65701d445b715bfc3827f831fa4adca9f955470e
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
82     real             *vftab;
83     __m128i          ewitab;
84     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     real             *ewtab;
86     __m128d          dummy_mask,cutoff_mask;
87     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
88     __m128d          one     = _mm_set1_pd(1.0);
89     __m128d          two     = _mm_set1_pd(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_pd(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_pd();
141         fiy0             = _mm_setzero_pd();
142         fiz0             = _mm_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vvdwsum          = _mm_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_pd(ix0,jx0);
168             dy00             = _mm_sub_pd(iy0,jy0);
169             dz00             = _mm_sub_pd(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_pd(rsq00);
175
176             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
177
178             /* Load parameters for j particles */
179             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
180             vdwjidx0A        = 2*vdwtype[jnrA+0];
181             vdwjidx0B        = 2*vdwtype[jnrB+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             r00              = _mm_mul_pd(rsq00,rinv00);
188
189             /* Compute parameters for interactions between i and j atoms */
190             qq00             = _mm_mul_pd(iq0,jq0);
191             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
192                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
193
194             /* Calculate table index by multiplying r with table scale and truncate to integer */
195             rt               = _mm_mul_pd(r00,vftabscale);
196             vfitab           = _mm_cvttpd_epi32(rt);
197 #ifdef __XOP__
198             vfeps            = _mm_frcz_pd(rt);
199 #else
200             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
201 #endif
202             twovfeps         = _mm_add_pd(vfeps,vfeps);
203             vfitab           = _mm_slli_epi32(vfitab,3);
204
205             /* EWALD ELECTROSTATICS */
206
207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
208             ewrt             = _mm_mul_pd(r00,ewtabscale);
209             ewitab           = _mm_cvttpd_epi32(ewrt);
210 #ifdef __XOP__
211             eweps            = _mm_frcz_pd(ewrt);
212 #else
213             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
214 #endif
215             twoeweps         = _mm_add_pd(eweps,eweps);
216             ewitab           = _mm_slli_epi32(ewitab,2);
217             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
218             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
219             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
220             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
221             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
222             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
223             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
224             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
225             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
226             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
227
228             /* CUBIC SPLINE TABLE DISPERSION */
229             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
230             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
231             GMX_MM_TRANSPOSE2_PD(Y,F);
232             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
233             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
234             GMX_MM_TRANSPOSE2_PD(G,H);
235             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
236             VV               = _mm_macc_pd(vfeps,Fp,Y);
237             vvdw6            = _mm_mul_pd(c6_00,VV);
238             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
239             fvdw6            = _mm_mul_pd(c6_00,FF);
240
241             /* CUBIC SPLINE TABLE REPULSION */
242             vfitab           = _mm_add_epi32(vfitab,ifour);
243             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
245             GMX_MM_TRANSPOSE2_PD(Y,F);
246             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
247             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
248             GMX_MM_TRANSPOSE2_PD(G,H);
249             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
250             VV               = _mm_macc_pd(vfeps,Fp,Y);
251             vvdw12           = _mm_mul_pd(c12_00,VV);
252             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
253             fvdw12           = _mm_mul_pd(c12_00,FF);
254             vvdw             = _mm_add_pd(vvdw12,vvdw6);
255             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm_add_pd(velecsum,velec);
259             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
260
261             fscal            = _mm_add_pd(felec,fvdw);
262
263             /* Update vectorial force */
264             fix0             = _mm_macc_pd(dx00,fscal,fix0);
265             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
266             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
267             
268             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
269                                                    _mm_mul_pd(dx00,fscal),
270                                                    _mm_mul_pd(dy00,fscal),
271                                                    _mm_mul_pd(dz00,fscal));
272
273             /* Inner loop uses 78 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             jnrA             = jjnr[jidx];
280             j_coord_offsetA  = DIM*jnrA;
281
282             /* load j atom coordinates */
283             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
284                                               &jx0,&jy0,&jz0);
285
286             /* Calculate displacement vector */
287             dx00             = _mm_sub_pd(ix0,jx0);
288             dy00             = _mm_sub_pd(iy0,jy0);
289             dz00             = _mm_sub_pd(iz0,jz0);
290
291             /* Calculate squared distance and things based on it */
292             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
293
294             rinv00           = gmx_mm_invsqrt_pd(rsq00);
295
296             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
297
298             /* Load parameters for j particles */
299             jq0              = _mm_load_sd(charge+jnrA+0);
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r00              = _mm_mul_pd(rsq00,rinv00);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq00             = _mm_mul_pd(iq0,jq0);
310             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
311
312             /* Calculate table index by multiplying r with table scale and truncate to integer */
313             rt               = _mm_mul_pd(r00,vftabscale);
314             vfitab           = _mm_cvttpd_epi32(rt);
315 #ifdef __XOP__
316             vfeps            = _mm_frcz_pd(rt);
317 #else
318             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
319 #endif
320             twovfeps         = _mm_add_pd(vfeps,vfeps);
321             vfitab           = _mm_slli_epi32(vfitab,3);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_pd(r00,ewtabscale);
327             ewitab           = _mm_cvttpd_epi32(ewrt);
328 #ifdef __XOP__
329             eweps            = _mm_frcz_pd(ewrt);
330 #else
331             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
332 #endif
333             twoeweps         = _mm_add_pd(eweps,eweps);
334             ewitab           = _mm_slli_epi32(ewitab,2);
335             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
336             ewtabD           = _mm_setzero_pd();
337             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
338             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
339             ewtabFn          = _mm_setzero_pd();
340             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
341             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
342             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
343             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
344             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
345
346             /* CUBIC SPLINE TABLE DISPERSION */
347             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
348             F                = _mm_setzero_pd();
349             GMX_MM_TRANSPOSE2_PD(Y,F);
350             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
351             H                = _mm_setzero_pd();
352             GMX_MM_TRANSPOSE2_PD(G,H);
353             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
354             VV               = _mm_macc_pd(vfeps,Fp,Y);
355             vvdw6            = _mm_mul_pd(c6_00,VV);
356             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
357             fvdw6            = _mm_mul_pd(c6_00,FF);
358
359             /* CUBIC SPLINE TABLE REPULSION */
360             vfitab           = _mm_add_epi32(vfitab,ifour);
361             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
362             F                = _mm_setzero_pd();
363             GMX_MM_TRANSPOSE2_PD(Y,F);
364             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
365             H                = _mm_setzero_pd();
366             GMX_MM_TRANSPOSE2_PD(G,H);
367             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
368             VV               = _mm_macc_pd(vfeps,Fp,Y);
369             vvdw12           = _mm_mul_pd(c12_00,VV);
370             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
371             fvdw12           = _mm_mul_pd(c12_00,FF);
372             vvdw             = _mm_add_pd(vvdw12,vvdw6);
373             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
377             velecsum         = _mm_add_pd(velecsum,velec);
378             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
379             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
380
381             fscal            = _mm_add_pd(felec,fvdw);
382
383             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
384
385             /* Update vectorial force */
386             fix0             = _mm_macc_pd(dx00,fscal,fix0);
387             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
388             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
389             
390             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
391                                                    _mm_mul_pd(dx00,fscal),
392                                                    _mm_mul_pd(dy00,fscal),
393                                                    _mm_mul_pd(dz00,fscal));
394
395             /* Inner loop uses 78 flops */
396         }
397
398         /* End of innermost loop */
399
400         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
401                                               f+i_coord_offset,fshift+i_shift_offset);
402
403         ggid                        = gid[iidx];
404         /* Update potential energies */
405         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
406         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
407
408         /* Increment number of inner iterations */
409         inneriter                  += j_index_end - j_index_start;
410
411         /* Outer loop uses 9 flops */
412     }
413
414     /* Increment number of outer iterations */
415     outeriter        += nri;
416
417     /* Update outer/inner flops */
418
419     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
420 }
421 /*
422  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_double
423  * Electrostatics interaction: Ewald
424  * VdW interaction:            CubicSplineTable
425  * Geometry:                   Particle-Particle
426  * Calculate force/pot:        Force
427  */
428 void
429 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_double
430                     (t_nblist * gmx_restrict                nlist,
431                      rvec * gmx_restrict                    xx,
432                      rvec * gmx_restrict                    ff,
433                      t_forcerec * gmx_restrict              fr,
434                      t_mdatoms * gmx_restrict               mdatoms,
435                      nb_kernel_data_t * gmx_restrict        kernel_data,
436                      t_nrnb * gmx_restrict                  nrnb)
437 {
438     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
439      * just 0 for non-waters.
440      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
441      * jnr indices corresponding to data put in the four positions in the SIMD register.
442      */
443     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
444     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
445     int              jnrA,jnrB;
446     int              j_coord_offsetA,j_coord_offsetB;
447     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
448     real             rcutoff_scalar;
449     real             *shiftvec,*fshift,*x,*f;
450     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
451     int              vdwioffset0;
452     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
453     int              vdwjidx0A,vdwjidx0B;
454     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
455     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
456     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
457     real             *charge;
458     int              nvdwtype;
459     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
460     int              *vdwtype;
461     real             *vdwparam;
462     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
463     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
464     __m128i          vfitab;
465     __m128i          ifour       = _mm_set1_epi32(4);
466     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
467     real             *vftab;
468     __m128i          ewitab;
469     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
470     real             *ewtab;
471     __m128d          dummy_mask,cutoff_mask;
472     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
473     __m128d          one     = _mm_set1_pd(1.0);
474     __m128d          two     = _mm_set1_pd(2.0);
475     x                = xx[0];
476     f                = ff[0];
477
478     nri              = nlist->nri;
479     iinr             = nlist->iinr;
480     jindex           = nlist->jindex;
481     jjnr             = nlist->jjnr;
482     shiftidx         = nlist->shift;
483     gid              = nlist->gid;
484     shiftvec         = fr->shift_vec[0];
485     fshift           = fr->fshift[0];
486     facel            = _mm_set1_pd(fr->epsfac);
487     charge           = mdatoms->chargeA;
488     nvdwtype         = fr->ntype;
489     vdwparam         = fr->nbfp;
490     vdwtype          = mdatoms->typeA;
491
492     vftab            = kernel_data->table_vdw->data;
493     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
494
495     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
496     ewtab            = fr->ic->tabq_coul_F;
497     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
498     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
499
500     /* Avoid stupid compiler warnings */
501     jnrA = jnrB = 0;
502     j_coord_offsetA = 0;
503     j_coord_offsetB = 0;
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     /* Start outer loop over neighborlists */
509     for(iidx=0; iidx<nri; iidx++)
510     {
511         /* Load shift vector for this list */
512         i_shift_offset   = DIM*shiftidx[iidx];
513
514         /* Load limits for loop over neighbors */
515         j_index_start    = jindex[iidx];
516         j_index_end      = jindex[iidx+1];
517
518         /* Get outer coordinate index */
519         inr              = iinr[iidx];
520         i_coord_offset   = DIM*inr;
521
522         /* Load i particle coords and add shift vector */
523         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
524
525         fix0             = _mm_setzero_pd();
526         fiy0             = _mm_setzero_pd();
527         fiz0             = _mm_setzero_pd();
528
529         /* Load parameters for i particles */
530         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
531         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542
543             /* load j atom coordinates */
544             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_pd(ix0,jx0);
549             dy00             = _mm_sub_pd(iy0,jy0);
550             dz00             = _mm_sub_pd(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
554
555             rinv00           = gmx_mm_invsqrt_pd(rsq00);
556
557             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562             vdwjidx0B        = 2*vdwtype[jnrB+0];
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             r00              = _mm_mul_pd(rsq00,rinv00);
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq00             = _mm_mul_pd(iq0,jq0);
572             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
573                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
574
575             /* Calculate table index by multiplying r with table scale and truncate to integer */
576             rt               = _mm_mul_pd(r00,vftabscale);
577             vfitab           = _mm_cvttpd_epi32(rt);
578 #ifdef __XOP__
579             vfeps            = _mm_frcz_pd(rt);
580 #else
581             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
582 #endif
583             twovfeps         = _mm_add_pd(vfeps,vfeps);
584             vfitab           = _mm_slli_epi32(vfitab,3);
585
586             /* EWALD ELECTROSTATICS */
587
588             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
589             ewrt             = _mm_mul_pd(r00,ewtabscale);
590             ewitab           = _mm_cvttpd_epi32(ewrt);
591 #ifdef __XOP__
592             eweps            = _mm_frcz_pd(ewrt);
593 #else
594             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
595 #endif
596             twoeweps         = _mm_add_pd(eweps,eweps);
597             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
598                                          &ewtabF,&ewtabFn);
599             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
600             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
601
602             /* CUBIC SPLINE TABLE DISPERSION */
603             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
604             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
605             GMX_MM_TRANSPOSE2_PD(Y,F);
606             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
607             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
608             GMX_MM_TRANSPOSE2_PD(G,H);
609             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
610             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
611             fvdw6            = _mm_mul_pd(c6_00,FF);
612
613             /* CUBIC SPLINE TABLE REPULSION */
614             vfitab           = _mm_add_epi32(vfitab,ifour);
615             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
616             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
617             GMX_MM_TRANSPOSE2_PD(Y,F);
618             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
619             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
620             GMX_MM_TRANSPOSE2_PD(G,H);
621             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
622             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
623             fvdw12           = _mm_mul_pd(c12_00,FF);
624             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
625
626             fscal            = _mm_add_pd(felec,fvdw);
627
628             /* Update vectorial force */
629             fix0             = _mm_macc_pd(dx00,fscal,fix0);
630             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
631             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
632             
633             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
634                                                    _mm_mul_pd(dx00,fscal),
635                                                    _mm_mul_pd(dy00,fscal),
636                                                    _mm_mul_pd(dz00,fscal));
637
638             /* Inner loop uses 65 flops */
639         }
640
641         if(jidx<j_index_end)
642         {
643
644             jnrA             = jjnr[jidx];
645             j_coord_offsetA  = DIM*jnrA;
646
647             /* load j atom coordinates */
648             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
649                                               &jx0,&jy0,&jz0);
650
651             /* Calculate displacement vector */
652             dx00             = _mm_sub_pd(ix0,jx0);
653             dy00             = _mm_sub_pd(iy0,jy0);
654             dz00             = _mm_sub_pd(iz0,jz0);
655
656             /* Calculate squared distance and things based on it */
657             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
658
659             rinv00           = gmx_mm_invsqrt_pd(rsq00);
660
661             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
662
663             /* Load parameters for j particles */
664             jq0              = _mm_load_sd(charge+jnrA+0);
665             vdwjidx0A        = 2*vdwtype[jnrA+0];
666
667             /**************************
668              * CALCULATE INTERACTIONS *
669              **************************/
670
671             r00              = _mm_mul_pd(rsq00,rinv00);
672
673             /* Compute parameters for interactions between i and j atoms */
674             qq00             = _mm_mul_pd(iq0,jq0);
675             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
676
677             /* Calculate table index by multiplying r with table scale and truncate to integer */
678             rt               = _mm_mul_pd(r00,vftabscale);
679             vfitab           = _mm_cvttpd_epi32(rt);
680 #ifdef __XOP__
681             vfeps            = _mm_frcz_pd(rt);
682 #else
683             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
684 #endif
685             twovfeps         = _mm_add_pd(vfeps,vfeps);
686             vfitab           = _mm_slli_epi32(vfitab,3);
687
688             /* EWALD ELECTROSTATICS */
689
690             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
691             ewrt             = _mm_mul_pd(r00,ewtabscale);
692             ewitab           = _mm_cvttpd_epi32(ewrt);
693 #ifdef __XOP__
694             eweps            = _mm_frcz_pd(ewrt);
695 #else
696             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
697 #endif
698             twoeweps         = _mm_add_pd(eweps,eweps);
699             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
700             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
701             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
702
703             /* CUBIC SPLINE TABLE DISPERSION */
704             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
705             F                = _mm_setzero_pd();
706             GMX_MM_TRANSPOSE2_PD(Y,F);
707             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
708             H                = _mm_setzero_pd();
709             GMX_MM_TRANSPOSE2_PD(G,H);
710             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
711             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
712             fvdw6            = _mm_mul_pd(c6_00,FF);
713
714             /* CUBIC SPLINE TABLE REPULSION */
715             vfitab           = _mm_add_epi32(vfitab,ifour);
716             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
717             F                = _mm_setzero_pd();
718             GMX_MM_TRANSPOSE2_PD(Y,F);
719             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
720             H                = _mm_setzero_pd();
721             GMX_MM_TRANSPOSE2_PD(G,H);
722             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
723             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
724             fvdw12           = _mm_mul_pd(c12_00,FF);
725             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
726
727             fscal            = _mm_add_pd(felec,fvdw);
728
729             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
730
731             /* Update vectorial force */
732             fix0             = _mm_macc_pd(dx00,fscal,fix0);
733             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
734             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
735             
736             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
737                                                    _mm_mul_pd(dx00,fscal),
738                                                    _mm_mul_pd(dy00,fscal),
739                                                    _mm_mul_pd(dz00,fscal));
740
741             /* Inner loop uses 65 flops */
742         }
743
744         /* End of innermost loop */
745
746         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
747                                               f+i_coord_offset,fshift+i_shift_offset);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 7 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
761 }