made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
77     real             rswitch_scalar,d_scalar;
78     __m128d          dummy_mask,cutoff_mask;
79     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
80     __m128d          one     = _mm_set1_pd(1.0);
81     __m128d          two     = _mm_set1_pd(2.0);
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = _mm_set1_pd(fr->epsfac);
94     charge           = mdatoms->chargeA;
95
96     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
97     ewtab            = fr->ic->tabq_coul_FDV0;
98     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
99     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
100
101     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
102     rcutoff_scalar   = fr->rcoulomb;
103     rcutoff          = _mm_set1_pd(rcutoff_scalar);
104     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
105
106     rswitch_scalar   = fr->rcoulomb_switch;
107     rswitch          = _mm_set1_pd(rswitch_scalar);
108     /* Setup switch parameters */
109     d_scalar         = rcutoff_scalar-rswitch_scalar;
110     d                = _mm_set1_pd(d_scalar);
111     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
112     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
113     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
114     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
115     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
116     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_pd();
144         fiy0             = _mm_setzero_pd();
145         fiz0             = _mm_setzero_pd();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_pd();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_pd(ix0,jx0);
169             dy00             = _mm_sub_pd(iy0,jy0);
170             dz00             = _mm_sub_pd(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_pd(rsq00);
176
177             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             if (gmx_mm_any_lt(rsq00,rcutoff2))
187             {
188
189             r00              = _mm_mul_pd(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_pd(iq0,jq0);
193
194             /* EWALD ELECTROSTATICS */
195
196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
197             ewrt             = _mm_mul_pd(r00,ewtabscale);
198             ewitab           = _mm_cvttpd_epi32(ewrt);
199 #ifdef __XOP__
200             eweps            = _mm_frcz_pd(ewrt);
201 #else
202             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
203 #endif
204             twoeweps         = _mm_add_pd(eweps,eweps);
205             ewitab           = _mm_slli_epi32(ewitab,2);
206             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
207             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
208             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
209             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
210             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
211             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
212             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
213             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
214             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
215             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
216
217             d                = _mm_sub_pd(r00,rswitch);
218             d                = _mm_max_pd(d,_mm_setzero_pd());
219             d2               = _mm_mul_pd(d,d);
220             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
221
222             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
223
224             /* Evaluate switch function */
225             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
226             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
227             velec            = _mm_mul_pd(velec,sw);
228             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             velec            = _mm_and_pd(velec,cutoff_mask);
232             velecsum         = _mm_add_pd(velecsum,velec);
233
234             fscal            = felec;
235
236             fscal            = _mm_and_pd(fscal,cutoff_mask);
237
238             /* Update vectorial force */
239             fix0             = _mm_macc_pd(dx00,fscal,fix0);
240             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
241             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
242             
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
244                                                    _mm_mul_pd(dx00,fscal),
245                                                    _mm_mul_pd(dy00,fscal),
246                                                    _mm_mul_pd(dz00,fscal));
247
248             }
249
250             /* Inner loop uses 68 flops */
251         }
252
253         if(jidx<j_index_end)
254         {
255
256             jnrA             = jjnr[jidx];
257             j_coord_offsetA  = DIM*jnrA;
258
259             /* load j atom coordinates */
260             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
261                                               &jx0,&jy0,&jz0);
262
263             /* Calculate displacement vector */
264             dx00             = _mm_sub_pd(ix0,jx0);
265             dy00             = _mm_sub_pd(iy0,jy0);
266             dz00             = _mm_sub_pd(iz0,jz0);
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
270
271             rinv00           = gmx_mm_invsqrt_pd(rsq00);
272
273             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
274
275             /* Load parameters for j particles */
276             jq0              = _mm_load_sd(charge+jnrA+0);
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (gmx_mm_any_lt(rsq00,rcutoff2))
283             {
284
285             r00              = _mm_mul_pd(rsq00,rinv00);
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq00             = _mm_mul_pd(iq0,jq0);
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = _mm_mul_pd(r00,ewtabscale);
294             ewitab           = _mm_cvttpd_epi32(ewrt);
295 #ifdef __XOP__
296             eweps            = _mm_frcz_pd(ewrt);
297 #else
298             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
299 #endif
300             twoeweps         = _mm_add_pd(eweps,eweps);
301             ewitab           = _mm_slli_epi32(ewitab,2);
302             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
303             ewtabD           = _mm_setzero_pd();
304             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
305             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
306             ewtabFn          = _mm_setzero_pd();
307             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
308             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
309             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
310             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
311             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
312
313             d                = _mm_sub_pd(r00,rswitch);
314             d                = _mm_max_pd(d,_mm_setzero_pd());
315             d2               = _mm_mul_pd(d,d);
316             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
317
318             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
319
320             /* Evaluate switch function */
321             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
322             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
323             velec            = _mm_mul_pd(velec,sw);
324             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velec            = _mm_and_pd(velec,cutoff_mask);
328             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             fscal            = _mm_and_pd(fscal,cutoff_mask);
334
335             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
336
337             /* Update vectorial force */
338             fix0             = _mm_macc_pd(dx00,fscal,fix0);
339             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
340             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
341             
342             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
343                                                    _mm_mul_pd(dx00,fscal),
344                                                    _mm_mul_pd(dy00,fscal),
345                                                    _mm_mul_pd(dz00,fscal));
346
347             }
348
349             /* Inner loop uses 68 flops */
350         }
351
352         /* End of innermost loop */
353
354         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
355                                               f+i_coord_offset,fshift+i_shift_offset);
356
357         ggid                        = gid[iidx];
358         /* Update potential energies */
359         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
360
361         /* Increment number of inner iterations */
362         inneriter                  += j_index_end - j_index_start;
363
364         /* Outer loop uses 8 flops */
365     }
366
367     /* Increment number of outer iterations */
368     outeriter        += nri;
369
370     /* Update outer/inner flops */
371
372     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*68);
373 }
374 /*
375  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
376  * Electrostatics interaction: Ewald
377  * VdW interaction:            None
378  * Geometry:                   Particle-Particle
379  * Calculate force/pot:        Force
380  */
381 void
382 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
383                     (t_nblist * gmx_restrict                nlist,
384                      rvec * gmx_restrict                    xx,
385                      rvec * gmx_restrict                    ff,
386                      t_forcerec * gmx_restrict              fr,
387                      t_mdatoms * gmx_restrict               mdatoms,
388                      nb_kernel_data_t * gmx_restrict        kernel_data,
389                      t_nrnb * gmx_restrict                  nrnb)
390 {
391     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
392      * just 0 for non-waters.
393      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
394      * jnr indices corresponding to data put in the four positions in the SIMD register.
395      */
396     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
397     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
398     int              jnrA,jnrB;
399     int              j_coord_offsetA,j_coord_offsetB;
400     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
401     real             rcutoff_scalar;
402     real             *shiftvec,*fshift,*x,*f;
403     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
404     int              vdwioffset0;
405     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406     int              vdwjidx0A,vdwjidx0B;
407     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
408     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
409     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
410     real             *charge;
411     __m128i          ewitab;
412     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
413     real             *ewtab;
414     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
415     real             rswitch_scalar,d_scalar;
416     __m128d          dummy_mask,cutoff_mask;
417     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
418     __m128d          one     = _mm_set1_pd(1.0);
419     __m128d          two     = _mm_set1_pd(2.0);
420     x                = xx[0];
421     f                = ff[0];
422
423     nri              = nlist->nri;
424     iinr             = nlist->iinr;
425     jindex           = nlist->jindex;
426     jjnr             = nlist->jjnr;
427     shiftidx         = nlist->shift;
428     gid              = nlist->gid;
429     shiftvec         = fr->shift_vec[0];
430     fshift           = fr->fshift[0];
431     facel            = _mm_set1_pd(fr->epsfac);
432     charge           = mdatoms->chargeA;
433
434     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
435     ewtab            = fr->ic->tabq_coul_FDV0;
436     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
437     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
438
439     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
440     rcutoff_scalar   = fr->rcoulomb;
441     rcutoff          = _mm_set1_pd(rcutoff_scalar);
442     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
443
444     rswitch_scalar   = fr->rcoulomb_switch;
445     rswitch          = _mm_set1_pd(rswitch_scalar);
446     /* Setup switch parameters */
447     d_scalar         = rcutoff_scalar-rswitch_scalar;
448     d                = _mm_set1_pd(d_scalar);
449     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
450     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
451     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
452     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
453     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
454     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
455
456     /* Avoid stupid compiler warnings */
457     jnrA = jnrB = 0;
458     j_coord_offsetA = 0;
459     j_coord_offsetB = 0;
460
461     outeriter        = 0;
462     inneriter        = 0;
463
464     /* Start outer loop over neighborlists */
465     for(iidx=0; iidx<nri; iidx++)
466     {
467         /* Load shift vector for this list */
468         i_shift_offset   = DIM*shiftidx[iidx];
469
470         /* Load limits for loop over neighbors */
471         j_index_start    = jindex[iidx];
472         j_index_end      = jindex[iidx+1];
473
474         /* Get outer coordinate index */
475         inr              = iinr[iidx];
476         i_coord_offset   = DIM*inr;
477
478         /* Load i particle coords and add shift vector */
479         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
480
481         fix0             = _mm_setzero_pd();
482         fiy0             = _mm_setzero_pd();
483         fiz0             = _mm_setzero_pd();
484
485         /* Load parameters for i particles */
486         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
487
488         /* Start inner kernel loop */
489         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
490         {
491
492             /* Get j neighbor index, and coordinate index */
493             jnrA             = jjnr[jidx];
494             jnrB             = jjnr[jidx+1];
495             j_coord_offsetA  = DIM*jnrA;
496             j_coord_offsetB  = DIM*jnrB;
497
498             /* load j atom coordinates */
499             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
500                                               &jx0,&jy0,&jz0);
501
502             /* Calculate displacement vector */
503             dx00             = _mm_sub_pd(ix0,jx0);
504             dy00             = _mm_sub_pd(iy0,jy0);
505             dz00             = _mm_sub_pd(iz0,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
509
510             rinv00           = gmx_mm_invsqrt_pd(rsq00);
511
512             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
513
514             /* Load parameters for j particles */
515             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             if (gmx_mm_any_lt(rsq00,rcutoff2))
522             {
523
524             r00              = _mm_mul_pd(rsq00,rinv00);
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq00             = _mm_mul_pd(iq0,jq0);
528
529             /* EWALD ELECTROSTATICS */
530
531             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532             ewrt             = _mm_mul_pd(r00,ewtabscale);
533             ewitab           = _mm_cvttpd_epi32(ewrt);
534 #ifdef __XOP__
535             eweps            = _mm_frcz_pd(ewrt);
536 #else
537             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
538 #endif
539             twoeweps         = _mm_add_pd(eweps,eweps);
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
543             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
544             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
545             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
546             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
547             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
548             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
549             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
550             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
551
552             d                = _mm_sub_pd(r00,rswitch);
553             d                = _mm_max_pd(d,_mm_setzero_pd());
554             d2               = _mm_mul_pd(d,d);
555             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
556
557             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
558
559             /* Evaluate switch function */
560             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
561             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
562             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
563
564             fscal            = felec;
565
566             fscal            = _mm_and_pd(fscal,cutoff_mask);
567
568             /* Update vectorial force */
569             fix0             = _mm_macc_pd(dx00,fscal,fix0);
570             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
571             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
572             
573             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
574                                                    _mm_mul_pd(dx00,fscal),
575                                                    _mm_mul_pd(dy00,fscal),
576                                                    _mm_mul_pd(dz00,fscal));
577
578             }
579
580             /* Inner loop uses 65 flops */
581         }
582
583         if(jidx<j_index_end)
584         {
585
586             jnrA             = jjnr[jidx];
587             j_coord_offsetA  = DIM*jnrA;
588
589             /* load j atom coordinates */
590             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
591                                               &jx0,&jy0,&jz0);
592
593             /* Calculate displacement vector */
594             dx00             = _mm_sub_pd(ix0,jx0);
595             dy00             = _mm_sub_pd(iy0,jy0);
596             dz00             = _mm_sub_pd(iz0,jz0);
597
598             /* Calculate squared distance and things based on it */
599             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
600
601             rinv00           = gmx_mm_invsqrt_pd(rsq00);
602
603             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
604
605             /* Load parameters for j particles */
606             jq0              = _mm_load_sd(charge+jnrA+0);
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             if (gmx_mm_any_lt(rsq00,rcutoff2))
613             {
614
615             r00              = _mm_mul_pd(rsq00,rinv00);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq00             = _mm_mul_pd(iq0,jq0);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm_mul_pd(r00,ewtabscale);
624             ewitab           = _mm_cvttpd_epi32(ewrt);
625 #ifdef __XOP__
626             eweps            = _mm_frcz_pd(ewrt);
627 #else
628             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
629 #endif
630             twoeweps         = _mm_add_pd(eweps,eweps);
631             ewitab           = _mm_slli_epi32(ewitab,2);
632             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
633             ewtabD           = _mm_setzero_pd();
634             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
635             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
636             ewtabFn          = _mm_setzero_pd();
637             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
638             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
639             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
640             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
641             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
642
643             d                = _mm_sub_pd(r00,rswitch);
644             d                = _mm_max_pd(d,_mm_setzero_pd());
645             d2               = _mm_mul_pd(d,d);
646             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
647
648             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
649
650             /* Evaluate switch function */
651             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
652             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
653             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_pd(fscal,cutoff_mask);
658
659             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
660
661             /* Update vectorial force */
662             fix0             = _mm_macc_pd(dx00,fscal,fix0);
663             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
664             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
665             
666             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
667                                                    _mm_mul_pd(dx00,fscal),
668                                                    _mm_mul_pd(dy00,fscal),
669                                                    _mm_mul_pd(dz00,fscal));
670
671             }
672
673             /* Inner loop uses 65 flops */
674         }
675
676         /* End of innermost loop */
677
678         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
679                                               f+i_coord_offset,fshift+i_shift_offset);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 7 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*65);
693 }