1243f9ed56469ae6cb270cad3f2e5aa3bfde67cc
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          ewitab;
89     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92     real             rswitch_scalar,d_scalar;
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
117     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = _mm_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_pd(d_scalar);
136     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
168
169         fix0             = _mm_setzero_pd();
170         fiy0             = _mm_setzero_pd();
171         fiz0             = _mm_setzero_pd();
172         fix1             = _mm_setzero_pd();
173         fiy1             = _mm_setzero_pd();
174         fiz1             = _mm_setzero_pd();
175         fix2             = _mm_setzero_pd();
176         fiy2             = _mm_setzero_pd();
177         fiz2             = _mm_setzero_pd();
178         fix3             = _mm_setzero_pd();
179         fiy3             = _mm_setzero_pd();
180         fiz3             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184         vvdwsum          = _mm_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_pd(ix0,jx0);
202             dy00             = _mm_sub_pd(iy0,jy0);
203             dz00             = _mm_sub_pd(iz0,jz0);
204             dx10             = _mm_sub_pd(ix1,jx0);
205             dy10             = _mm_sub_pd(iy1,jy0);
206             dz10             = _mm_sub_pd(iz1,jz0);
207             dx20             = _mm_sub_pd(ix2,jx0);
208             dy20             = _mm_sub_pd(iy2,jy0);
209             dz20             = _mm_sub_pd(iz2,jz0);
210             dx30             = _mm_sub_pd(ix3,jx0);
211             dy30             = _mm_sub_pd(iy3,jy0);
212             dz30             = _mm_sub_pd(iz3,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
218             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
219
220             rinv00           = gmx_mm_invsqrt_pd(rsq00);
221             rinv10           = gmx_mm_invsqrt_pd(rsq10);
222             rinv20           = gmx_mm_invsqrt_pd(rsq20);
223             rinv30           = gmx_mm_invsqrt_pd(rsq30);
224
225             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
226             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
228             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234
235             fjx0             = _mm_setzero_pd();
236             fjy0             = _mm_setzero_pd();
237             fjz0             = _mm_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             if (gmx_mm_any_lt(rsq00,rcutoff2))
244             {
245
246             r00              = _mm_mul_pd(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
256             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
257             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
258             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
259
260             d                = _mm_sub_pd(r00,rswitch);
261             d                = _mm_max_pd(d,_mm_setzero_pd());
262             d2               = _mm_mul_pd(d,d);
263             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
264
265             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
266
267             /* Evaluate switch function */
268             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
269             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
270             vvdw             = _mm_mul_pd(vvdw,sw);
271             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = fvdw;
278
279             fscal            = _mm_and_pd(fscal,cutoff_mask);
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
287             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
288             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
289
290             }
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_mm_any_lt(rsq10,rcutoff2))
297             {
298
299             r10              = _mm_mul_pd(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_pd(iq1,jq0);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _mm_mul_pd(r10,ewtabscale);
308             ewitab           = _mm_cvttpd_epi32(ewrt);
309 #ifdef __XOP__
310             eweps            = _mm_frcz_pd(ewrt);
311 #else
312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
313 #endif
314             twoeweps         = _mm_add_pd(eweps,eweps);
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
323             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
324             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
326
327             d                = _mm_sub_pd(r10,rswitch);
328             d                = _mm_max_pd(d,_mm_setzero_pd());
329             d2               = _mm_mul_pd(d,d);
330             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
331
332             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
333
334             /* Evaluate switch function */
335             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
336             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
337             velec            = _mm_mul_pd(velec,sw);
338             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm_and_pd(velec,cutoff_mask);
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm_and_pd(fscal,cutoff_mask);
347
348             /* Update vectorial force */
349             fix1             = _mm_macc_pd(dx10,fscal,fix1);
350             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
351             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
352             
353             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
354             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
355             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
356
357             }
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             if (gmx_mm_any_lt(rsq20,rcutoff2))
364             {
365
366             r20              = _mm_mul_pd(rsq20,rinv20);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq20             = _mm_mul_pd(iq2,jq0);
370
371             /* EWALD ELECTROSTATICS */
372
373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
374             ewrt             = _mm_mul_pd(r20,ewtabscale);
375             ewitab           = _mm_cvttpd_epi32(ewrt);
376 #ifdef __XOP__
377             eweps            = _mm_frcz_pd(ewrt);
378 #else
379             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
380 #endif
381             twoeweps         = _mm_add_pd(eweps,eweps);
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
385             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
386             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
387             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
388             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
389             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
390             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
391             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
392             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
393
394             d                = _mm_sub_pd(r20,rswitch);
395             d                = _mm_max_pd(d,_mm_setzero_pd());
396             d2               = _mm_mul_pd(d,d);
397             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
398
399             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
400
401             /* Evaluate switch function */
402             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
403             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
404             velec            = _mm_mul_pd(velec,sw);
405             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_pd(velec,cutoff_mask);
409             velecsum         = _mm_add_pd(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_pd(fscal,cutoff_mask);
414
415             /* Update vectorial force */
416             fix2             = _mm_macc_pd(dx20,fscal,fix2);
417             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
418             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
419             
420             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
421             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
422             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
423
424             }
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             if (gmx_mm_any_lt(rsq30,rcutoff2))
431             {
432
433             r30              = _mm_mul_pd(rsq30,rinv30);
434
435             /* Compute parameters for interactions between i and j atoms */
436             qq30             = _mm_mul_pd(iq3,jq0);
437
438             /* EWALD ELECTROSTATICS */
439
440             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
441             ewrt             = _mm_mul_pd(r30,ewtabscale);
442             ewitab           = _mm_cvttpd_epi32(ewrt);
443 #ifdef __XOP__
444             eweps            = _mm_frcz_pd(ewrt);
445 #else
446             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
447 #endif
448             twoeweps         = _mm_add_pd(eweps,eweps);
449             ewitab           = _mm_slli_epi32(ewitab,2);
450             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
451             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
452             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
453             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
454             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
455             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
456             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
457             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
458             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
459             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
460
461             d                = _mm_sub_pd(r30,rswitch);
462             d                = _mm_max_pd(d,_mm_setzero_pd());
463             d2               = _mm_mul_pd(d,d);
464             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
465
466             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
467
468             /* Evaluate switch function */
469             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
470             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
471             velec            = _mm_mul_pd(velec,sw);
472             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velec            = _mm_and_pd(velec,cutoff_mask);
476             velecsum         = _mm_add_pd(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm_and_pd(fscal,cutoff_mask);
481
482             /* Update vectorial force */
483             fix3             = _mm_macc_pd(dx30,fscal,fix3);
484             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
485             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
486             
487             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
488             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
489             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
490
491             }
492
493             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
494
495             /* Inner loop uses 269 flops */
496         }
497
498         if(jidx<j_index_end)
499         {
500
501             jnrA             = jjnr[jidx];
502             j_coord_offsetA  = DIM*jnrA;
503
504             /* load j atom coordinates */
505             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
506                                               &jx0,&jy0,&jz0);
507
508             /* Calculate displacement vector */
509             dx00             = _mm_sub_pd(ix0,jx0);
510             dy00             = _mm_sub_pd(iy0,jy0);
511             dz00             = _mm_sub_pd(iz0,jz0);
512             dx10             = _mm_sub_pd(ix1,jx0);
513             dy10             = _mm_sub_pd(iy1,jy0);
514             dz10             = _mm_sub_pd(iz1,jz0);
515             dx20             = _mm_sub_pd(ix2,jx0);
516             dy20             = _mm_sub_pd(iy2,jy0);
517             dz20             = _mm_sub_pd(iz2,jz0);
518             dx30             = _mm_sub_pd(ix3,jx0);
519             dy30             = _mm_sub_pd(iy3,jy0);
520             dz30             = _mm_sub_pd(iz3,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
524             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
525             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
526             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
527
528             rinv00           = gmx_mm_invsqrt_pd(rsq00);
529             rinv10           = gmx_mm_invsqrt_pd(rsq10);
530             rinv20           = gmx_mm_invsqrt_pd(rsq20);
531             rinv30           = gmx_mm_invsqrt_pd(rsq30);
532
533             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
534             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
535             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
536             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
537
538             /* Load parameters for j particles */
539             jq0              = _mm_load_sd(charge+jnrA+0);
540             vdwjidx0A        = 2*vdwtype[jnrA+0];
541
542             fjx0             = _mm_setzero_pd();
543             fjy0             = _mm_setzero_pd();
544             fjz0             = _mm_setzero_pd();
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             if (gmx_mm_any_lt(rsq00,rcutoff2))
551             {
552
553             r00              = _mm_mul_pd(rsq00,rinv00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
557
558             /* LENNARD-JONES DISPERSION/REPULSION */
559
560             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
561             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
562             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
563             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
564             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
565
566             d                = _mm_sub_pd(r00,rswitch);
567             d                = _mm_max_pd(d,_mm_setzero_pd());
568             d2               = _mm_mul_pd(d,d);
569             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
570
571             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
572
573             /* Evaluate switch function */
574             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
575             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
576             vvdw             = _mm_mul_pd(vvdw,sw);
577             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
581             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
582             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
583
584             fscal            = fvdw;
585
586             fscal            = _mm_and_pd(fscal,cutoff_mask);
587
588             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
589
590             /* Update vectorial force */
591             fix0             = _mm_macc_pd(dx00,fscal,fix0);
592             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
593             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
594             
595             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
596             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
597             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
598
599             }
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm_any_lt(rsq10,rcutoff2))
606             {
607
608             r10              = _mm_mul_pd(rsq10,rinv10);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq10             = _mm_mul_pd(iq1,jq0);
612
613             /* EWALD ELECTROSTATICS */
614
615             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
616             ewrt             = _mm_mul_pd(r10,ewtabscale);
617             ewitab           = _mm_cvttpd_epi32(ewrt);
618 #ifdef __XOP__
619             eweps            = _mm_frcz_pd(ewrt);
620 #else
621             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
622 #endif
623             twoeweps         = _mm_add_pd(eweps,eweps);
624             ewitab           = _mm_slli_epi32(ewitab,2);
625             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
626             ewtabD           = _mm_setzero_pd();
627             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
628             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
629             ewtabFn          = _mm_setzero_pd();
630             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
631             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
632             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
633             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
634             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
635
636             d                = _mm_sub_pd(r10,rswitch);
637             d                = _mm_max_pd(d,_mm_setzero_pd());
638             d2               = _mm_mul_pd(d,d);
639             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
640
641             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
642
643             /* Evaluate switch function */
644             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
645             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
646             velec            = _mm_mul_pd(velec,sw);
647             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
648
649             /* Update potential sum for this i atom from the interaction with this j atom. */
650             velec            = _mm_and_pd(velec,cutoff_mask);
651             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
652             velecsum         = _mm_add_pd(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm_and_pd(fscal,cutoff_mask);
657
658             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
659
660             /* Update vectorial force */
661             fix1             = _mm_macc_pd(dx10,fscal,fix1);
662             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
663             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
664             
665             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
666             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
667             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
668
669             }
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             if (gmx_mm_any_lt(rsq20,rcutoff2))
676             {
677
678             r20              = _mm_mul_pd(rsq20,rinv20);
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq20             = _mm_mul_pd(iq2,jq0);
682
683             /* EWALD ELECTROSTATICS */
684
685             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686             ewrt             = _mm_mul_pd(r20,ewtabscale);
687             ewitab           = _mm_cvttpd_epi32(ewrt);
688 #ifdef __XOP__
689             eweps            = _mm_frcz_pd(ewrt);
690 #else
691             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
692 #endif
693             twoeweps         = _mm_add_pd(eweps,eweps);
694             ewitab           = _mm_slli_epi32(ewitab,2);
695             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
696             ewtabD           = _mm_setzero_pd();
697             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
698             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
699             ewtabFn          = _mm_setzero_pd();
700             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
701             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
702             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
703             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
704             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
705
706             d                = _mm_sub_pd(r20,rswitch);
707             d                = _mm_max_pd(d,_mm_setzero_pd());
708             d2               = _mm_mul_pd(d,d);
709             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
710
711             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
712
713             /* Evaluate switch function */
714             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
715             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
716             velec            = _mm_mul_pd(velec,sw);
717             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
718
719             /* Update potential sum for this i atom from the interaction with this j atom. */
720             velec            = _mm_and_pd(velec,cutoff_mask);
721             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
722             velecsum         = _mm_add_pd(velecsum,velec);
723
724             fscal            = felec;
725
726             fscal            = _mm_and_pd(fscal,cutoff_mask);
727
728             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
729
730             /* Update vectorial force */
731             fix2             = _mm_macc_pd(dx20,fscal,fix2);
732             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
733             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
734             
735             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
736             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
737             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
738
739             }
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             if (gmx_mm_any_lt(rsq30,rcutoff2))
746             {
747
748             r30              = _mm_mul_pd(rsq30,rinv30);
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq30             = _mm_mul_pd(iq3,jq0);
752
753             /* EWALD ELECTROSTATICS */
754
755             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
756             ewrt             = _mm_mul_pd(r30,ewtabscale);
757             ewitab           = _mm_cvttpd_epi32(ewrt);
758 #ifdef __XOP__
759             eweps            = _mm_frcz_pd(ewrt);
760 #else
761             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
762 #endif
763             twoeweps         = _mm_add_pd(eweps,eweps);
764             ewitab           = _mm_slli_epi32(ewitab,2);
765             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
766             ewtabD           = _mm_setzero_pd();
767             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
768             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
769             ewtabFn          = _mm_setzero_pd();
770             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
771             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
772             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
773             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
774             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
775
776             d                = _mm_sub_pd(r30,rswitch);
777             d                = _mm_max_pd(d,_mm_setzero_pd());
778             d2               = _mm_mul_pd(d,d);
779             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
780
781             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
782
783             /* Evaluate switch function */
784             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
785             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
786             velec            = _mm_mul_pd(velec,sw);
787             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
788
789             /* Update potential sum for this i atom from the interaction with this j atom. */
790             velec            = _mm_and_pd(velec,cutoff_mask);
791             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
792             velecsum         = _mm_add_pd(velecsum,velec);
793
794             fscal            = felec;
795
796             fscal            = _mm_and_pd(fscal,cutoff_mask);
797
798             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
799
800             /* Update vectorial force */
801             fix3             = _mm_macc_pd(dx30,fscal,fix3);
802             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
803             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
804             
805             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
806             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
807             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
808
809             }
810
811             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
812
813             /* Inner loop uses 269 flops */
814         }
815
816         /* End of innermost loop */
817
818         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
819                                               f+i_coord_offset,fshift+i_shift_offset);
820
821         ggid                        = gid[iidx];
822         /* Update potential energies */
823         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
824         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
825
826         /* Increment number of inner iterations */
827         inneriter                  += j_index_end - j_index_start;
828
829         /* Outer loop uses 26 flops */
830     }
831
832     /* Increment number of outer iterations */
833     outeriter        += nri;
834
835     /* Update outer/inner flops */
836
837     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*269);
838 }
839 /*
840  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
841  * Electrostatics interaction: Ewald
842  * VdW interaction:            LennardJones
843  * Geometry:                   Water4-Particle
844  * Calculate force/pot:        Force
845  */
846 void
847 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
848                     (t_nblist * gmx_restrict                nlist,
849                      rvec * gmx_restrict                    xx,
850                      rvec * gmx_restrict                    ff,
851                      t_forcerec * gmx_restrict              fr,
852                      t_mdatoms * gmx_restrict               mdatoms,
853                      nb_kernel_data_t * gmx_restrict        kernel_data,
854                      t_nrnb * gmx_restrict                  nrnb)
855 {
856     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
857      * just 0 for non-waters.
858      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
859      * jnr indices corresponding to data put in the four positions in the SIMD register.
860      */
861     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
862     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
863     int              jnrA,jnrB;
864     int              j_coord_offsetA,j_coord_offsetB;
865     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
866     real             rcutoff_scalar;
867     real             *shiftvec,*fshift,*x,*f;
868     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
869     int              vdwioffset0;
870     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
871     int              vdwioffset1;
872     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
873     int              vdwioffset2;
874     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
875     int              vdwioffset3;
876     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
877     int              vdwjidx0A,vdwjidx0B;
878     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
879     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
880     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
881     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
882     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
883     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
884     real             *charge;
885     int              nvdwtype;
886     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
887     int              *vdwtype;
888     real             *vdwparam;
889     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
890     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
891     __m128i          ewitab;
892     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
893     real             *ewtab;
894     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
895     real             rswitch_scalar,d_scalar;
896     __m128d          dummy_mask,cutoff_mask;
897     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
898     __m128d          one     = _mm_set1_pd(1.0);
899     __m128d          two     = _mm_set1_pd(2.0);
900     x                = xx[0];
901     f                = ff[0];
902
903     nri              = nlist->nri;
904     iinr             = nlist->iinr;
905     jindex           = nlist->jindex;
906     jjnr             = nlist->jjnr;
907     shiftidx         = nlist->shift;
908     gid              = nlist->gid;
909     shiftvec         = fr->shift_vec[0];
910     fshift           = fr->fshift[0];
911     facel            = _mm_set1_pd(fr->epsfac);
912     charge           = mdatoms->chargeA;
913     nvdwtype         = fr->ntype;
914     vdwparam         = fr->nbfp;
915     vdwtype          = mdatoms->typeA;
916
917     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
918     ewtab            = fr->ic->tabq_coul_FDV0;
919     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
920     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
921
922     /* Setup water-specific parameters */
923     inr              = nlist->iinr[0];
924     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
925     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
926     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
927     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
928
929     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
930     rcutoff_scalar   = fr->rcoulomb;
931     rcutoff          = _mm_set1_pd(rcutoff_scalar);
932     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
933
934     rswitch_scalar   = fr->rcoulomb_switch;
935     rswitch          = _mm_set1_pd(rswitch_scalar);
936     /* Setup switch parameters */
937     d_scalar         = rcutoff_scalar-rswitch_scalar;
938     d                = _mm_set1_pd(d_scalar);
939     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
940     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
941     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
942     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
943     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
944     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
945
946     /* Avoid stupid compiler warnings */
947     jnrA = jnrB = 0;
948     j_coord_offsetA = 0;
949     j_coord_offsetB = 0;
950
951     outeriter        = 0;
952     inneriter        = 0;
953
954     /* Start outer loop over neighborlists */
955     for(iidx=0; iidx<nri; iidx++)
956     {
957         /* Load shift vector for this list */
958         i_shift_offset   = DIM*shiftidx[iidx];
959
960         /* Load limits for loop over neighbors */
961         j_index_start    = jindex[iidx];
962         j_index_end      = jindex[iidx+1];
963
964         /* Get outer coordinate index */
965         inr              = iinr[iidx];
966         i_coord_offset   = DIM*inr;
967
968         /* Load i particle coords and add shift vector */
969         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
970                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
971
972         fix0             = _mm_setzero_pd();
973         fiy0             = _mm_setzero_pd();
974         fiz0             = _mm_setzero_pd();
975         fix1             = _mm_setzero_pd();
976         fiy1             = _mm_setzero_pd();
977         fiz1             = _mm_setzero_pd();
978         fix2             = _mm_setzero_pd();
979         fiy2             = _mm_setzero_pd();
980         fiz2             = _mm_setzero_pd();
981         fix3             = _mm_setzero_pd();
982         fiy3             = _mm_setzero_pd();
983         fiz3             = _mm_setzero_pd();
984
985         /* Start inner kernel loop */
986         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
987         {
988
989             /* Get j neighbor index, and coordinate index */
990             jnrA             = jjnr[jidx];
991             jnrB             = jjnr[jidx+1];
992             j_coord_offsetA  = DIM*jnrA;
993             j_coord_offsetB  = DIM*jnrB;
994
995             /* load j atom coordinates */
996             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
997                                               &jx0,&jy0,&jz0);
998
999             /* Calculate displacement vector */
1000             dx00             = _mm_sub_pd(ix0,jx0);
1001             dy00             = _mm_sub_pd(iy0,jy0);
1002             dz00             = _mm_sub_pd(iz0,jz0);
1003             dx10             = _mm_sub_pd(ix1,jx0);
1004             dy10             = _mm_sub_pd(iy1,jy0);
1005             dz10             = _mm_sub_pd(iz1,jz0);
1006             dx20             = _mm_sub_pd(ix2,jx0);
1007             dy20             = _mm_sub_pd(iy2,jy0);
1008             dz20             = _mm_sub_pd(iz2,jz0);
1009             dx30             = _mm_sub_pd(ix3,jx0);
1010             dy30             = _mm_sub_pd(iy3,jy0);
1011             dz30             = _mm_sub_pd(iz3,jz0);
1012
1013             /* Calculate squared distance and things based on it */
1014             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1015             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1016             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1017             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1018
1019             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1020             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1021             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1022             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1023
1024             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1025             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1026             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1027             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1028
1029             /* Load parameters for j particles */
1030             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1031             vdwjidx0A        = 2*vdwtype[jnrA+0];
1032             vdwjidx0B        = 2*vdwtype[jnrB+0];
1033
1034             fjx0             = _mm_setzero_pd();
1035             fjy0             = _mm_setzero_pd();
1036             fjz0             = _mm_setzero_pd();
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             if (gmx_mm_any_lt(rsq00,rcutoff2))
1043             {
1044
1045             r00              = _mm_mul_pd(rsq00,rinv00);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1049                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1050
1051             /* LENNARD-JONES DISPERSION/REPULSION */
1052
1053             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1054             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1055             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1056             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1057             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1058
1059             d                = _mm_sub_pd(r00,rswitch);
1060             d                = _mm_max_pd(d,_mm_setzero_pd());
1061             d2               = _mm_mul_pd(d,d);
1062             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1063
1064             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1065
1066             /* Evaluate switch function */
1067             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1068             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1069             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1070
1071             fscal            = fvdw;
1072
1073             fscal            = _mm_and_pd(fscal,cutoff_mask);
1074
1075             /* Update vectorial force */
1076             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1077             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1078             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1079             
1080             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1081             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1082             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1083
1084             }
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             if (gmx_mm_any_lt(rsq10,rcutoff2))
1091             {
1092
1093             r10              = _mm_mul_pd(rsq10,rinv10);
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             qq10             = _mm_mul_pd(iq1,jq0);
1097
1098             /* EWALD ELECTROSTATICS */
1099
1100             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1101             ewrt             = _mm_mul_pd(r10,ewtabscale);
1102             ewitab           = _mm_cvttpd_epi32(ewrt);
1103 #ifdef __XOP__
1104             eweps            = _mm_frcz_pd(ewrt);
1105 #else
1106             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1107 #endif
1108             twoeweps         = _mm_add_pd(eweps,eweps);
1109             ewitab           = _mm_slli_epi32(ewitab,2);
1110             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1111             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1112             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1113             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1114             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1115             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1116             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1117             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1118             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1119             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1120
1121             d                = _mm_sub_pd(r10,rswitch);
1122             d                = _mm_max_pd(d,_mm_setzero_pd());
1123             d2               = _mm_mul_pd(d,d);
1124             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1125
1126             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1127
1128             /* Evaluate switch function */
1129             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1130             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1131             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1132
1133             fscal            = felec;
1134
1135             fscal            = _mm_and_pd(fscal,cutoff_mask);
1136
1137             /* Update vectorial force */
1138             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1139             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1140             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1141             
1142             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1143             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1144             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1145
1146             }
1147
1148             /**************************
1149              * CALCULATE INTERACTIONS *
1150              **************************/
1151
1152             if (gmx_mm_any_lt(rsq20,rcutoff2))
1153             {
1154
1155             r20              = _mm_mul_pd(rsq20,rinv20);
1156
1157             /* Compute parameters for interactions between i and j atoms */
1158             qq20             = _mm_mul_pd(iq2,jq0);
1159
1160             /* EWALD ELECTROSTATICS */
1161
1162             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1163             ewrt             = _mm_mul_pd(r20,ewtabscale);
1164             ewitab           = _mm_cvttpd_epi32(ewrt);
1165 #ifdef __XOP__
1166             eweps            = _mm_frcz_pd(ewrt);
1167 #else
1168             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1169 #endif
1170             twoeweps         = _mm_add_pd(eweps,eweps);
1171             ewitab           = _mm_slli_epi32(ewitab,2);
1172             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1173             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1174             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1175             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1176             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1177             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1178             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1179             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1180             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1181             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1182
1183             d                = _mm_sub_pd(r20,rswitch);
1184             d                = _mm_max_pd(d,_mm_setzero_pd());
1185             d2               = _mm_mul_pd(d,d);
1186             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1187
1188             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1189
1190             /* Evaluate switch function */
1191             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1192             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1193             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1194
1195             fscal            = felec;
1196
1197             fscal            = _mm_and_pd(fscal,cutoff_mask);
1198
1199             /* Update vectorial force */
1200             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1201             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1202             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1203             
1204             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1205             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1206             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1207
1208             }
1209
1210             /**************************
1211              * CALCULATE INTERACTIONS *
1212              **************************/
1213
1214             if (gmx_mm_any_lt(rsq30,rcutoff2))
1215             {
1216
1217             r30              = _mm_mul_pd(rsq30,rinv30);
1218
1219             /* Compute parameters for interactions between i and j atoms */
1220             qq30             = _mm_mul_pd(iq3,jq0);
1221
1222             /* EWALD ELECTROSTATICS */
1223
1224             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1225             ewrt             = _mm_mul_pd(r30,ewtabscale);
1226             ewitab           = _mm_cvttpd_epi32(ewrt);
1227 #ifdef __XOP__
1228             eweps            = _mm_frcz_pd(ewrt);
1229 #else
1230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1231 #endif
1232             twoeweps         = _mm_add_pd(eweps,eweps);
1233             ewitab           = _mm_slli_epi32(ewitab,2);
1234             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1235             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1236             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1237             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1238             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1239             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1240             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1241             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1242             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1243             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1244
1245             d                = _mm_sub_pd(r30,rswitch);
1246             d                = _mm_max_pd(d,_mm_setzero_pd());
1247             d2               = _mm_mul_pd(d,d);
1248             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1249
1250             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1251
1252             /* Evaluate switch function */
1253             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1254             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1255             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1256
1257             fscal            = felec;
1258
1259             fscal            = _mm_and_pd(fscal,cutoff_mask);
1260
1261             /* Update vectorial force */
1262             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1263             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1264             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1265             
1266             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1267             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1268             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1269
1270             }
1271
1272             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1273
1274             /* Inner loop uses 257 flops */
1275         }
1276
1277         if(jidx<j_index_end)
1278         {
1279
1280             jnrA             = jjnr[jidx];
1281             j_coord_offsetA  = DIM*jnrA;
1282
1283             /* load j atom coordinates */
1284             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1285                                               &jx0,&jy0,&jz0);
1286
1287             /* Calculate displacement vector */
1288             dx00             = _mm_sub_pd(ix0,jx0);
1289             dy00             = _mm_sub_pd(iy0,jy0);
1290             dz00             = _mm_sub_pd(iz0,jz0);
1291             dx10             = _mm_sub_pd(ix1,jx0);
1292             dy10             = _mm_sub_pd(iy1,jy0);
1293             dz10             = _mm_sub_pd(iz1,jz0);
1294             dx20             = _mm_sub_pd(ix2,jx0);
1295             dy20             = _mm_sub_pd(iy2,jy0);
1296             dz20             = _mm_sub_pd(iz2,jz0);
1297             dx30             = _mm_sub_pd(ix3,jx0);
1298             dy30             = _mm_sub_pd(iy3,jy0);
1299             dz30             = _mm_sub_pd(iz3,jz0);
1300
1301             /* Calculate squared distance and things based on it */
1302             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1303             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1304             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1305             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1306
1307             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1308             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1309             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1310             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1311
1312             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1313             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1314             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1315             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1316
1317             /* Load parameters for j particles */
1318             jq0              = _mm_load_sd(charge+jnrA+0);
1319             vdwjidx0A        = 2*vdwtype[jnrA+0];
1320
1321             fjx0             = _mm_setzero_pd();
1322             fjy0             = _mm_setzero_pd();
1323             fjz0             = _mm_setzero_pd();
1324
1325             /**************************
1326              * CALCULATE INTERACTIONS *
1327              **************************/
1328
1329             if (gmx_mm_any_lt(rsq00,rcutoff2))
1330             {
1331
1332             r00              = _mm_mul_pd(rsq00,rinv00);
1333
1334             /* Compute parameters for interactions between i and j atoms */
1335             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1336
1337             /* LENNARD-JONES DISPERSION/REPULSION */
1338
1339             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1340             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1341             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1342             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1343             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1344
1345             d                = _mm_sub_pd(r00,rswitch);
1346             d                = _mm_max_pd(d,_mm_setzero_pd());
1347             d2               = _mm_mul_pd(d,d);
1348             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1349
1350             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1351
1352             /* Evaluate switch function */
1353             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1354             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1355             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1356
1357             fscal            = fvdw;
1358
1359             fscal            = _mm_and_pd(fscal,cutoff_mask);
1360
1361             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1362
1363             /* Update vectorial force */
1364             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1365             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1366             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1367             
1368             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1369             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1370             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1371
1372             }
1373
1374             /**************************
1375              * CALCULATE INTERACTIONS *
1376              **************************/
1377
1378             if (gmx_mm_any_lt(rsq10,rcutoff2))
1379             {
1380
1381             r10              = _mm_mul_pd(rsq10,rinv10);
1382
1383             /* Compute parameters for interactions between i and j atoms */
1384             qq10             = _mm_mul_pd(iq1,jq0);
1385
1386             /* EWALD ELECTROSTATICS */
1387
1388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1389             ewrt             = _mm_mul_pd(r10,ewtabscale);
1390             ewitab           = _mm_cvttpd_epi32(ewrt);
1391 #ifdef __XOP__
1392             eweps            = _mm_frcz_pd(ewrt);
1393 #else
1394             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1395 #endif
1396             twoeweps         = _mm_add_pd(eweps,eweps);
1397             ewitab           = _mm_slli_epi32(ewitab,2);
1398             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1399             ewtabD           = _mm_setzero_pd();
1400             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1401             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1402             ewtabFn          = _mm_setzero_pd();
1403             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1404             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1405             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1406             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1407             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1408
1409             d                = _mm_sub_pd(r10,rswitch);
1410             d                = _mm_max_pd(d,_mm_setzero_pd());
1411             d2               = _mm_mul_pd(d,d);
1412             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1413
1414             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1415
1416             /* Evaluate switch function */
1417             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1418             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1419             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1420
1421             fscal            = felec;
1422
1423             fscal            = _mm_and_pd(fscal,cutoff_mask);
1424
1425             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1426
1427             /* Update vectorial force */
1428             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1429             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1430             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1431             
1432             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1433             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1434             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1435
1436             }
1437
1438             /**************************
1439              * CALCULATE INTERACTIONS *
1440              **************************/
1441
1442             if (gmx_mm_any_lt(rsq20,rcutoff2))
1443             {
1444
1445             r20              = _mm_mul_pd(rsq20,rinv20);
1446
1447             /* Compute parameters for interactions between i and j atoms */
1448             qq20             = _mm_mul_pd(iq2,jq0);
1449
1450             /* EWALD ELECTROSTATICS */
1451
1452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1453             ewrt             = _mm_mul_pd(r20,ewtabscale);
1454             ewitab           = _mm_cvttpd_epi32(ewrt);
1455 #ifdef __XOP__
1456             eweps            = _mm_frcz_pd(ewrt);
1457 #else
1458             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1459 #endif
1460             twoeweps         = _mm_add_pd(eweps,eweps);
1461             ewitab           = _mm_slli_epi32(ewitab,2);
1462             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1463             ewtabD           = _mm_setzero_pd();
1464             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1465             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1466             ewtabFn          = _mm_setzero_pd();
1467             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1468             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1469             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1470             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1471             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1472
1473             d                = _mm_sub_pd(r20,rswitch);
1474             d                = _mm_max_pd(d,_mm_setzero_pd());
1475             d2               = _mm_mul_pd(d,d);
1476             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1477
1478             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1479
1480             /* Evaluate switch function */
1481             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1482             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1483             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1484
1485             fscal            = felec;
1486
1487             fscal            = _mm_and_pd(fscal,cutoff_mask);
1488
1489             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1490
1491             /* Update vectorial force */
1492             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1493             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1494             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1495             
1496             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1497             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1498             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1499
1500             }
1501
1502             /**************************
1503              * CALCULATE INTERACTIONS *
1504              **************************/
1505
1506             if (gmx_mm_any_lt(rsq30,rcutoff2))
1507             {
1508
1509             r30              = _mm_mul_pd(rsq30,rinv30);
1510
1511             /* Compute parameters for interactions between i and j atoms */
1512             qq30             = _mm_mul_pd(iq3,jq0);
1513
1514             /* EWALD ELECTROSTATICS */
1515
1516             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1517             ewrt             = _mm_mul_pd(r30,ewtabscale);
1518             ewitab           = _mm_cvttpd_epi32(ewrt);
1519 #ifdef __XOP__
1520             eweps            = _mm_frcz_pd(ewrt);
1521 #else
1522             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1523 #endif
1524             twoeweps         = _mm_add_pd(eweps,eweps);
1525             ewitab           = _mm_slli_epi32(ewitab,2);
1526             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1527             ewtabD           = _mm_setzero_pd();
1528             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1529             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1530             ewtabFn          = _mm_setzero_pd();
1531             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1532             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1533             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1534             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1535             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1536
1537             d                = _mm_sub_pd(r30,rswitch);
1538             d                = _mm_max_pd(d,_mm_setzero_pd());
1539             d2               = _mm_mul_pd(d,d);
1540             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1541
1542             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1543
1544             /* Evaluate switch function */
1545             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1546             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1547             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1548
1549             fscal            = felec;
1550
1551             fscal            = _mm_and_pd(fscal,cutoff_mask);
1552
1553             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1554
1555             /* Update vectorial force */
1556             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1557             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1558             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1559             
1560             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1561             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1562             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1563
1564             }
1565
1566             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1567
1568             /* Inner loop uses 257 flops */
1569         }
1570
1571         /* End of innermost loop */
1572
1573         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1574                                               f+i_coord_offset,fshift+i_shift_offset);
1575
1576         /* Increment number of inner iterations */
1577         inneriter                  += j_index_end - j_index_start;
1578
1579         /* Outer loop uses 24 flops */
1580     }
1581
1582     /* Increment number of outer iterations */
1583     outeriter        += nri;
1584
1585     /* Update outer/inner flops */
1586
1587     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*257);
1588 }