d50b2b4eff1c57882638759071af5888aa4851c8
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83     real             rswitch_scalar,d_scalar;
84     __m128d          dummy_mask,cutoff_mask;
85     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
86     __m128d          one     = _mm_set1_pd(1.0);
87     __m128d          two     = _mm_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
106     ewtab            = fr->ic->tabq_coul_FDV0;
107     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
108     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->rcoulomb;
112     rcutoff          = _mm_set1_pd(rcutoff_scalar);
113     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
114
115     rswitch_scalar   = fr->rcoulomb_switch;
116     rswitch          = _mm_set1_pd(rswitch_scalar);
117     /* Setup switch parameters */
118     d_scalar         = rcutoff_scalar-rswitch_scalar;
119     d                = _mm_set1_pd(d_scalar);
120     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
121     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
122     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
123     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
124     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
125     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_pd();
153         fiy0             = _mm_setzero_pd();
154         fiz0             = _mm_setzero_pd();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162         vvdwsum          = _mm_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_pd(ix0,jx0);
180             dy00             = _mm_sub_pd(iy0,jy0);
181             dz00             = _mm_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm_invsqrt_pd(rsq00);
187
188             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             r00              = _mm_mul_pd(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm_mul_pd(iq0,jq0);
206             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
208
209             /* EWALD ELECTROSTATICS */
210
211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
212             ewrt             = _mm_mul_pd(r00,ewtabscale);
213             ewitab           = _mm_cvttpd_epi32(ewrt);
214 #ifdef __XOP__
215             eweps            = _mm_frcz_pd(ewrt);
216 #else
217             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
218 #endif
219             twoeweps         = _mm_add_pd(eweps,eweps);
220             ewitab           = _mm_slli_epi32(ewitab,2);
221             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
222             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
223             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
224             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
225             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
226             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
227             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
228             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
229             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
230             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
236             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
237             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
238             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
239
240             d                = _mm_sub_pd(r00,rswitch);
241             d                = _mm_max_pd(d,_mm_setzero_pd());
242             d2               = _mm_mul_pd(d,d);
243             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
244
245             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
246
247             /* Evaluate switch function */
248             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
249             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
250             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
251             velec            = _mm_mul_pd(velec,sw);
252             vvdw             = _mm_mul_pd(vvdw,sw);
253             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
254
255             /* Update potential sum for this i atom from the interaction with this j atom. */
256             velec            = _mm_and_pd(velec,cutoff_mask);
257             velecsum         = _mm_add_pd(velecsum,velec);
258             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
259             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
260
261             fscal            = _mm_add_pd(felec,fvdw);
262
263             fscal            = _mm_and_pd(fscal,cutoff_mask);
264
265             /* Update vectorial force */
266             fix0             = _mm_macc_pd(dx00,fscal,fix0);
267             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
268             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
269             
270             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
271                                                    _mm_mul_pd(dx00,fscal),
272                                                    _mm_mul_pd(dy00,fscal),
273                                                    _mm_mul_pd(dz00,fscal));
274
275             }
276
277             /* Inner loop uses 86 flops */
278         }
279
280         if(jidx<j_index_end)
281         {
282
283             jnrA             = jjnr[jidx];
284             j_coord_offsetA  = DIM*jnrA;
285
286             /* load j atom coordinates */
287             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
288                                               &jx0,&jy0,&jz0);
289
290             /* Calculate displacement vector */
291             dx00             = _mm_sub_pd(ix0,jx0);
292             dy00             = _mm_sub_pd(iy0,jy0);
293             dz00             = _mm_sub_pd(iz0,jz0);
294
295             /* Calculate squared distance and things based on it */
296             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
297
298             rinv00           = gmx_mm_invsqrt_pd(rsq00);
299
300             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
301
302             /* Load parameters for j particles */
303             jq0              = _mm_load_sd(charge+jnrA+0);
304             vdwjidx0A        = 2*vdwtype[jnrA+0];
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm_any_lt(rsq00,rcutoff2))
311             {
312
313             r00              = _mm_mul_pd(rsq00,rinv00);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq00             = _mm_mul_pd(iq0,jq0);
317             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
318
319             /* EWALD ELECTROSTATICS */
320
321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322             ewrt             = _mm_mul_pd(r00,ewtabscale);
323             ewitab           = _mm_cvttpd_epi32(ewrt);
324 #ifdef __XOP__
325             eweps            = _mm_frcz_pd(ewrt);
326 #else
327             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
328 #endif
329             twoeweps         = _mm_add_pd(eweps,eweps);
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
334             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
335             ewtabFn          = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
337             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
338             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
339             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
340             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
341
342             /* LENNARD-JONES DISPERSION/REPULSION */
343
344             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
345             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
346             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
347             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
348             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
349
350             d                = _mm_sub_pd(r00,rswitch);
351             d                = _mm_max_pd(d,_mm_setzero_pd());
352             d2               = _mm_mul_pd(d,d);
353             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
354
355             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
356
357             /* Evaluate switch function */
358             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
359             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
360             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
361             velec            = _mm_mul_pd(velec,sw);
362             vvdw             = _mm_mul_pd(vvdw,sw);
363             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velec            = _mm_and_pd(velec,cutoff_mask);
367             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
368             velecsum         = _mm_add_pd(velecsum,velec);
369             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
370             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
371             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
372
373             fscal            = _mm_add_pd(felec,fvdw);
374
375             fscal            = _mm_and_pd(fscal,cutoff_mask);
376
377             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
378
379             /* Update vectorial force */
380             fix0             = _mm_macc_pd(dx00,fscal,fix0);
381             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
382             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
383             
384             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
385                                                    _mm_mul_pd(dx00,fscal),
386                                                    _mm_mul_pd(dy00,fscal),
387                                                    _mm_mul_pd(dz00,fscal));
388
389             }
390
391             /* Inner loop uses 86 flops */
392         }
393
394         /* End of innermost loop */
395
396         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
397                                               f+i_coord_offset,fshift+i_shift_offset);
398
399         ggid                        = gid[iidx];
400         /* Update potential energies */
401         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
402         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
403
404         /* Increment number of inner iterations */
405         inneriter                  += j_index_end - j_index_start;
406
407         /* Outer loop uses 9 flops */
408     }
409
410     /* Increment number of outer iterations */
411     outeriter        += nri;
412
413     /* Update outer/inner flops */
414
415     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
416 }
417 /*
418  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
419  * Electrostatics interaction: Ewald
420  * VdW interaction:            LennardJones
421  * Geometry:                   Particle-Particle
422  * Calculate force/pot:        Force
423  */
424 void
425 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
426                     (t_nblist * gmx_restrict                nlist,
427                      rvec * gmx_restrict                    xx,
428                      rvec * gmx_restrict                    ff,
429                      t_forcerec * gmx_restrict              fr,
430                      t_mdatoms * gmx_restrict               mdatoms,
431                      nb_kernel_data_t * gmx_restrict        kernel_data,
432                      t_nrnb * gmx_restrict                  nrnb)
433 {
434     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
435      * just 0 for non-waters.
436      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
437      * jnr indices corresponding to data put in the four positions in the SIMD register.
438      */
439     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
440     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
441     int              jnrA,jnrB;
442     int              j_coord_offsetA,j_coord_offsetB;
443     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
444     real             rcutoff_scalar;
445     real             *shiftvec,*fshift,*x,*f;
446     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
447     int              vdwioffset0;
448     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
449     int              vdwjidx0A,vdwjidx0B;
450     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
452     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
453     real             *charge;
454     int              nvdwtype;
455     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
456     int              *vdwtype;
457     real             *vdwparam;
458     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
459     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
460     __m128i          ewitab;
461     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
462     real             *ewtab;
463     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
464     real             rswitch_scalar,d_scalar;
465     __m128d          dummy_mask,cutoff_mask;
466     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
467     __m128d          one     = _mm_set1_pd(1.0);
468     __m128d          two     = _mm_set1_pd(2.0);
469     x                = xx[0];
470     f                = ff[0];
471
472     nri              = nlist->nri;
473     iinr             = nlist->iinr;
474     jindex           = nlist->jindex;
475     jjnr             = nlist->jjnr;
476     shiftidx         = nlist->shift;
477     gid              = nlist->gid;
478     shiftvec         = fr->shift_vec[0];
479     fshift           = fr->fshift[0];
480     facel            = _mm_set1_pd(fr->epsfac);
481     charge           = mdatoms->chargeA;
482     nvdwtype         = fr->ntype;
483     vdwparam         = fr->nbfp;
484     vdwtype          = mdatoms->typeA;
485
486     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
487     ewtab            = fr->ic->tabq_coul_FDV0;
488     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
489     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
490
491     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
492     rcutoff_scalar   = fr->rcoulomb;
493     rcutoff          = _mm_set1_pd(rcutoff_scalar);
494     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
495
496     rswitch_scalar   = fr->rcoulomb_switch;
497     rswitch          = _mm_set1_pd(rswitch_scalar);
498     /* Setup switch parameters */
499     d_scalar         = rcutoff_scalar-rswitch_scalar;
500     d                = _mm_set1_pd(d_scalar);
501     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
502     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
503     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
504     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
505     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
506     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
507
508     /* Avoid stupid compiler warnings */
509     jnrA = jnrB = 0;
510     j_coord_offsetA = 0;
511     j_coord_offsetB = 0;
512
513     outeriter        = 0;
514     inneriter        = 0;
515
516     /* Start outer loop over neighborlists */
517     for(iidx=0; iidx<nri; iidx++)
518     {
519         /* Load shift vector for this list */
520         i_shift_offset   = DIM*shiftidx[iidx];
521
522         /* Load limits for loop over neighbors */
523         j_index_start    = jindex[iidx];
524         j_index_end      = jindex[iidx+1];
525
526         /* Get outer coordinate index */
527         inr              = iinr[iidx];
528         i_coord_offset   = DIM*inr;
529
530         /* Load i particle coords and add shift vector */
531         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
532
533         fix0             = _mm_setzero_pd();
534         fiy0             = _mm_setzero_pd();
535         fiz0             = _mm_setzero_pd();
536
537         /* Load parameters for i particles */
538         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
539         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
540
541         /* Start inner kernel loop */
542         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
543         {
544
545             /* Get j neighbor index, and coordinate index */
546             jnrA             = jjnr[jidx];
547             jnrB             = jjnr[jidx+1];
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550
551             /* load j atom coordinates */
552             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
553                                               &jx0,&jy0,&jz0);
554
555             /* Calculate displacement vector */
556             dx00             = _mm_sub_pd(ix0,jx0);
557             dy00             = _mm_sub_pd(iy0,jy0);
558             dz00             = _mm_sub_pd(iz0,jz0);
559
560             /* Calculate squared distance and things based on it */
561             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
562
563             rinv00           = gmx_mm_invsqrt_pd(rsq00);
564
565             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
569             vdwjidx0A        = 2*vdwtype[jnrA+0];
570             vdwjidx0B        = 2*vdwtype[jnrB+0];
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_mm_any_lt(rsq00,rcutoff2))
577             {
578
579             r00              = _mm_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm_mul_pd(iq0,jq0);
583             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
584                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
585
586             /* EWALD ELECTROSTATICS */
587
588             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
589             ewrt             = _mm_mul_pd(r00,ewtabscale);
590             ewitab           = _mm_cvttpd_epi32(ewrt);
591 #ifdef __XOP__
592             eweps            = _mm_frcz_pd(ewrt);
593 #else
594             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
595 #endif
596             twoeweps         = _mm_add_pd(eweps,eweps);
597             ewitab           = _mm_slli_epi32(ewitab,2);
598             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
599             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
600             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
601             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
602             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
603             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
604             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
605             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
606             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
607             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
608
609             /* LENNARD-JONES DISPERSION/REPULSION */
610
611             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
612             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
613             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
614             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
615             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
616
617             d                = _mm_sub_pd(r00,rswitch);
618             d                = _mm_max_pd(d,_mm_setzero_pd());
619             d2               = _mm_mul_pd(d,d);
620             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
621
622             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
623
624             /* Evaluate switch function */
625             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
626             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
627             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
628             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
629
630             fscal            = _mm_add_pd(felec,fvdw);
631
632             fscal            = _mm_and_pd(fscal,cutoff_mask);
633
634             /* Update vectorial force */
635             fix0             = _mm_macc_pd(dx00,fscal,fix0);
636             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
637             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
638             
639             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
640                                                    _mm_mul_pd(dx00,fscal),
641                                                    _mm_mul_pd(dy00,fscal),
642                                                    _mm_mul_pd(dz00,fscal));
643
644             }
645
646             /* Inner loop uses 80 flops */
647         }
648
649         if(jidx<j_index_end)
650         {
651
652             jnrA             = jjnr[jidx];
653             j_coord_offsetA  = DIM*jnrA;
654
655             /* load j atom coordinates */
656             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
657                                               &jx0,&jy0,&jz0);
658
659             /* Calculate displacement vector */
660             dx00             = _mm_sub_pd(ix0,jx0);
661             dy00             = _mm_sub_pd(iy0,jy0);
662             dz00             = _mm_sub_pd(iz0,jz0);
663
664             /* Calculate squared distance and things based on it */
665             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
666
667             rinv00           = gmx_mm_invsqrt_pd(rsq00);
668
669             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
670
671             /* Load parameters for j particles */
672             jq0              = _mm_load_sd(charge+jnrA+0);
673             vdwjidx0A        = 2*vdwtype[jnrA+0];
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             if (gmx_mm_any_lt(rsq00,rcutoff2))
680             {
681
682             r00              = _mm_mul_pd(rsq00,rinv00);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq00             = _mm_mul_pd(iq0,jq0);
686             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
687
688             /* EWALD ELECTROSTATICS */
689
690             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
691             ewrt             = _mm_mul_pd(r00,ewtabscale);
692             ewitab           = _mm_cvttpd_epi32(ewrt);
693 #ifdef __XOP__
694             eweps            = _mm_frcz_pd(ewrt);
695 #else
696             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
697 #endif
698             twoeweps         = _mm_add_pd(eweps,eweps);
699             ewitab           = _mm_slli_epi32(ewitab,2);
700             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
701             ewtabD           = _mm_setzero_pd();
702             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
703             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
704             ewtabFn          = _mm_setzero_pd();
705             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
706             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
707             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
708             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
709             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
710
711             /* LENNARD-JONES DISPERSION/REPULSION */
712
713             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
714             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
715             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
716             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
717             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
718
719             d                = _mm_sub_pd(r00,rswitch);
720             d                = _mm_max_pd(d,_mm_setzero_pd());
721             d2               = _mm_mul_pd(d,d);
722             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
723
724             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
725
726             /* Evaluate switch function */
727             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
728             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
729             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
730             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
731
732             fscal            = _mm_add_pd(felec,fvdw);
733
734             fscal            = _mm_and_pd(fscal,cutoff_mask);
735
736             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
737
738             /* Update vectorial force */
739             fix0             = _mm_macc_pd(dx00,fscal,fix0);
740             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
741             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
742             
743             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
744                                                    _mm_mul_pd(dx00,fscal),
745                                                    _mm_mul_pd(dy00,fscal),
746                                                    _mm_mul_pd(dz00,fscal));
747
748             }
749
750             /* Inner loop uses 80 flops */
751         }
752
753         /* End of innermost loop */
754
755         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
756                                               f+i_coord_offset,fshift+i_shift_offset);
757
758         /* Increment number of inner iterations */
759         inneriter                  += j_index_end - j_index_start;
760
761         /* Outer loop uses 7 flops */
762     }
763
764     /* Increment number of outer iterations */
765     outeriter        += nri;
766
767     /* Update outer/inner flops */
768
769     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
770 }