvttpd_epi32(ewrt);
459 #ifdef __XOP__
460             eweps            = _mm_frcz_pd(ewrt);
461 #else
462             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
463 #endif
464             twoeweps         = _mm_add_pd(eweps,eweps);
465             ewitab           = _mm_slli_epi32(ewitab,2);
466             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
467             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
468             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
469             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
470             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
471             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
472             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
473             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
474             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
475             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             velecsum         = _mm_add_pd(velecsum,velec);
479
480             fscal            = felec;
481
482             /* Update vectorial force */
483             fix1             = _mm_macc_pd(dx10,fscal,fix1);
484             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
485             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
486             
487             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
488             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
489             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             r11              = _mm_mul_pd(rsq11,rinv11);
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = _mm_mul_pd(r11,ewtabscale);
501             ewitab           = _mm_cvttpd_epi32(ewrt);
502 #ifdef __XOP__
503             eweps            = _mm_frcz_pd(ewrt);
504 #else
505             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
506 #endif
507             twoeweps         = _mm_add_pd(eweps,eweps);
508             ewitab           = _mm_slli_epi32(ewitab,2);
509             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
510             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
511             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
512             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
513             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
514             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
515             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
516             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
517             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
518             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             /* Update vectorial force */
526             fix1             = _mm_macc_pd(dx11,fscal,fix1);
527             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
528             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
529             
530             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
531             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
532             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             r12              = _mm_mul_pd(rsq12,rinv12);
539
540             /* EWALD ELECTROSTATICS */
541
542             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
543             ewrt             = _mm_mul_pd(r12,ewtabscale);
544             ewitab           = _mm_cvttpd_epi32(ewrt);
545 #ifdef __XOP__
546             eweps            = _mm_frcz_pd(ewrt);
547 #else
548             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
549 #endif
550             twoeweps         = _mm_add_pd(eweps,eweps);
551             ewitab           = _mm_slli_epi32(ewitab,2);
552             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
553             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
554             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
555             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
556             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
557             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
558             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
559             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
560             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
561             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velecsum         = _mm_add_pd(velecsum,velec);
565
566             fscal            = felec;
567
568             /* Update vectorial force */
569             fix1             = _mm_macc_pd(dx12,fscal,fix1);
570             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
571             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
572             
573             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
574             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
575             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r20              = _mm_mul_pd(rsq20,rinv20);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_pd(r20,ewtabscale);
587             ewitab           = _mm_cvttpd_epi32(ewrt);
588 #ifdef __XOP__
589             eweps            = _mm_frcz_pd(ewrt);
590 #else
591             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
592 #endif
593             twoeweps         = _mm_add_pd(eweps,eweps);
594             ewitab           = _mm_slli_epi32(ewitab,2);
595             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
596             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
597             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
598             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
599             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
600             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
601             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
602             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
603             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
604             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
605
606             /* Update potential sum for this i atom from the interaction with this j atom. */
607             velecsum         = _mm_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             /* Update vectorial force */
612             fix2             = _mm_macc_pd(dx20,fscal,fix2);
613             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
614             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
615             
616             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
617             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
618             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             r21              = _mm_mul_pd(rsq21,rinv21);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_pd(r21,ewtabscale);
630             ewitab           = _mm_cvttpd_epi32(ewrt);
631 #ifdef __XOP__
632             eweps            = _mm_frcz_pd(ewrt);
633 #else
634             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
635 #endif
636             twoeweps         = _mm_add_pd(eweps,eweps);
637             ewitab           = _mm_slli_epi32(ewitab,2);
638             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
639             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
640             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
641             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
642             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
643             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
644             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
645             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
646             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
647             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
648
649             /* Update potential sum for this i atom from the interaction with this j atom. */
650             velecsum         = _mm_add_pd(velecsum,velec);
651
652             fscal            = felec;
653
654             /* Update vectorial force */
655             fix2             = _mm_macc_pd(dx21,fscal,fix2);
656             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
657             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
658             
659             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
660             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
661             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             r22              = _mm_mul_pd(rsq22,rinv22);
668
669             /* EWALD ELECTROSTATICS */
670
671             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
672             ewrt             = _mm_mul_pd(r22,ewtabscale);
673             ewitab           = _mm_cvttpd_epi32(ewrt);
674 #ifdef __XOP__
675             eweps            = _mm_frcz_pd(ewrt);
676 #else
677             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
678 #endif
679             twoeweps         = _mm_add_pd(eweps,eweps);
680             ewitab           = _mm_slli_epi32(ewitab,2);
681             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
682             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
683             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
684             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
685             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
686             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
687             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
688             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
689             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
690             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velecsum         = _mm_add_pd(velecsum,velec);
694
695             fscal            = felec;
696
697             /* Update vectorial force */
698             fix2             = _mm_macc_pd(dx22,fscal,fix2);
699             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
700             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
701             
702             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
703             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
704             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
705
706             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
707
708             /* Inner loop uses 430 flops */
709         }
710
711         if(jidx<j_index_end)
712         {
713
714             jnrA             = jjnr[jidx];
715             j_coord_offsetA  = DIM*jnrA;
716
717             /* load j atom coordinates */
718             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
719                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
720
721             /* Calculate displacement vector */
722             dx00             = _mm_sub_pd(ix0,jx0);
723             dy00             = _mm_sub_pd(iy0,jy0);
724             dz00             = _mm_sub_pd(iz0,jz0);
725             dx01             = _mm_sub_pd(ix0,jx1);
726             dy01             = _mm_sub_pd(iy0,jy1);
727             dz01             = _mm_sub_pd(iz0,jz1);
728             dx02             = _mm_sub_pd(ix0,jx2);
729             dy02             = _mm_sub_pd(iy0,jy2);
730             dz02             = _mm_sub_pd(iz0,jz2);
731             dx10             = _mm_sub_pd(ix1,jx0);
732             dy10             = _mm_sub_pd(iy1,jy0);
733             dz10             = _mm_sub_pd(iz1,jz0);
734             dx11             = _mm_sub_pd(ix1,jx1);
735             dy11             = _mm_sub_pd(iy1,jy1);
736             dz11             = _mm_sub_pd(iz1,jz1);
737             dx12             = _mm_sub_pd(ix1,jx2);
738             dy12             = _mm_sub_pd(iy1,jy2);
739             dz12             = _mm_sub_pd(iz1,jz2);
740             dx20             = _mm_sub_pd(ix2,jx0);
741             dy20             = _mm_sub_pd(iy2,jy0);
742             dz20             = _mm_sub_pd(iz2,jz0);
743             dx21             = _mm_sub_pd(ix2,jx1);
744             dy21             = _mm_sub_pd(iy2,jy1);
745             dz21             = _mm_sub_pd(iz2,jz1);
746             dx22             = _mm_sub_pd(ix2,jx2);
747             dy22             = _mm_sub_pd(iy2,jy2);
748             dz22             = _mm_sub_pd(iz2,jz2);
749
750             /* Calculate squared distance and things based on it */
751             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
752             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
753             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
754             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
755             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
756             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
757             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
758             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
759             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
760
761             rinv00           = gmx_mm_invsqrt_pd(rsq00);
762             rinv01           = gmx_mm_invsqrt_pd(rsq01);
763             rinv02           = gmx_mm_invsqrt_pd(rsq02);
764             rinv10           = gmx_mm_invsqrt_pd(rsq10);
765             rinv11           = gmx_mm_invsqrt_pd(rsq11);
766             rinv12           = gmx_mm_invsqrt_pd(rsq12);
767             rinv20           = gmx_mm_invsqrt_pd(rsq20);
768             rinv21           = gmx_mm_invsqrt_pd(rsq21);
769             rinv22           = gmx_mm_invsqrt_pd(rsq22);
770
771             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
772             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
773             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
774             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
775             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
776             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
777             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
778             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
779             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
780
781             fjx0             = _mm_setzero_pd();
782             fjy0             = _mm_setzero_pd();
783             fjz0             = _mm_setzero_pd();
784             fjx1             = _mm_setzero_pd();
785             fjy1             = _mm_setzero_pd();
786             fjz1             = _mm_setzero_pd();
787             fjx2             = _mm_setzero_pd();
788             fjy2             = _mm_setzero_pd();
789             fjz2             = _mm_setzero_pd();
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r00              = _mm_mul_pd(rsq00,rinv00);
796
797             /* Calculate table index by multiplying r with table scale and truncate to integer */
798             rt               = _mm_mul_pd(r00,vftabscale);
799             vfitab           = _mm_cvttpd_epi32(rt);
800 #ifdef __XOP__
801             vfeps            = _mm_frcz_pd(rt);
802 #else
803             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
804 #endif
805             twovfeps         = _mm_add_pd(vfeps,vfeps);
806             vfitab           = _mm_slli_epi32(vfitab,3);
807
808             /* EWALD ELECTROSTATICS */
809
810             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
811             ewrt             = _mm_mul_pd(r00,ewtabscale);
812             ewitab           = _mm_cvttpd_epi32(ewrt);
813 #ifdef __XOP__
814             eweps            = _mm_frcz_pd(ewrt);
815 #else
816             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
817 #endif
818             twoeweps         = _mm_add_pd(eweps,eweps);
819             ewitab           = _mm_slli_epi32(ewitab,2);
820             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
821             ewtabD           = _mm_setzero_pd();
822             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
823             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
824             ewtabFn          = _mm_setzero_pd();
825             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
826             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
827             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
828             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
829             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
830
831             /* CUBIC SPLINE TABLE DISPERSION */
832             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
833             F                = _mm_setzero_pd();
834             GMX_MM_TRANSPOSE2_PD(Y,F);
835             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
836             H                = _mm_setzero_pd();
837             GMX_MM_TRANSPOSE2_PD(G,H);
838             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
839             VV               = _mm_macc_pd(vfeps,Fp,Y);
840             vvdw6            = _mm_mul_pd(c6_00,VV);
841             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
842             fvdw6            = _mm_mul_pd(c6_00,FF);
843
844             /* CUBIC SPLINE TABLE REPULSION */
845             vfitab           = _mm_add_epi32(vfitab,ifour);
846             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
847             F                = _mm_setzero_pd();
848             GMX_MM_TRANSPOSE2_PD(Y,F);
849             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
850             H                = _mm_setzero_pd();
851             GMX_MM_TRANSPOSE2_PD(G,H);
852             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
853             VV               = _mm_macc_pd(vfeps,Fp,Y);
854             vvdw12           = _mm_mul_pd(c12_00,VV);
855             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
856             fvdw12           = _mm_mul_pd(c12_00,FF);
857             vvdw             = _mm_add_pd(vvdw12,vvdw6);
858             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
859
860             /* Update potential sum for this i atom from the interaction with this j atom. */
861             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
862             velecsum         = _mm_add_pd(velecsum,velec);
863             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
864             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
865
866             fscal            = _mm_add_pd(felec,fvdw);
867
868             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
869
870             /* Update vectorial force */
871             fix0             = _mm_macc_pd(dx00,fscal,fix0);
872             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
873             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
874             
875             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
876             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
877             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r01              = _mm_mul_pd(rsq01,rinv01);
884
885             /* EWALD ELECTROSTATICS */
886
887             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
888             ewrt             = _mm_mul_pd(r01,ewtabscale);
889             ewitab           = _mm_cvttpd_epi32(ewrt);
890 #ifdef __XOP__
891             eweps            = _mm_frcz_pd(ewrt);
892 #else
893             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
894 #endif
895             twoeweps         = _mm_add_pd(eweps,eweps);
896             ewitab           = _mm_slli_epi32(ewitab,2);
897             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
898             ewtabD           = _mm_setzero_pd();
899             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
900             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
901             ewtabFn          = _mm_setzero_pd();
902             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
903             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
904             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
905             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
906             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
907
908             /* Update potential sum for this i atom from the interaction with this j atom. */
909             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
910             velecsum         = _mm_add_pd(velecsum,velec);
911
912             fscal            = felec;
913
914             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
915
916             /* Update vectorial force */
917             fix0             = _mm_macc_pd(dx01,fscal,fix0);
918             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
919             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
920             
921             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
922             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
923             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             r02              = _mm_mul_pd(rsq02,rinv02);
930
931             /* EWALD ELECTROSTATICS */
932
933             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
934             ewrt             = _mm_mul_pd(r02,ewtabscale);
935             ewitab           = _mm_cvttpd_epi32(ewrt);
936 #ifdef __XOP__
937             eweps            = _mm_frcz_pd(ewrt);
938 #else
939             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
940 #endif
941             twoeweps         = _mm_add_pd(eweps,eweps);
942             ewitab           = _mm_slli_epi32(ewitab,2);
943             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
944             ewtabD           = _mm_setzero_pd();
945             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
946             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
947             ewtabFn          = _mm_setzero_pd();
948             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
949             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
950             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
951             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
952             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
953
954             /* Update potential sum for this i atom from the interaction with this j atom. */
955             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
956             velecsum         = _mm_add_pd(velecsum,velec);
957
958             fscal            = felec;
959
960             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
961
962             /* Update vectorial force */
963             fix0             = _mm_macc_pd(dx02,fscal,fix0);
964             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
965             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
966             
967             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
968             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
969             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r10              = _mm_mul_pd(rsq10,rinv10);
976
977             /* EWALD ELECTROSTATICS */
978
979             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
980             ewrt             = _mm_mul_pd(r10,ewtabscale);
981             ewitab           = _mm_cvttpd_epi32(ewrt);
982 #ifdef __XOP__
983             eweps            = _mm_frcz_pd(ewrt);
984 #else
985             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
986 #endif
987             twoeweps         = _mm_add_pd(eweps,eweps);
988             ewitab           = _mm_slli_epi32(ewitab,2);
989             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
990             ewtabD           = _mm_setzero_pd();
991             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
992             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
993             ewtabFn          = _mm_setzero_pd();
994             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
995             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
996             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
997             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
998             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
999
1000             /* Update potential sum for this i atom from the interaction with this j atom. */
1001             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1002             velecsum         = _mm_add_pd(velecsum,velec);
1003
1004             fscal            = felec;
1005
1006             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1007
1008             /* Update vectorial force */
1009             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1010             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1011             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1012             
1013             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1014             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1015             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             r11              = _mm_mul_pd(rsq11,rinv11);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm_mul_pd(r11,ewtabscale);
1027             ewitab           = _mm_cvttpd_epi32(ewrt);
1028 #ifdef __XOP__
1029             eweps            = _mm_frcz_pd(ewrt);
1030 #else
1031             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1032 #endif
1033             twoeweps         = _mm_add_pd(eweps,eweps);
1034             ewitab           = _mm_slli_epi32(ewitab,2);
1035             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1036             ewtabD           = _mm_setzero_pd();
1037             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1038             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1039             ewtabFn          = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1041             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1042             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1043             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1044             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1045
1046             /* Update potential sum for this i atom from the interaction with this j atom. */
1047             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1048             velecsum         = _mm_add_pd(velecsum,velec);
1049
1050             fscal            = felec;
1051
1052             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1053
1054             /* Update vectorial force */
1055             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1056             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1057             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1058             
1059             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1060             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1061             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             r12              = _mm_mul_pd(rsq12,rinv12);
1068
1069             /* EWALD ELECTROSTATICS */
1070
1071             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1072             ewrt             = _mm_mul_pd(r12,ewtabscale);
1073             ewitab           = _mm_cvttpd_epi32(ewrt);
1074 #ifdef __XOP__
1075             eweps            = _mm_frcz_pd(ewrt);
1076 #else
1077             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1078 #endif
1079             twoeweps         = _mm_add_pd(eweps,eweps);
1080             ewitab           = _mm_slli_epi32(ewitab,2);
1081             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1082             ewtabD           = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1084             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1085             ewtabFn          = _mm_setzero_pd();
1086             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1087             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1088             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1089             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1090             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1091
1092             /* Update potential sum for this i atom from the interaction with this j atom. */
1093             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1094             velecsum         = _mm_add_pd(velecsum,velec);
1095
1096             fscal            = felec;
1097
1098             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1099
1100             /* Update vectorial force */
1101             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1102             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1103             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1104             
1105             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1106             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1107             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             r20              = _mm_mul_pd(rsq20,rinv20);
1114
1115             /* EWALD ELECTROSTATICS */
1116
1117             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1118             ewrt             = _mm_mul_pd(r20,ewtabscale);
1119             ewitab           = _mm_cvttpd_epi32(ewrt);
1120 #ifdef __XOP__
1121             eweps            = _mm_frcz_pd(ewrt);
1122 #else
1123             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1124 #endif
1125             twoeweps         = _mm_add_pd(eweps,eweps);
1126             ewitab           = _mm_slli_epi32(ewitab,2);
1127             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1128             ewtabD           = _mm_setzero_pd();
1129             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1130             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1131             ewtabFn          = _mm_setzero_pd();
1132             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1133             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1134             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1135             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1136             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1137
1138             /* Update potential sum for this i atom from the interaction with this j atom. */
1139             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1140             velecsum         = _mm_add_pd(velecsum,velec);
1141
1142             fscal            = felec;
1143
1144             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1145
1146             /* Update vectorial force */
1147             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1148             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1149             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1150             
1151             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1152             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1153             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             r21              = _mm_mul_pd(rsq21,rinv21);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = _mm_mul_pd(r21,ewtabscale);
1165             ewitab           = _mm_cvttpd_epi32(ewrt);
1166 #ifdef __XOP__
1167             eweps            = _mm_frcz_pd(ewrt);
1168 #else
1169             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1170 #endif
1171             twoeweps         = _mm_add_pd(eweps,eweps);
1172             ewitab           = _mm_slli_epi32(ewitab,2);
1173             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1174             ewtabD           = _mm_setzero_pd();
1175             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1176             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1177             ewtabFn          = _mm_setzero_pd();
1178             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1179             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1180             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1181             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1182             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1183
1184             /* Update potential sum for this i atom from the interaction with this j atom. */
1185             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1186             velecsum         = _mm_add_pd(velecsum,velec);
1187
1188             fscal            = felec;
1189
1190             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1191
1192             /* Update vectorial force */
1193             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1194             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1195             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1196             
1197             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1198             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1199             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r22              = _mm_mul_pd(rsq22,rinv22);
1206
1207             /* EWALD ELECTROSTATICS */
1208
1209             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1210             ewrt             = _mm_mul_pd(r22,ewtabscale);
1211             ewitab           = _mm_cvttpd_epi32(ewrt);
1212 #ifdef __XOP__
1213             eweps            = _mm_frcz_pd(ewrt);
1214 #else
1215             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1216 #endif
1217             twoeweps         = _mm_add_pd(eweps,eweps);
1218             ewitab           = _mm_slli_epi32(ewitab,2);
1219             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1220             ewtabD           = _mm_setzero_pd();
1221             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1222             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1223             ewtabFn          = _mm_setzero_pd();
1224             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1225             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1226             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1227             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1228             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1229
1230             /* Update potential sum for this i atom from the interaction with this j atom. */
1231             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1232             velecsum         = _mm_add_pd(velecsum,velec);
1233
1234             fscal            = felec;
1235
1236             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1237
1238             /* Update vectorial force */
1239             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1240             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1241             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1242             
1243             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1244             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1245             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1246
1247             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1248
1249             /* Inner loop uses 430 flops */
1250         }
1251
1252         /* End of innermost loop */
1253
1254         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1255                                               f+i_coord_offset,fshift+i_shift_offset);
1256
1257         ggid                        = gid[iidx];
1258         /* Update potential energies */
1259         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1260         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1261
1262         /* Increment number of inner iterations */
1263         inneriter                  += j_index_end - j_index_start;
1264
1265         /* Outer loop uses 20 flops */
1266     }
1267
1268     /* Increment number of outer iterations */
1269     outeriter        += nri;
1270
1271     /* Update outer/inner flops */
1272
1273     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*430);
1274 }
1275 /*
1276  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_avx_128_fma_double
1277  * Electrostatics interaction: Ewald
1278  * VdW interaction:            CubicSplineTable
1279  * Geometry:                   Water3-Water3
1280  * Calculate force/pot:        Force
1281  */
1282 void
1283 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_avx_128_fma_double
1284                     (t_nblist * gmx_restrict                nlist,
1285                      rvec * gmx_restrict                    xx,
1286                      rvec * gmx_restrict                    ff,
1287                      t_forcerec * gmx_restrict              fr,
1288                      t_mdatoms * gmx_restrict               mdatoms,
1289                      nb_kernel_data_t * gmx_restrict        kernel_data,
1290                      t_nrnb * gmx_restrict                  nrnb)
1291 {
1292     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1293      * just 0 for non-waters.
1294      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1295      * jnr indices corresponding to data put in the four positions in the SIMD register.
1296      */
1297     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1298     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1299     int              jnrA,jnrB;
1300     int              j_coord_offsetA,j_coord_offsetB;
1301     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1302     real             rcutoff_scalar;
1303     real             *shiftvec,*fshift,*x,*f;
1304     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1305     int              vdwioffset0;
1306     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1307     int              vdwioffset1;
1308     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1309     int              vdwioffset2;
1310     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1311     int              vdwjidx0A,vdwjidx0B;
1312     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1313     int              vdwjidx1A,vdwjidx1B;
1314     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1315     int              vdwjidx2A,vdwjidx2B;
1316     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1317     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1318     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1319     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1320     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1321     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1322     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1323     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1324     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1325     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1326     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1327     real             *charge;
1328     int              nvdwtype;
1329     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1330     int              *vdwtype;
1331     real             *vdwparam;
1332     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1333     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1334     __m128i          vfitab;
1335     __m128i          ifour       = _mm_set1_epi32(4);
1336     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
1337     real             *vftab;
1338     __m128i          ewitab;
1339     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1340     real             *ewtab;
1341     __m128d          dummy_mask,cutoff_mask;
1342     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1343     __m128d          one     = _mm_set1_pd(1.0);
1344     __m128d          two     = _mm_set1_pd(2.0);
1345     x                = xx[0];
1346     f                = ff[0];
1347
1348     nri              = nlist->nri;
1349     iinr             = nlist->iinr;
1350     jindex           = nlist->jindex;
1351     jjnr             = nlist->jjnr;
1352     shiftidx         = nlist->shift;
1353     gid              = nlist->gid;
1354     shiftvec         = fr->shift_vec[0];
1355     fshift           = fr->fshift[0];
1356     facel            = _mm_set1_pd(fr->epsfac);
1357     charge           = mdatoms->chargeA;
1358     nvdwtype         = fr->ntype;
1359     vdwparam         = fr->nbfp;
1360     vdwtype          = mdatoms->typeA;
1361
1362     vftab            = kernel_data->table_vdw->data;
1363     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
1364
1365     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1366     ewtab            = fr->ic->tabq_coul_F;
1367     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1368     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1369
1370     /* Setup water-specific parameters */
1371     inr              = nlist->iinr[0];
1372     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1373     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1374     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1375     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1376
1377     jq0              = _mm_set1_pd(charge[inr+0]);
1378     jq1              = _mm_set1_pd(charge[inr+1]);
1379     jq2              = _mm_set1_pd(charge[inr+2]);
1380     vdwjidx0A        = 2*vdwtype[inr+0];
1381     qq00             = _mm_mul_pd(iq0,jq0);
1382     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1383     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1384     qq01             = _mm_mul_pd(iq0,jq1);
1385     qq02             = _mm_mul_pd(iq0,jq2);
1386     qq10             = _mm_mul_pd(iq1,jq0);
1387     qq11             = _mm_mul_pd(iq1,jq1);
1388     qq12             = _mm_mul_pd(iq1,jq2);
1389     qq20             = _mm_mul_pd(iq2,jq0);
1390     qq21             = _mm_mul_pd(iq2,jq1);
1391     qq22             = _mm_mul_pd(iq2,jq2);
1392
1393     /* Avoid stupid compiler warnings */
1394     jnrA = jnrB = 0;
1395     j_coord_offsetA = 0;
1396     j_coord_offsetB = 0;
1397
1398     outeriter        = 0;
1399     inneriter        = 0;
1400
1401     /* Start outer loop over neighborlists */
1402     for(iidx=0; iidx<nri; iidx++)
1403     {
1404         /* Load shift vector for this list */
1405         i_shift_offset   = DIM*shiftidx[iidx];
1406
1407         /* Load limits for loop over neighbors */
1408         j_index_start    = jindex[iidx];
1409         j_index_end      = jindex[iidx+1];
1410
1411         /* Get outer coordinate index */
1412         inr              = iinr[iidx];
1413         i_coord_offset   = DIM*inr;
1414
1415         /* Load i particle coords and add shift vector */
1416         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1417                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1418
1419         fix0             = _mm_setzero_pd();
1420         fiy0             = _mm_setzero_pd();
1421         fiz0             = _mm_setzero_pd();
1422         fix1             = _mm_setzero_pd();
1423         fiy1             = _mm_setzero_pd();
1424         fiz1             = _mm_setzero_pd();
1425         fix2             = _mm_setzero_pd();
1426         fiy2             = _mm_setzero_pd();
1427         fiz2             = _mm_setzero_pd();
1428
1429         /* Start inner kernel loop */
1430         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1431         {
1432
1433             /* Get j neighbor index, and coordinate index */
1434             jnrA             = jjnr[jidx];
1435             jnrB             = jjnr[jidx+1];
1436             j_coord_offsetA  = DIM*jnrA;
1437             j_coord_offsetB  = DIM*jnrB;
1438
1439             /* load j atom coordinates */
1440             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1441                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1442
1443             /* Calculate displacement vector */
1444             dx00             = _mm_sub_pd(ix0,jx0);
1445             dy00             = _mm_sub_pd(iy0,jy0);
1446             dz00             = _mm_sub_pd(iz0,jz0);
1447             dx01             = _mm_sub_pd(ix0,jx1);
1448             dy01             = _mm_sub_pd(iy0,jy1);
1449             dz01             = _mm_sub_pd(iz0,jz1);
1450             dx02             = _mm_sub_pd(ix0,jx2);
1451             dy02             = _mm_sub_pd(iy0,jy2);
1452             dz02             = _mm_sub_pd(iz0,jz2);
1453             dx10             = _mm_sub_pd(ix1,jx0);
1454             dy10             = _mm_sub_pd(iy1,jy0);
1455             dz10             = _mm_sub_pd(iz1,jz0);
1456             dx11             = _mm_sub_pd(ix1,jx1);
1457             dy11             = _mm_sub_pd(iy1,jy1);
1458             dz11             = _mm_sub_pd(iz1,jz1);
1459             dx12             = _mm_sub_pd(ix1,jx2);
1460             dy12             = _mm_sub_pd(iy1,jy2);
1461             dz12             = _mm_sub_pd(iz1,jz2);
1462             dx20             = _mm_sub_pd(ix2,jx0);
1463             dy20             = _mm_sub_pd(iy2,jy0);
1464             dz20             = _mm_sub_pd(iz2,jz0);
1465             dx21             = _mm_sub_pd(ix2,jx1);
1466             dy21             = _mm_sub_pd(iy2,jy1);
1467             dz21             = _mm_sub_pd(iz2,jz1);
1468             dx22             = _mm_sub_pd(ix2,jx2);
1469             dy22             = _mm_sub_pd(iy2,jy2);
1470             dz22             = _mm_sub_pd(iz2,jz2);
1471
1472             /* Calculate squared distance and things based on it */
1473             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1474             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1475             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1476             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1477             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1478             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1479             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1480             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1481             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1482
1483             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1484             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1485             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1486             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1487             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1488             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1489             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1490             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1491             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1492
1493             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1494             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1495             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1496             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1497             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1498             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1499             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1500             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1501             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1502
1503             fjx0             = _mm_setzero_pd();
1504             fjy0             = _mm_setzero_pd();
1505             fjz0             = _mm_setzero_pd();
1506             fjx1             = _mm_setzero_pd();
1507             fjy1             = _mm_setzero_pd();
1508             fjz1             = _mm_setzero_pd();
1509             fjx2             = _mm_setzero_pd();
1510             fjy2             = _mm_setzero_pd();
1511             fjz2             = _mm_setzero_pd();
1512
1513             /**************************
1514              * CALCULATE INTERACTIONS *
1515              **************************/
1516
1517             r00              = _mm_mul_pd(rsq00,rinv00);
1518
1519             /* Calculate table index by multiplying r with table scale and truncate to integer */
1520             rt               = _mm_mul_pd(r00,vftabscale);
1521             vfitab           = _mm_cvttpd_epi32(rt);
1522 #ifdef __XOP__
1523             vfeps            = _mm_frcz_pd(rt);
1524 #else
1525             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1526 #endif
1527             twovfeps         = _mm_add_pd(vfeps,vfeps);
1528             vfitab           = _mm_slli_epi32(vfitab,3);
1529
1530             /* EWALD ELECTROSTATICS */
1531
1532             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1533             ewrt             = _mm_mul_pd(r00,ewtabscale);
1534             ewitab           = _mm_cvttpd_epi32(ewrt);
1535 #ifdef __XOP__
1536             eweps            = _mm_frcz_pd(ewrt);
1537 #else
1538             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1539 #endif
1540             twoeweps         = _mm_add_pd(eweps,eweps);
1541             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1542                                          &ewtabF,&ewtabFn);
1543             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1544             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1545
1546             /* CUBIC SPLINE TABLE DISPERSION */
1547             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1548             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1549             GMX_MM_TRANSPOSE2_PD(Y,F);
1550             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1551             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1552             GMX_MM_TRANSPOSE2_PD(G,H);
1553             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1554             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1555             fvdw6            = _mm_mul_pd(c6_00,FF);
1556
1557             /* CUBIC SPLINE TABLE REPULSION */
1558             vfitab           = _mm_add_epi32(vfitab,ifour);
1559             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1560             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1561             GMX_MM_TRANSPOSE2_PD(Y,F);
1562             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1563             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1564             GMX_MM_TRANSPOSE2_PD(G,H);
1565             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1566             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1567             fvdw12           = _mm_mul_pd(c12_00,FF);
1568             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1569
1570             fscal            = _mm_add_pd(felec,fvdw);
1571
1572             /* Update vectorial force */
1573             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1574             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1575             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1576             
1577             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1578             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1579             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1580
1581             /**************************
1582              * CALCULATE INTERACTIONS *
1583              **************************/
1584
1585             r01              = _mm_mul_pd(rsq01,rinv01);
1586
1587             /* EWALD ELECTROSTATICS */
1588
1589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1590             ewrt             = _mm_mul_pd(r01,ewtabscale);
1591             ewitab           = _mm_cvttpd_epi32(ewrt);
1592 #ifdef __XOP__
1593             eweps            = _mm_frcz_pd(ewrt);
1594 #else
1595             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1596 #endif
1597             twoeweps         = _mm_add_pd(eweps,eweps);
1598             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1599                                          &ewtabF,&ewtabFn);
1600             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1601             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1602
1603             fscal            = felec;
1604
1605             /* Update vectorial force */
1606             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1607             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1608             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1609             
1610             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1611             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1612             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1613
1614             /**************************
1615              * CALCULATE INTERACTIONS *
1616              **************************/
1617
1618             r02              = _mm_mul_pd(rsq02,rinv02);
1619
1620             /* EWALD ELECTROSTATICS */
1621
1622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1623             ewrt             = _mm_mul_pd(r02,ewtabscale);
1624             ewitab           = _mm_cvttpd_epi32(ewrt);
1625 #ifdef __XOP__
1626             eweps            = _mm_frcz_pd(ewrt);
1627 #else
1628             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1629 #endif
1630             twoeweps         = _mm_add_pd(eweps,eweps);
1631             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1632                                          &ewtabF,&ewtabFn);
1633             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1634             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1635
1636             fscal            = felec;
1637
1638             /* Update vectorial force */
1639             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1640             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1641             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1642             
1643             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1644             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1645             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1646
1647             /**************************
1648              * CALCULATE INTERACTIONS *
1649              **************************/
1650
1651             r10              = _mm_mul_pd(rsq10,rinv10);
1652
1653             /* EWALD ELECTROSTATICS */
1654
1655             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1656             ewrt             = _mm_mul_pd(r10,ewtabscale);
1657             ewitab           = _mm_cvttpd_epi32(ewrt);
1658 #ifdef __XOP__
1659             eweps            = _mm_frcz_pd(ewrt);
1660 #else
1661             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1662 #endif
1663             twoeweps         = _mm_add_pd(eweps,eweps);
1664             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1665                                          &ewtabF,&ewtabFn);
1666             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1667             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1668
1669             fscal            = felec;
1670
1671             /* Update vectorial force */
1672             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1673             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1674             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1675             
1676             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1677             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1678             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1679
1680             /**************************
1681              * CALCULATE INTERACTIONS *
1682              **************************/
1683
1684             r11              = _mm_mul_pd(rsq11,rinv11);
1685
1686             /* EWALD ELECTROSTATICS */
1687
1688             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1689             ewrt             = _mm_mul_pd(r11,ewtabscale);
1690             ewitab           = _mm_cvttpd_epi32(ewrt);
1691 #ifdef __XOP__
1692             eweps            = _mm_frcz_pd(ewrt);
1693 #else
1694             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1695 #endif
1696             twoeweps         = _mm_add_pd(eweps,eweps);
1697             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1698                                          &ewtabF,&ewtabFn);
1699             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1700             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1701
1702             fscal            = felec;
1703
1704             /* Update vectorial force */
1705             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1706             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1707             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1708             
1709             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1710             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1711             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1712
1713             /**************************
1714              * CALCULATE INTERACTIONS *
1715              **************************/
1716
1717             r12              = _mm_mul_pd(rsq12,rinv12);
1718
1719             /* EWALD ELECTROSTATICS */
1720
1721             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1722             ewrt             = _mm_mul_pd(r12,ewtabscale);
1723             ewitab           = _mm_cvttpd_epi32(ewrt);
1724 #ifdef __XOP__
1725             eweps            = _mm_frcz_pd(ewrt);
1726 #else
1727             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1728 #endif
1729             twoeweps         = _mm_add_pd(eweps,eweps);
1730             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1731                                          &ewtabF,&ewtabFn);
1732             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1733             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1734
1735             fscal            = felec;
1736
1737             /* Update vectorial force */
1738             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1739             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1740             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1741             
1742             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1743             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1744             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1745
1746             /**************************
1747              * CALCULATE INTERACTIONS *
1748              **************************/
1749
1750             r20              = _mm_mul_pd(rsq20,rinv20);
1751
1752             /* EWALD ELECTROSTATICS */
1753
1754             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1755             ewrt             = _mm_mul_pd(r20,ewtabscale);
1756             ewitab           = _mm_cvttpd_epi32(ewrt);
1757 #ifdef __XOP__
1758             eweps            = _mm_frcz_pd(ewrt);
1759 #else
1760             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1761 #endif
1762             twoeweps         = _mm_add_pd(eweps,eweps);
1763             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1764                                          &ewtabF,&ewtabFn);
1765             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1766             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1767
1768             fscal            = felec;
1769
1770             /* Update vectorial force */
1771             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1772             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1773             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1774             
1775             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1776             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1777             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1778
1779             /**************************
1780              * CALCULATE INTERACTIONS *
1781              **************************/
1782
1783             r21              = _mm_mul_pd(rsq21,rinv21);
1784
1785             /* EWALD ELECTROSTATICS */
1786
1787             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1788             ewrt             = _mm_mul_pd(r21,ewtabscale);
1789             ewitab           = _mm_cvttpd_epi32(ewrt);
1790 #ifdef __XOP__
1791             eweps            = _mm_frcz_pd(ewrt);
1792 #else
1793             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1794 #endif
1795             twoeweps         = _mm_add_pd(eweps,eweps);
1796             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1797                                          &ewtabF,&ewtabFn);
1798             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1799             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1800
1801             fscal            = felec;
1802
1803             /* Update vectorial force */
1804             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1805             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1806             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1807             
1808             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1809             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1810             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1811
1812             /**************************
1813              * CALCULATE INTERACTIONS *
1814              **************************/
1815
1816             r22              = _mm_mul_pd(rsq22,rinv22);
1817
1818             /* EWALD ELECTROSTATICS */
1819
1820             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1821             ewrt             = _mm_mul_pd(r22,ewtabscale);
1822             ewitab           = _mm_cvttpd_epi32(ewrt);
1823 #ifdef __XOP__
1824             eweps            = _mm_frcz_pd(ewrt);
1825 #else
1826             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1827 #endif
1828             twoeweps         = _mm_add_pd(eweps,eweps);
1829             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1830                                          &ewtabF,&ewtabFn);
1831             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1832             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1833
1834             fscal            = felec;
1835
1836             /* Update vectorial force */
1837             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1838             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1839             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1840             
1841             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1842             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1843             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1844
1845             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1846
1847             /* Inner loop uses 377 flops */
1848         }
1849
1850         if(jidx<j_index_end)
1851         {
1852
1853             jnrA             = jjnr[jidx];
1854             j_coord_offsetA  = DIM*jnrA;
1855
1856             /* load j atom coordinates */
1857             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1858                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1859
1860             /* Calculate displacement vector */
1861             dx00             = _mm_sub_pd(ix0,jx0);
1862             dy00             = _mm_sub_pd(iy0,jy0);
1863             dz00             = _mm_sub_pd(iz0,jz0);
1864             dx01             = _mm_sub_pd(ix0,jx1);
1865             dy01             = _mm_sub_pd(iy0,jy1);
1866             dz01             = _mm_sub_pd(iz0,jz1);
1867             dx02             = _mm_sub_pd(ix0,jx2);
1868             dy02             = _mm_sub_pd(iy0,jy2);
1869             dz02             = _mm_sub_pd(iz0,jz2);
1870             dx10             = _mm_sub_pd(ix1,jx0);
1871             dy10             = _mm_sub_pd(iy1,jy0);
1872             dz10             = _mm_sub_pd(iz1,jz0);
1873             dx11             = _mm_sub_pd(ix1,jx1);
1874             dy11             = _mm_sub_pd(iy1,jy1);
1875             dz11             = _mm_sub_pd(iz1,jz1);
1876             dx12             = _mm_sub_pd(ix1,jx2);
1877             dy12             = _mm_sub_pd(iy1,jy2);
1878             dz12             = _mm_sub_pd(iz1,jz2);
1879             dx20             = _mm_sub_pd(ix2,jx0);
1880             dy20             = _mm_sub_pd(iy2,jy0);
1881             dz20             = _mm_sub_pd(iz2,jz0);
1882             dx21             = _mm_sub_pd(ix2,jx1);
1883             dy21             = _mm_sub_pd(iy2,jy1);
1884             dz21             = _mm_sub_pd(iz2,jz1);
1885             dx22             = _mm_sub_pd(ix2,jx2);
1886             dy22             = _mm_sub_pd(iy2,jy2);
1887             dz22             = _mm_sub_pd(iz2,jz2);
1888
1889             /* Calculate squared distance and things based on it */
1890             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1891             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1892             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1893             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1894             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1895             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1896             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1897             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1898             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1899
1900             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1901             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1902             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1903             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1904             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1905             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1906             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1907             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1908             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1909
1910             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1911             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1912             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1913             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1914             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1915             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1916             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1917             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1918             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1919
1920             fjx0             = _mm_setzero_pd();
1921             fjy0             = _mm_setzero_pd();
1922             fjz0             = _mm_setzero_pd();
1923             fjx1             = _mm_setzero_pd();
1924             fjy1             = _mm_setzero_pd();
1925             fjz1             = _mm_setzero_pd();
1926             fjx2             = _mm_setzero_pd();
1927             fjy2             = _mm_setzero_pd();
1928             fjz2             = _mm_setzero_pd();
1929
1930             /**************************
1931              * CALCULATE INTERACTIONS *
1932              **************************/
1933
1934             r00              = _mm_mul_pd(rsq00,rinv00);
1935
1936             /* Calculate table index by multiplying r with table scale and truncate to integer */
1937             rt               = _mm_mul_pd(r00,vftabscale);
1938             vfitab           = _mm_cvttpd_epi32(rt);
1939 #ifdef __XOP__
1940             vfeps            = _mm_frcz_pd(rt);
1941 #else
1942             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1943 #endif
1944             twovfeps         = _mm_add_pd(vfeps,vfeps);
1945             vfitab           = _mm_slli_epi32(vfitab,3);
1946
1947             /* EWALD ELECTROSTATICS */
1948
1949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1950             ewrt             = _mm_mul_pd(r00,ewtabscale);
1951             ewitab           = _mm_cvttpd_epi32(ewrt);
1952 #ifdef __XOP__
1953             eweps            = _mm_frcz_pd(ewrt);
1954 #else
1955             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1956 #endif
1957             twoeweps         = _mm_add_pd(eweps,eweps);
1958             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1959             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1960             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1961
1962             /* CUBIC SPLINE TABLE DISPERSION */
1963             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1964             F                = _mm_setzero_pd();
1965             GMX_MM_TRANSPOSE2_PD(Y,F);
1966             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1967             H                = _mm_setzero_pd();
1968             GMX_MM_TRANSPOSE2_PD(G,H);
1969             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1970             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1971             fvdw6            = _mm_mul_pd(c6_00,FF);
1972
1973             /* CUBIC SPLINE TABLE REPULSION */
1974             vfitab           = _mm_add_epi32(vfitab,ifour);
1975             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1976             F                = _mm_setzero_pd();
1977             GMX_MM_TRANSPOSE2_PD(Y,F);
1978             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1979             H                = _mm_setzero_pd();
1980             GMX_MM_TRANSPOSE2_PD(G,H);
1981             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1982             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1983             fvdw12           = _mm_mul_pd(c12_00,FF);
1984             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1985
1986             fscal            = _mm_add_pd(felec,fvdw);
1987
1988             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1989
1990             /* Update vectorial force */
1991             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1992             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1993             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1994             
1995             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1996             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1997             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1998
1999             /**************************
2000              * CALCULATE INTERACTIONS *
2001              **************************/
2002
2003             r01              = _mm_mul_pd(rsq01,rinv01);
2004
2005             /* EWALD ELECTROSTATICS */
2006
2007             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2008             ewrt             = _mm_mul_pd(r01,ewtabscale);
2009             ewitab           = _mm_cvttpd_epi32(ewrt);
2010 #ifdef __XOP__
2011             eweps            = _mm_frcz_pd(ewrt);
2012 #else
2013             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2014 #endif
2015             twoeweps         = _mm_add_pd(eweps,eweps);
2016             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2017             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2018             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2019
2020             fscal            = felec;
2021
2022             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2023
2024             /* Update vectorial force */
2025             fix0             = _mm_macc_pd(dx01,fscal,fix0);
2026             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
2027             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
2028             
2029             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
2030             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
2031             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
2032
2033             /**************************
2034              * CALCULATE INTERACTIONS *
2035              **************************/
2036
2037             r02              = _mm_mul_pd(rsq02,rinv02);
2038
2039             /* EWALD ELECTROSTATICS */
2040
2041             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2042             ewrt             = _mm_mul_pd(r02,ewtabscale);
2043             ewitab           = _mm_cvttpd_epi32(ewrt);
2044 #ifdef __XOP__
2045             eweps            = _mm_frcz_pd(ewrt);
2046 #else
2047             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2048 #endif
2049             twoeweps         = _mm_add_pd(eweps,eweps);
2050             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2051             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2052             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2053
2054             fscal            = felec;
2055
2056             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2057
2058             /* Update vectorial force */
2059             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2060             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2061             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2062             
2063             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2064             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2065             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2066
2067             /**************************
2068              * CALCULATE INTERACTIONS *
2069              **************************/
2070
2071             r10              = _mm_mul_pd(rsq10,rinv10);
2072
2073             /* EWALD ELECTROSTATICS */
2074
2075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2076             ewrt             = _mm_mul_pd(r10,ewtabscale);
2077             ewitab           = _mm_cvttpd_epi32(ewrt);
2078 #ifdef __XOP__
2079             eweps            = _mm_frcz_pd(ewrt);
2080 #else
2081             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2082 #endif
2083             twoeweps         = _mm_add_pd(eweps,eweps);
2084             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2085             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2086             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2087
2088             fscal            = felec;
2089
2090             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2091
2092             /* Update vectorial force */
2093             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2094             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2095             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2096             
2097             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2098             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2099             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2100
2101             /**************************
2102              * CALCULATE INTERACTIONS *
2103              **************************/
2104
2105             r11              = _mm_mul_pd(rsq11,rinv11);
2106
2107             /* EWALD ELECTROSTATICS */
2108
2109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2110             ewrt             = _mm_mul_pd(r11,ewtabscale);
2111             ewitab           = _mm_cvttpd_epi32(ewrt);
2112 #ifdef __XOP__
2113             eweps            = _mm_frcz_pd(ewrt);
2114 #else
2115             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2116 #endif
2117             twoeweps         = _mm_add_pd(eweps,eweps);
2118             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2119             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2120             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2121
2122             fscal            = felec;
2123
2124             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2125
2126             /* Update vectorial force */
2127             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2128             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2129             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2130             
2131             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2132             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2133             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2134
2135             /**************************
2136              * CALCULATE INTERACTIONS *
2137              **************************/
2138
2139             r12              = _mm_mul_pd(rsq12,rinv12);
2140
2141             /* EWALD ELECTROSTATICS */
2142
2143             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2144             ewrt             = _mm_mul_pd(r12,ewtabscale);
2145             ewitab           = _mm_cvttpd_epi32(ewrt);
2146 #ifdef __XOP__
2147             eweps            = _mm_frcz_pd(ewrt);
2148 #else
2149             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2150 #endif
2151             twoeweps         = _mm_add_pd(eweps,eweps);
2152             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2153             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2154             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2155
2156             fscal            = felec;
2157
2158             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2159
2160             /* Update vectorial force */
2161             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2162             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2163             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2164             
2165             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2166             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2167             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2168
2169             /**************************
2170              * CALCULATE INTERACTIONS *
2171              **************************/
2172
2173             r20              = _mm_mul_pd(rsq20,rinv20);
2174
2175             /* EWALD ELECTROSTATICS */
2176
2177             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2178             ewrt             = _mm_mul_pd(r20,ewtabscale);
2179             ewitab           = _mm_cvttpd_epi32(ewrt);
2180 #ifdef __XOP__
2181             eweps            = _mm_frcz_pd(ewrt);
2182 #else
2183             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2184 #endif
2185             twoeweps         = _mm_add_pd(eweps,eweps);
2186             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2187             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2188             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2189
2190             fscal            = felec;
2191
2192             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2193
2194             /* Update vectorial force */
2195             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2196             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2197             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2198             
2199             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2200             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2201             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2202
2203             /**************************
2204              * CALCULATE INTERACTIONS *
2205              **************************/
2206
2207             r21              = _mm_mul_pd(rsq21,rinv21);
2208
2209             /* EWALD ELECTROSTATICS */
2210
2211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2212             ewrt             = _mm_mul_pd(r21,ewtabscale);
2213             ewitab           = _mm_cvttpd_epi32(ewrt);
2214 #ifdef __XOP__
2215             eweps            = _mm_frcz_pd(ewrt);
2216 #else
2217             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2218 #endif
2219             twoeweps         = _mm_add_pd(eweps,eweps);
2220             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2221             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2222             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2223
2224             fscal            = felec;
2225
2226             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2227
2228             /* Update vectorial force */
2229             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2230             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2231             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2232             
2233             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2234             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2235             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2236
2237             /**************************
2238              * CALCULATE INTERACTIONS *
2239              **************************/
2240
2241             r22              = _mm_mul_pd(rsq22,rinv22);
2242
2243             /* EWALD ELECTROSTATICS */
2244
2245             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2246             ewrt             = _mm_mul_pd(r22,ewtabscale);
2247             ewitab           = _mm_cvttpd_epi32(ewrt);
2248 #ifdef __XOP__
2249             eweps            = _mm_frcz_pd(ewrt);
2250 #else
2251             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2252 #endif
2253             twoeweps         = _mm_add_pd(eweps,eweps);
2254             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2255             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2256             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2257
2258             fscal            = felec;
2259
2260             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2261
2262             /* Update vectorial force */
2263             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2264             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2265             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2266             
2267             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2268             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2269             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2270
2271             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2272
2273             /* Inner loop uses 377 flops */
2274         }
2275
2276         /* End of innermost loop */
2277
2278         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2279                                               f+i_coord_offset,fshift+i_shift_offset);
2280
2281         /* Increment number of inner iterations */
2282         inneriter                  += j_index_end - j_index_start;
2283
2284         /* Outer loop uses 18 flops */
2285     }
2286
2287     /* Increment number of outer iterations */
2288     outeriter        += nri;
2289
2290     /* Update outer/inner flops */
2291
2292     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*377);
2293 }