made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          ewitab;
86     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
87     real             *ewtab;
88     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
112     ewtab            = fr->ic->tabq_coul_FDV0;
113     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
114     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
127
128     rswitch_scalar   = fr->rcoulomb_switch;
129     rswitch          = _mm_set1_pd(rswitch_scalar);
130     /* Setup switch parameters */
131     d_scalar         = rcutoff_scalar-rswitch_scalar;
132     d                = _mm_set1_pd(d_scalar);
133     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
134     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
137     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
207             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
208             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
209
210             rinv00           = gmx_mm_invsqrt_pd(rsq00);
211             rinv10           = gmx_mm_invsqrt_pd(rsq10);
212             rinv20           = gmx_mm_invsqrt_pd(rsq20);
213
214             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
215             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
216             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             r00              = _mm_mul_pd(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             qq00             = _mm_mul_pd(iq0,jq0);
238             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
240
241             /* EWALD ELECTROSTATICS */
242
243             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
244             ewrt             = _mm_mul_pd(r00,ewtabscale);
245             ewitab           = _mm_cvttpd_epi32(ewrt);
246 #ifdef __XOP__
247             eweps            = _mm_frcz_pd(ewrt);
248 #else
249             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
250 #endif
251             twoeweps         = _mm_add_pd(eweps,eweps);
252             ewitab           = _mm_slli_epi32(ewitab,2);
253             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
254             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
255             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
256             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
257             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
259             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
260             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
261             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
262             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
268             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
269             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
270             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
271
272             d                = _mm_sub_pd(r00,rswitch);
273             d                = _mm_max_pd(d,_mm_setzero_pd());
274             d2               = _mm_mul_pd(d,d);
275             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
276
277             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
278
279             /* Evaluate switch function */
280             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
281             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
282             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
283             velec            = _mm_mul_pd(velec,sw);
284             vvdw             = _mm_mul_pd(vvdw,sw);
285             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velec            = _mm_and_pd(velec,cutoff_mask);
289             velecsum         = _mm_add_pd(velecsum,velec);
290             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = _mm_add_pd(felec,fvdw);
294
295             fscal            = _mm_and_pd(fscal,cutoff_mask);
296
297             /* Update vectorial force */
298             fix0             = _mm_macc_pd(dx00,fscal,fix0);
299             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
300             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
301             
302             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
303             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
304             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq10,rcutoff2))
313             {
314
315             r10              = _mm_mul_pd(rsq10,rinv10);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm_mul_pd(iq1,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_pd(r10,ewtabscale);
324             ewitab           = _mm_cvttpd_epi32(ewrt);
325 #ifdef __XOP__
326             eweps            = _mm_frcz_pd(ewrt);
327 #else
328             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
329 #endif
330             twoeweps         = _mm_add_pd(eweps,eweps);
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
339             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
340             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
342
343             d                = _mm_sub_pd(r10,rswitch);
344             d                = _mm_max_pd(d,_mm_setzero_pd());
345             d2               = _mm_mul_pd(d,d);
346             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
347
348             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
349
350             /* Evaluate switch function */
351             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
352             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
353             velec            = _mm_mul_pd(velec,sw);
354             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm_and_pd(velec,cutoff_mask);
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm_and_pd(fscal,cutoff_mask);
363
364             /* Update vectorial force */
365             fix1             = _mm_macc_pd(dx10,fscal,fix1);
366             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
367             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
368             
369             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
370             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
371             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm_any_lt(rsq20,rcutoff2))
380             {
381
382             r20              = _mm_mul_pd(rsq20,rinv20);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq20             = _mm_mul_pd(iq2,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_pd(r20,ewtabscale);
391             ewitab           = _mm_cvttpd_epi32(ewrt);
392 #ifdef __XOP__
393             eweps            = _mm_frcz_pd(ewrt);
394 #else
395             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
396 #endif
397             twoeweps         = _mm_add_pd(eweps,eweps);
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
406             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
407             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
409
410             d                = _mm_sub_pd(r20,rswitch);
411             d                = _mm_max_pd(d,_mm_setzero_pd());
412             d2               = _mm_mul_pd(d,d);
413             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
414
415             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
416
417             /* Evaluate switch function */
418             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
419             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
420             velec            = _mm_mul_pd(velec,sw);
421             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm_and_pd(velec,cutoff_mask);
425             velecsum         = _mm_add_pd(velecsum,velec);
426
427             fscal            = felec;
428
429             fscal            = _mm_and_pd(fscal,cutoff_mask);
430
431             /* Update vectorial force */
432             fix2             = _mm_macc_pd(dx20,fscal,fix2);
433             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
434             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
435             
436             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
437             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
438             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
439
440             }
441
442             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
443
444             /* Inner loop uses 225 flops */
445         }
446
447         if(jidx<j_index_end)
448         {
449
450             jnrA             = jjnr[jidx];
451             j_coord_offsetA  = DIM*jnrA;
452
453             /* load j atom coordinates */
454             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
455                                               &jx0,&jy0,&jz0);
456
457             /* Calculate displacement vector */
458             dx00             = _mm_sub_pd(ix0,jx0);
459             dy00             = _mm_sub_pd(iy0,jy0);
460             dz00             = _mm_sub_pd(iz0,jz0);
461             dx10             = _mm_sub_pd(ix1,jx0);
462             dy10             = _mm_sub_pd(iy1,jy0);
463             dz10             = _mm_sub_pd(iz1,jz0);
464             dx20             = _mm_sub_pd(ix2,jx0);
465             dy20             = _mm_sub_pd(iy2,jy0);
466             dz20             = _mm_sub_pd(iz2,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
470             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
471             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
472
473             rinv00           = gmx_mm_invsqrt_pd(rsq00);
474             rinv10           = gmx_mm_invsqrt_pd(rsq10);
475             rinv20           = gmx_mm_invsqrt_pd(rsq20);
476
477             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
478             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
479             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
480
481             /* Load parameters for j particles */
482             jq0              = _mm_load_sd(charge+jnrA+0);
483             vdwjidx0A        = 2*vdwtype[jnrA+0];
484
485             fjx0             = _mm_setzero_pd();
486             fjy0             = _mm_setzero_pd();
487             fjz0             = _mm_setzero_pd();
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             if (gmx_mm_any_lt(rsq00,rcutoff2))
494             {
495
496             r00              = _mm_mul_pd(rsq00,rinv00);
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq00             = _mm_mul_pd(iq0,jq0);
500             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
501
502             /* EWALD ELECTROSTATICS */
503
504             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
505             ewrt             = _mm_mul_pd(r00,ewtabscale);
506             ewitab           = _mm_cvttpd_epi32(ewrt);
507 #ifdef __XOP__
508             eweps            = _mm_frcz_pd(ewrt);
509 #else
510             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
511 #endif
512             twoeweps         = _mm_add_pd(eweps,eweps);
513             ewitab           = _mm_slli_epi32(ewitab,2);
514             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
515             ewtabD           = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
517             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
518             ewtabFn          = _mm_setzero_pd();
519             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
520             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
521             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
522             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
523             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
524
525             /* LENNARD-JONES DISPERSION/REPULSION */
526
527             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
528             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
529             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
530             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
531             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
532
533             d                = _mm_sub_pd(r00,rswitch);
534             d                = _mm_max_pd(d,_mm_setzero_pd());
535             d2               = _mm_mul_pd(d,d);
536             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
537
538             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
539
540             /* Evaluate switch function */
541             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
542             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
543             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
544             velec            = _mm_mul_pd(velec,sw);
545             vvdw             = _mm_mul_pd(vvdw,sw);
546             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_and_pd(velec,cutoff_mask);
550             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
551             velecsum         = _mm_add_pd(velecsum,velec);
552             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
553             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
554             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
555
556             fscal            = _mm_add_pd(felec,fvdw);
557
558             fscal            = _mm_and_pd(fscal,cutoff_mask);
559
560             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
561
562             /* Update vectorial force */
563             fix0             = _mm_macc_pd(dx00,fscal,fix0);
564             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
565             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
566             
567             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
568             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
569             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
570
571             }
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_mm_any_lt(rsq10,rcutoff2))
578             {
579
580             r10              = _mm_mul_pd(rsq10,rinv10);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _mm_mul_pd(iq1,jq0);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _mm_mul_pd(r10,ewtabscale);
589             ewitab           = _mm_cvttpd_epi32(ewrt);
590 #ifdef __XOP__
591             eweps            = _mm_frcz_pd(ewrt);
592 #else
593             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
594 #endif
595             twoeweps         = _mm_add_pd(eweps,eweps);
596             ewitab           = _mm_slli_epi32(ewitab,2);
597             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
598             ewtabD           = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
600             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
601             ewtabFn          = _mm_setzero_pd();
602             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
603             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
604             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
605             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
606             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
607
608             d                = _mm_sub_pd(r10,rswitch);
609             d                = _mm_max_pd(d,_mm_setzero_pd());
610             d2               = _mm_mul_pd(d,d);
611             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
612
613             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
614
615             /* Evaluate switch function */
616             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
617             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
618             velec            = _mm_mul_pd(velec,sw);
619             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_and_pd(velec,cutoff_mask);
623             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
624             velecsum         = _mm_add_pd(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_and_pd(fscal,cutoff_mask);
629
630             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
631
632             /* Update vectorial force */
633             fix1             = _mm_macc_pd(dx10,fscal,fix1);
634             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
635             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
636             
637             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
638             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
639             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
640
641             }
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             if (gmx_mm_any_lt(rsq20,rcutoff2))
648             {
649
650             r20              = _mm_mul_pd(rsq20,rinv20);
651
652             /* Compute parameters for interactions between i and j atoms */
653             qq20             = _mm_mul_pd(iq2,jq0);
654
655             /* EWALD ELECTROSTATICS */
656
657             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
658             ewrt             = _mm_mul_pd(r20,ewtabscale);
659             ewitab           = _mm_cvttpd_epi32(ewrt);
660 #ifdef __XOP__
661             eweps            = _mm_frcz_pd(ewrt);
662 #else
663             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
664 #endif
665             twoeweps         = _mm_add_pd(eweps,eweps);
666             ewitab           = _mm_slli_epi32(ewitab,2);
667             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
668             ewtabD           = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
670             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
671             ewtabFn          = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
673             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
674             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
675             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
676             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
677
678             d                = _mm_sub_pd(r20,rswitch);
679             d                = _mm_max_pd(d,_mm_setzero_pd());
680             d2               = _mm_mul_pd(d,d);
681             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
682
683             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
684
685             /* Evaluate switch function */
686             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
687             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
688             velec            = _mm_mul_pd(velec,sw);
689             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
690
691             /* Update potential sum for this i atom from the interaction with this j atom. */
692             velec            = _mm_and_pd(velec,cutoff_mask);
693             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
694             velecsum         = _mm_add_pd(velecsum,velec);
695
696             fscal            = felec;
697
698             fscal            = _mm_and_pd(fscal,cutoff_mask);
699
700             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
701
702             /* Update vectorial force */
703             fix2             = _mm_macc_pd(dx20,fscal,fix2);
704             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
705             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
706             
707             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
708             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
709             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
710
711             }
712
713             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
714
715             /* Inner loop uses 225 flops */
716         }
717
718         /* End of innermost loop */
719
720         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
721                                               f+i_coord_offset,fshift+i_shift_offset);
722
723         ggid                        = gid[iidx];
724         /* Update potential energies */
725         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
726         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
727
728         /* Increment number of inner iterations */
729         inneriter                  += j_index_end - j_index_start;
730
731         /* Outer loop uses 20 flops */
732     }
733
734     /* Increment number of outer iterations */
735     outeriter        += nri;
736
737     /* Update outer/inner flops */
738
739     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
740 }
741 /*
742  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_double
743  * Electrostatics interaction: Ewald
744  * VdW interaction:            LennardJones
745  * Geometry:                   Water3-Particle
746  * Calculate force/pot:        Force
747  */
748 void
749 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_double
750                     (t_nblist * gmx_restrict                nlist,
751                      rvec * gmx_restrict                    xx,
752                      rvec * gmx_restrict                    ff,
753                      t_forcerec * gmx_restrict              fr,
754                      t_mdatoms * gmx_restrict               mdatoms,
755                      nb_kernel_data_t * gmx_restrict        kernel_data,
756                      t_nrnb * gmx_restrict                  nrnb)
757 {
758     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
759      * just 0 for non-waters.
760      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
761      * jnr indices corresponding to data put in the four positions in the SIMD register.
762      */
763     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
764     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
765     int              jnrA,jnrB;
766     int              j_coord_offsetA,j_coord_offsetB;
767     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
768     real             rcutoff_scalar;
769     real             *shiftvec,*fshift,*x,*f;
770     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
771     int              vdwioffset0;
772     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
773     int              vdwioffset1;
774     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
775     int              vdwioffset2;
776     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
777     int              vdwjidx0A,vdwjidx0B;
778     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
779     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
780     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
783     real             *charge;
784     int              nvdwtype;
785     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
786     int              *vdwtype;
787     real             *vdwparam;
788     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
789     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
790     __m128i          ewitab;
791     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
792     real             *ewtab;
793     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
794     real             rswitch_scalar,d_scalar;
795     __m128d          dummy_mask,cutoff_mask;
796     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
797     __m128d          one     = _mm_set1_pd(1.0);
798     __m128d          two     = _mm_set1_pd(2.0);
799     x                = xx[0];
800     f                = ff[0];
801
802     nri              = nlist->nri;
803     iinr             = nlist->iinr;
804     jindex           = nlist->jindex;
805     jjnr             = nlist->jjnr;
806     shiftidx         = nlist->shift;
807     gid              = nlist->gid;
808     shiftvec         = fr->shift_vec[0];
809     fshift           = fr->fshift[0];
810     facel            = _mm_set1_pd(fr->epsfac);
811     charge           = mdatoms->chargeA;
812     nvdwtype         = fr->ntype;
813     vdwparam         = fr->nbfp;
814     vdwtype          = mdatoms->typeA;
815
816     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
817     ewtab            = fr->ic->tabq_coul_FDV0;
818     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
819     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
820
821     /* Setup water-specific parameters */
822     inr              = nlist->iinr[0];
823     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
824     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
825     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
826     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
827
828     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
829     rcutoff_scalar   = fr->rcoulomb;
830     rcutoff          = _mm_set1_pd(rcutoff_scalar);
831     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
832
833     rswitch_scalar   = fr->rcoulomb_switch;
834     rswitch          = _mm_set1_pd(rswitch_scalar);
835     /* Setup switch parameters */
836     d_scalar         = rcutoff_scalar-rswitch_scalar;
837     d                = _mm_set1_pd(d_scalar);
838     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
839     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
840     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
841     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
842     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
843     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
844
845     /* Avoid stupid compiler warnings */
846     jnrA = jnrB = 0;
847     j_coord_offsetA = 0;
848     j_coord_offsetB = 0;
849
850     outeriter        = 0;
851     inneriter        = 0;
852
853     /* Start outer loop over neighborlists */
854     for(iidx=0; iidx<nri; iidx++)
855     {
856         /* Load shift vector for this list */
857         i_shift_offset   = DIM*shiftidx[iidx];
858
859         /* Load limits for loop over neighbors */
860         j_index_start    = jindex[iidx];
861         j_index_end      = jindex[iidx+1];
862
863         /* Get outer coordinate index */
864         inr              = iinr[iidx];
865         i_coord_offset   = DIM*inr;
866
867         /* Load i particle coords and add shift vector */
868         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
869                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
870
871         fix0             = _mm_setzero_pd();
872         fiy0             = _mm_setzero_pd();
873         fiz0             = _mm_setzero_pd();
874         fix1             = _mm_setzero_pd();
875         fiy1             = _mm_setzero_pd();
876         fiz1             = _mm_setzero_pd();
877         fix2             = _mm_setzero_pd();
878         fiy2             = _mm_setzero_pd();
879         fiz2             = _mm_setzero_pd();
880
881         /* Start inner kernel loop */
882         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
883         {
884
885             /* Get j neighbor index, and coordinate index */
886             jnrA             = jjnr[jidx];
887             jnrB             = jjnr[jidx+1];
888             j_coord_offsetA  = DIM*jnrA;
889             j_coord_offsetB  = DIM*jnrB;
890
891             /* load j atom coordinates */
892             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
893                                               &jx0,&jy0,&jz0);
894
895             /* Calculate displacement vector */
896             dx00             = _mm_sub_pd(ix0,jx0);
897             dy00             = _mm_sub_pd(iy0,jy0);
898             dz00             = _mm_sub_pd(iz0,jz0);
899             dx10             = _mm_sub_pd(ix1,jx0);
900             dy10             = _mm_sub_pd(iy1,jy0);
901             dz10             = _mm_sub_pd(iz1,jz0);
902             dx20             = _mm_sub_pd(ix2,jx0);
903             dy20             = _mm_sub_pd(iy2,jy0);
904             dz20             = _mm_sub_pd(iz2,jz0);
905
906             /* Calculate squared distance and things based on it */
907             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
908             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
909             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
910
911             rinv00           = gmx_mm_invsqrt_pd(rsq00);
912             rinv10           = gmx_mm_invsqrt_pd(rsq10);
913             rinv20           = gmx_mm_invsqrt_pd(rsq20);
914
915             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
916             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
917             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
918
919             /* Load parameters for j particles */
920             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
921             vdwjidx0A        = 2*vdwtype[jnrA+0];
922             vdwjidx0B        = 2*vdwtype[jnrB+0];
923
924             fjx0             = _mm_setzero_pd();
925             fjy0             = _mm_setzero_pd();
926             fjz0             = _mm_setzero_pd();
927
928             /**************************
929              * CALCULATE INTERACTIONS *
930              **************************/
931
932             if (gmx_mm_any_lt(rsq00,rcutoff2))
933             {
934
935             r00              = _mm_mul_pd(rsq00,rinv00);
936
937             /* Compute parameters for interactions between i and j atoms */
938             qq00             = _mm_mul_pd(iq0,jq0);
939             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
940                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
941
942             /* EWALD ELECTROSTATICS */
943
944             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
945             ewrt             = _mm_mul_pd(r00,ewtabscale);
946             ewitab           = _mm_cvttpd_epi32(ewrt);
947 #ifdef __XOP__
948             eweps            = _mm_frcz_pd(ewrt);
949 #else
950             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
951 #endif
952             twoeweps         = _mm_add_pd(eweps,eweps);
953             ewitab           = _mm_slli_epi32(ewitab,2);
954             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
955             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
956             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
957             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
958             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
959             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
960             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
961             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
962             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
963             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
964
965             /* LENNARD-JONES DISPERSION/REPULSION */
966
967             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
968             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
969             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
970             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
971             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
972
973             d                = _mm_sub_pd(r00,rswitch);
974             d                = _mm_max_pd(d,_mm_setzero_pd());
975             d2               = _mm_mul_pd(d,d);
976             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
977
978             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
979
980             /* Evaluate switch function */
981             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
982             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
983             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
984             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
985
986             fscal            = _mm_add_pd(felec,fvdw);
987
988             fscal            = _mm_and_pd(fscal,cutoff_mask);
989
990             /* Update vectorial force */
991             fix0             = _mm_macc_pd(dx00,fscal,fix0);
992             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
993             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
994             
995             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
996             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
997             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
998
999             }
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             if (gmx_mm_any_lt(rsq10,rcutoff2))
1006             {
1007
1008             r10              = _mm_mul_pd(rsq10,rinv10);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq10             = _mm_mul_pd(iq1,jq0);
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016             ewrt             = _mm_mul_pd(r10,ewtabscale);
1017             ewitab           = _mm_cvttpd_epi32(ewrt);
1018 #ifdef __XOP__
1019             eweps            = _mm_frcz_pd(ewrt);
1020 #else
1021             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1022 #endif
1023             twoeweps         = _mm_add_pd(eweps,eweps);
1024             ewitab           = _mm_slli_epi32(ewitab,2);
1025             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1026             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1027             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1028             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1029             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1030             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1031             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1032             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1033             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1034             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1035
1036             d                = _mm_sub_pd(r10,rswitch);
1037             d                = _mm_max_pd(d,_mm_setzero_pd());
1038             d2               = _mm_mul_pd(d,d);
1039             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1040
1041             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1042
1043             /* Evaluate switch function */
1044             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1045             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1046             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_and_pd(fscal,cutoff_mask);
1051
1052             /* Update vectorial force */
1053             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1054             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1055             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1056             
1057             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1058             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1059             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1060
1061             }
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             if (gmx_mm_any_lt(rsq20,rcutoff2))
1068             {
1069
1070             r20              = _mm_mul_pd(rsq20,rinv20);
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq20             = _mm_mul_pd(iq2,jq0);
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1078             ewrt             = _mm_mul_pd(r20,ewtabscale);
1079             ewitab           = _mm_cvttpd_epi32(ewrt);
1080 #ifdef __XOP__
1081             eweps            = _mm_frcz_pd(ewrt);
1082 #else
1083             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1084 #endif
1085             twoeweps         = _mm_add_pd(eweps,eweps);
1086             ewitab           = _mm_slli_epi32(ewitab,2);
1087             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1088             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1089             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1090             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1091             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1092             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1093             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1094             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1095             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1096             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1097
1098             d                = _mm_sub_pd(r20,rswitch);
1099             d                = _mm_max_pd(d,_mm_setzero_pd());
1100             d2               = _mm_mul_pd(d,d);
1101             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1102
1103             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1104
1105             /* Evaluate switch function */
1106             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1107             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1108             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1109
1110             fscal            = felec;
1111
1112             fscal            = _mm_and_pd(fscal,cutoff_mask);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1116             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1117             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1118             
1119             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1120             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1121             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1122
1123             }
1124
1125             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1126
1127             /* Inner loop uses 213 flops */
1128         }
1129
1130         if(jidx<j_index_end)
1131         {
1132
1133             jnrA             = jjnr[jidx];
1134             j_coord_offsetA  = DIM*jnrA;
1135
1136             /* load j atom coordinates */
1137             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1138                                               &jx0,&jy0,&jz0);
1139
1140             /* Calculate displacement vector */
1141             dx00             = _mm_sub_pd(ix0,jx0);
1142             dy00             = _mm_sub_pd(iy0,jy0);
1143             dz00             = _mm_sub_pd(iz0,jz0);
1144             dx10             = _mm_sub_pd(ix1,jx0);
1145             dy10             = _mm_sub_pd(iy1,jy0);
1146             dz10             = _mm_sub_pd(iz1,jz0);
1147             dx20             = _mm_sub_pd(ix2,jx0);
1148             dy20             = _mm_sub_pd(iy2,jy0);
1149             dz20             = _mm_sub_pd(iz2,jz0);
1150
1151             /* Calculate squared distance and things based on it */
1152             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1153             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1154             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1155
1156             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1157             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1158             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1159
1160             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1161             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1162             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1163
1164             /* Load parameters for j particles */
1165             jq0              = _mm_load_sd(charge+jnrA+0);
1166             vdwjidx0A        = 2*vdwtype[jnrA+0];
1167
1168             fjx0             = _mm_setzero_pd();
1169             fjy0             = _mm_setzero_pd();
1170             fjz0             = _mm_setzero_pd();
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm_any_lt(rsq00,rcutoff2))
1177             {
1178
1179             r00              = _mm_mul_pd(rsq00,rinv00);
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq00             = _mm_mul_pd(iq0,jq0);
1183             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1184
1185             /* EWALD ELECTROSTATICS */
1186
1187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1188             ewrt             = _mm_mul_pd(r00,ewtabscale);
1189             ewitab           = _mm_cvttpd_epi32(ewrt);
1190 #ifdef __XOP__
1191             eweps            = _mm_frcz_pd(ewrt);
1192 #else
1193             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1194 #endif
1195             twoeweps         = _mm_add_pd(eweps,eweps);
1196             ewitab           = _mm_slli_epi32(ewitab,2);
1197             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1198             ewtabD           = _mm_setzero_pd();
1199             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1200             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1201             ewtabFn          = _mm_setzero_pd();
1202             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1203             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1204             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1205             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1206             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1207
1208             /* LENNARD-JONES DISPERSION/REPULSION */
1209
1210             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1211             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1212             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1213             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1214             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1215
1216             d                = _mm_sub_pd(r00,rswitch);
1217             d                = _mm_max_pd(d,_mm_setzero_pd());
1218             d2               = _mm_mul_pd(d,d);
1219             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1220
1221             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1222
1223             /* Evaluate switch function */
1224             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1225             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1226             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1227             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1228
1229             fscal            = _mm_add_pd(felec,fvdw);
1230
1231             fscal            = _mm_and_pd(fscal,cutoff_mask);
1232
1233             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1234
1235             /* Update vectorial force */
1236             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1237             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1238             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1239             
1240             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1241             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1242             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1243
1244             }
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             if (gmx_mm_any_lt(rsq10,rcutoff2))
1251             {
1252
1253             r10              = _mm_mul_pd(rsq10,rinv10);
1254
1255             /* Compute parameters for interactions between i and j atoms */
1256             qq10             = _mm_mul_pd(iq1,jq0);
1257
1258             /* EWALD ELECTROSTATICS */
1259
1260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1261             ewrt             = _mm_mul_pd(r10,ewtabscale);
1262             ewitab           = _mm_cvttpd_epi32(ewrt);
1263 #ifdef __XOP__
1264             eweps            = _mm_frcz_pd(ewrt);
1265 #else
1266             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1267 #endif
1268             twoeweps         = _mm_add_pd(eweps,eweps);
1269             ewitab           = _mm_slli_epi32(ewitab,2);
1270             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1271             ewtabD           = _mm_setzero_pd();
1272             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1273             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1274             ewtabFn          = _mm_setzero_pd();
1275             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1276             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1277             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1278             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1279             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1280
1281             d                = _mm_sub_pd(r10,rswitch);
1282             d                = _mm_max_pd(d,_mm_setzero_pd());
1283             d2               = _mm_mul_pd(d,d);
1284             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1285
1286             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1287
1288             /* Evaluate switch function */
1289             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1290             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1291             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1292
1293             fscal            = felec;
1294
1295             fscal            = _mm_and_pd(fscal,cutoff_mask);
1296
1297             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1298
1299             /* Update vectorial force */
1300             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1301             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1302             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1303             
1304             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1305             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1306             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1307
1308             }
1309
1310             /**************************
1311              * CALCULATE INTERACTIONS *
1312              **************************/
1313
1314             if (gmx_mm_any_lt(rsq20,rcutoff2))
1315             {
1316
1317             r20              = _mm_mul_pd(rsq20,rinv20);
1318
1319             /* Compute parameters for interactions between i and j atoms */
1320             qq20             = _mm_mul_pd(iq2,jq0);
1321
1322             /* EWALD ELECTROSTATICS */
1323
1324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1325             ewrt             = _mm_mul_pd(r20,ewtabscale);
1326             ewitab           = _mm_cvttpd_epi32(ewrt);
1327 #ifdef __XOP__
1328             eweps            = _mm_frcz_pd(ewrt);
1329 #else
1330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1331 #endif
1332             twoeweps         = _mm_add_pd(eweps,eweps);
1333             ewitab           = _mm_slli_epi32(ewitab,2);
1334             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1335             ewtabD           = _mm_setzero_pd();
1336             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1337             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1338             ewtabFn          = _mm_setzero_pd();
1339             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1340             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1341             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1342             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1343             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1344
1345             d                = _mm_sub_pd(r20,rswitch);
1346             d                = _mm_max_pd(d,_mm_setzero_pd());
1347             d2               = _mm_mul_pd(d,d);
1348             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1349
1350             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1351
1352             /* Evaluate switch function */
1353             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1354             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1355             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1356
1357             fscal            = felec;
1358
1359             fscal            = _mm_and_pd(fscal,cutoff_mask);
1360
1361             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1362
1363             /* Update vectorial force */
1364             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1365             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1366             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1367             
1368             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1369             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1370             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1371
1372             }
1373
1374             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1375
1376             /* Inner loop uses 213 flops */
1377         }
1378
1379         /* End of innermost loop */
1380
1381         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1382                                               f+i_coord_offset,fshift+i_shift_offset);
1383
1384         /* Increment number of inner iterations */
1385         inneriter                  += j_index_end - j_index_start;
1386
1387         /* Outer loop uses 18 flops */
1388     }
1389
1390     /* Increment number of outer iterations */
1391     outeriter        += nri;
1392
1393     /* Update outer/inner flops */
1394
1395     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1396 }