made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwNone_GeomW4W4_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4W4_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Water4
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW4W4_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx1A,vdwjidx1B;
73     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
74     int              vdwjidx2A,vdwjidx2B;
75     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
76     int              vdwjidx3A,vdwjidx3B;
77     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
78     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
79     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
80     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
81     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
82     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
83     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
84     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
85     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
86     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
118     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
119     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
120
121     jq1              = _mm_set1_pd(charge[inr+1]);
122     jq2              = _mm_set1_pd(charge[inr+2]);
123     jq3              = _mm_set1_pd(charge[inr+3]);
124     qq11             = _mm_mul_pd(iq1,jq1);
125     qq12             = _mm_mul_pd(iq1,jq2);
126     qq13             = _mm_mul_pd(iq1,jq3);
127     qq21             = _mm_mul_pd(iq2,jq1);
128     qq22             = _mm_mul_pd(iq2,jq2);
129     qq23             = _mm_mul_pd(iq2,jq3);
130     qq31             = _mm_mul_pd(iq3,jq1);
131     qq32             = _mm_mul_pd(iq3,jq2);
132     qq33             = _mm_mul_pd(iq3,jq3);
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm_set1_pd(rcutoff_scalar);
137     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
163                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171         fix3             = _mm_setzero_pd();
172         fiy3             = _mm_setzero_pd();
173         fiz3             = _mm_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
190                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
191
192             /* Calculate displacement vector */
193             dx11             = _mm_sub_pd(ix1,jx1);
194             dy11             = _mm_sub_pd(iy1,jy1);
195             dz11             = _mm_sub_pd(iz1,jz1);
196             dx12             = _mm_sub_pd(ix1,jx2);
197             dy12             = _mm_sub_pd(iy1,jy2);
198             dz12             = _mm_sub_pd(iz1,jz2);
199             dx13             = _mm_sub_pd(ix1,jx3);
200             dy13             = _mm_sub_pd(iy1,jy3);
201             dz13             = _mm_sub_pd(iz1,jz3);
202             dx21             = _mm_sub_pd(ix2,jx1);
203             dy21             = _mm_sub_pd(iy2,jy1);
204             dz21             = _mm_sub_pd(iz2,jz1);
205             dx22             = _mm_sub_pd(ix2,jx2);
206             dy22             = _mm_sub_pd(iy2,jy2);
207             dz22             = _mm_sub_pd(iz2,jz2);
208             dx23             = _mm_sub_pd(ix2,jx3);
209             dy23             = _mm_sub_pd(iy2,jy3);
210             dz23             = _mm_sub_pd(iz2,jz3);
211             dx31             = _mm_sub_pd(ix3,jx1);
212             dy31             = _mm_sub_pd(iy3,jy1);
213             dz31             = _mm_sub_pd(iz3,jz1);
214             dx32             = _mm_sub_pd(ix3,jx2);
215             dy32             = _mm_sub_pd(iy3,jy2);
216             dz32             = _mm_sub_pd(iz3,jz2);
217             dx33             = _mm_sub_pd(ix3,jx3);
218             dy33             = _mm_sub_pd(iy3,jy3);
219             dz33             = _mm_sub_pd(iz3,jz3);
220
221             /* Calculate squared distance and things based on it */
222             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
223             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
224             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
225             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
226             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
227             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
228             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
229             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
230             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
231
232             rinv11           = gmx_mm_invsqrt_pd(rsq11);
233             rinv12           = gmx_mm_invsqrt_pd(rsq12);
234             rinv13           = gmx_mm_invsqrt_pd(rsq13);
235             rinv21           = gmx_mm_invsqrt_pd(rsq21);
236             rinv22           = gmx_mm_invsqrt_pd(rsq22);
237             rinv23           = gmx_mm_invsqrt_pd(rsq23);
238             rinv31           = gmx_mm_invsqrt_pd(rsq31);
239             rinv32           = gmx_mm_invsqrt_pd(rsq32);
240             rinv33           = gmx_mm_invsqrt_pd(rsq33);
241
242             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
243             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
244             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
245             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
246             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
247             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
248             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
249             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
250             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
251
252             fjx1             = _mm_setzero_pd();
253             fjy1             = _mm_setzero_pd();
254             fjz1             = _mm_setzero_pd();
255             fjx2             = _mm_setzero_pd();
256             fjy2             = _mm_setzero_pd();
257             fjz2             = _mm_setzero_pd();
258             fjx3             = _mm_setzero_pd();
259             fjy3             = _mm_setzero_pd();
260             fjz3             = _mm_setzero_pd();
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             if (gmx_mm_any_lt(rsq11,rcutoff2))
267             {
268
269             r11              = _mm_mul_pd(rsq11,rinv11);
270
271             /* EWALD ELECTROSTATICS */
272
273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
274             ewrt             = _mm_mul_pd(r11,ewtabscale);
275             ewitab           = _mm_cvttpd_epi32(ewrt);
276 #ifdef __XOP__
277             eweps            = _mm_frcz_pd(ewrt);
278 #else
279             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
280 #endif
281             twoeweps         = _mm_add_pd(eweps,eweps);
282             ewitab           = _mm_slli_epi32(ewitab,2);
283             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
284             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
285             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
286             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
287             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
288             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
289             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
290             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
291             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
292             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
293
294             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_and_pd(velec,cutoff_mask);
298             velecsum         = _mm_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             fscal            = _mm_and_pd(fscal,cutoff_mask);
303
304             /* Update vectorial force */
305             fix1             = _mm_macc_pd(dx11,fscal,fix1);
306             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
307             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
308             
309             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
310             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
311             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_mm_any_lt(rsq12,rcutoff2))
320             {
321
322             r12              = _mm_mul_pd(rsq12,rinv12);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_pd(r12,ewtabscale);
328             ewitab           = _mm_cvttpd_epi32(ewrt);
329 #ifdef __XOP__
330             eweps            = _mm_frcz_pd(ewrt);
331 #else
332             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
333 #endif
334             twoeweps         = _mm_add_pd(eweps,eweps);
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
338             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
339             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
340             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
341             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
342             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
343             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
344             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
345             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
346
347             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velec            = _mm_and_pd(velec,cutoff_mask);
351             velecsum         = _mm_add_pd(velecsum,velec);
352
353             fscal            = felec;
354
355             fscal            = _mm_and_pd(fscal,cutoff_mask);
356
357             /* Update vectorial force */
358             fix1             = _mm_macc_pd(dx12,fscal,fix1);
359             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
360             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
361             
362             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
363             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
364             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
365
366             }
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             if (gmx_mm_any_lt(rsq13,rcutoff2))
373             {
374
375             r13              = _mm_mul_pd(rsq13,rinv13);
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380             ewrt             = _mm_mul_pd(r13,ewtabscale);
381             ewitab           = _mm_cvttpd_epi32(ewrt);
382 #ifdef __XOP__
383             eweps            = _mm_frcz_pd(ewrt);
384 #else
385             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
386 #endif
387             twoeweps         = _mm_add_pd(eweps,eweps);
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
391             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
392             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
393             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
394             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
395             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
396             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
397             velec            = _mm_mul_pd(qq13,_mm_sub_pd(_mm_sub_pd(rinv13,sh_ewald),velec));
398             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
399
400             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _mm_and_pd(velec,cutoff_mask);
404             velecsum         = _mm_add_pd(velecsum,velec);
405
406             fscal            = felec;
407
408             fscal            = _mm_and_pd(fscal,cutoff_mask);
409
410             /* Update vectorial force */
411             fix1             = _mm_macc_pd(dx13,fscal,fix1);
412             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
413             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
414             
415             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
416             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
417             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
418
419             }
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             if (gmx_mm_any_lt(rsq21,rcutoff2))
426             {
427
428             r21              = _mm_mul_pd(rsq21,rinv21);
429
430             /* EWALD ELECTROSTATICS */
431
432             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
433             ewrt             = _mm_mul_pd(r21,ewtabscale);
434             ewitab           = _mm_cvttpd_epi32(ewrt);
435 #ifdef __XOP__
436             eweps            = _mm_frcz_pd(ewrt);
437 #else
438             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
439 #endif
440             twoeweps         = _mm_add_pd(eweps,eweps);
441             ewitab           = _mm_slli_epi32(ewitab,2);
442             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
443             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
444             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
445             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
446             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
447             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
448             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
449             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
450             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
451             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
452
453             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_and_pd(velec,cutoff_mask);
457             velecsum         = _mm_add_pd(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_and_pd(fscal,cutoff_mask);
462
463             /* Update vectorial force */
464             fix2             = _mm_macc_pd(dx21,fscal,fix2);
465             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
466             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
467             
468             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
469             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
470             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
471
472             }
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             if (gmx_mm_any_lt(rsq22,rcutoff2))
479             {
480
481             r22              = _mm_mul_pd(rsq22,rinv22);
482
483             /* EWALD ELECTROSTATICS */
484
485             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
486             ewrt             = _mm_mul_pd(r22,ewtabscale);
487             ewitab           = _mm_cvttpd_epi32(ewrt);
488 #ifdef __XOP__
489             eweps            = _mm_frcz_pd(ewrt);
490 #else
491             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
492 #endif
493             twoeweps         = _mm_add_pd(eweps,eweps);
494             ewitab           = _mm_slli_epi32(ewitab,2);
495             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
496             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
497             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
498             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
499             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
500             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
501             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
502             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
503             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
504             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
505
506             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm_and_pd(velec,cutoff_mask);
510             velecsum         = _mm_add_pd(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm_and_pd(fscal,cutoff_mask);
515
516             /* Update vectorial force */
517             fix2             = _mm_macc_pd(dx22,fscal,fix2);
518             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
519             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
520             
521             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
522             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
523             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
524
525             }
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             if (gmx_mm_any_lt(rsq23,rcutoff2))
532             {
533
534             r23              = _mm_mul_pd(rsq23,rinv23);
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = _mm_mul_pd(r23,ewtabscale);
540             ewitab           = _mm_cvttpd_epi32(ewrt);
541 #ifdef __XOP__
542             eweps            = _mm_frcz_pd(ewrt);
543 #else
544             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
545 #endif
546             twoeweps         = _mm_add_pd(eweps,eweps);
547             ewitab           = _mm_slli_epi32(ewitab,2);
548             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
549             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
550             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
551             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
552             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
553             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
554             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
555             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
556             velec            = _mm_mul_pd(qq23,_mm_sub_pd(_mm_sub_pd(rinv23,sh_ewald),velec));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
558
559             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_and_pd(velec,cutoff_mask);
563             velecsum         = _mm_add_pd(velecsum,velec);
564
565             fscal            = felec;
566
567             fscal            = _mm_and_pd(fscal,cutoff_mask);
568
569             /* Update vectorial force */
570             fix2             = _mm_macc_pd(dx23,fscal,fix2);
571             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
572             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
573             
574             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
575             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
576             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
577
578             }
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq31,rcutoff2))
585             {
586
587             r31              = _mm_mul_pd(rsq31,rinv31);
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = _mm_mul_pd(r31,ewtabscale);
593             ewitab           = _mm_cvttpd_epi32(ewrt);
594 #ifdef __XOP__
595             eweps            = _mm_frcz_pd(ewrt);
596 #else
597             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
598 #endif
599             twoeweps         = _mm_add_pd(eweps,eweps);
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
603             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
604             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
605             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
606             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
607             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
608             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
609             velec            = _mm_mul_pd(qq31,_mm_sub_pd(_mm_sub_pd(rinv31,sh_ewald),velec));
610             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
611
612             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm_and_pd(velec,cutoff_mask);
616             velecsum         = _mm_add_pd(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm_and_pd(fscal,cutoff_mask);
621
622             /* Update vectorial force */
623             fix3             = _mm_macc_pd(dx31,fscal,fix3);
624             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
625             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
626             
627             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
628             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
629             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
630
631             }
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             if (gmx_mm_any_lt(rsq32,rcutoff2))
638             {
639
640             r32              = _mm_mul_pd(rsq32,rinv32);
641
642             /* EWALD ELECTROSTATICS */
643
644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
645             ewrt             = _mm_mul_pd(r32,ewtabscale);
646             ewitab           = _mm_cvttpd_epi32(ewrt);
647 #ifdef __XOP__
648             eweps            = _mm_frcz_pd(ewrt);
649 #else
650             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
651 #endif
652             twoeweps         = _mm_add_pd(eweps,eweps);
653             ewitab           = _mm_slli_epi32(ewitab,2);
654             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
655             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
656             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
657             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
658             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
659             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
660             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
661             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
662             velec            = _mm_mul_pd(qq32,_mm_sub_pd(_mm_sub_pd(rinv32,sh_ewald),velec));
663             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
664
665             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
666
667             /* Update potential sum for this i atom from the interaction with this j atom. */
668             velec            = _mm_and_pd(velec,cutoff_mask);
669             velecsum         = _mm_add_pd(velecsum,velec);
670
671             fscal            = felec;
672
673             fscal            = _mm_and_pd(fscal,cutoff_mask);
674
675             /* Update vectorial force */
676             fix3             = _mm_macc_pd(dx32,fscal,fix3);
677             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
678             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
679             
680             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
681             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
682             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
683
684             }
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm_any_lt(rsq33,rcutoff2))
691             {
692
693             r33              = _mm_mul_pd(rsq33,rinv33);
694
695             /* EWALD ELECTROSTATICS */
696
697             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
698             ewrt             = _mm_mul_pd(r33,ewtabscale);
699             ewitab           = _mm_cvttpd_epi32(ewrt);
700 #ifdef __XOP__
701             eweps            = _mm_frcz_pd(ewrt);
702 #else
703             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
704 #endif
705             twoeweps         = _mm_add_pd(eweps,eweps);
706             ewitab           = _mm_slli_epi32(ewitab,2);
707             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
708             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
709             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
710             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
711             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
712             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
713             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
714             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
715             velec            = _mm_mul_pd(qq33,_mm_sub_pd(_mm_sub_pd(rinv33,sh_ewald),velec));
716             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
717
718             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
719
720             /* Update potential sum for this i atom from the interaction with this j atom. */
721             velec            = _mm_and_pd(velec,cutoff_mask);
722             velecsum         = _mm_add_pd(velecsum,velec);
723
724             fscal            = felec;
725
726             fscal            = _mm_and_pd(fscal,cutoff_mask);
727
728             /* Update vectorial force */
729             fix3             = _mm_macc_pd(dx33,fscal,fix3);
730             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
731             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
732             
733             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
734             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
735             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
736
737             }
738
739             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA+DIM,f+j_coord_offsetB+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
740
741             /* Inner loop uses 441 flops */
742         }
743
744         if(jidx<j_index_end)
745         {
746
747             jnrA             = jjnr[jidx];
748             j_coord_offsetA  = DIM*jnrA;
749
750             /* load j atom coordinates */
751             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA+DIM,
752                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
753
754             /* Calculate displacement vector */
755             dx11             = _mm_sub_pd(ix1,jx1);
756             dy11             = _mm_sub_pd(iy1,jy1);
757             dz11             = _mm_sub_pd(iz1,jz1);
758             dx12             = _mm_sub_pd(ix1,jx2);
759             dy12             = _mm_sub_pd(iy1,jy2);
760             dz12             = _mm_sub_pd(iz1,jz2);
761             dx13             = _mm_sub_pd(ix1,jx3);
762             dy13             = _mm_sub_pd(iy1,jy3);
763             dz13             = _mm_sub_pd(iz1,jz3);
764             dx21             = _mm_sub_pd(ix2,jx1);
765             dy21             = _mm_sub_pd(iy2,jy1);
766             dz21             = _mm_sub_pd(iz2,jz1);
767             dx22             = _mm_sub_pd(ix2,jx2);
768             dy22             = _mm_sub_pd(iy2,jy2);
769             dz22             = _mm_sub_pd(iz2,jz2);
770             dx23             = _mm_sub_pd(ix2,jx3);
771             dy23             = _mm_sub_pd(iy2,jy3);
772             dz23             = _mm_sub_pd(iz2,jz3);
773             dx31             = _mm_sub_pd(ix3,jx1);
774             dy31             = _mm_sub_pd(iy3,jy1);
775             dz31             = _mm_sub_pd(iz3,jz1);
776             dx32             = _mm_sub_pd(ix3,jx2);
777             dy32             = _mm_sub_pd(iy3,jy2);
778             dz32             = _mm_sub_pd(iz3,jz2);
779             dx33             = _mm_sub_pd(ix3,jx3);
780             dy33             = _mm_sub_pd(iy3,jy3);
781             dz33             = _mm_sub_pd(iz3,jz3);
782
783             /* Calculate squared distance and things based on it */
784             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
785             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
786             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
787             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
788             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
789             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
790             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
791             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
792             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
793
794             rinv11           = gmx_mm_invsqrt_pd(rsq11);
795             rinv12           = gmx_mm_invsqrt_pd(rsq12);
796             rinv13           = gmx_mm_invsqrt_pd(rsq13);
797             rinv21           = gmx_mm_invsqrt_pd(rsq21);
798             rinv22           = gmx_mm_invsqrt_pd(rsq22);
799             rinv23           = gmx_mm_invsqrt_pd(rsq23);
800             rinv31           = gmx_mm_invsqrt_pd(rsq31);
801             rinv32           = gmx_mm_invsqrt_pd(rsq32);
802             rinv33           = gmx_mm_invsqrt_pd(rsq33);
803
804             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
805             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
806             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
807             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
808             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
809             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
810             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
811             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
812             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
813
814             fjx1             = _mm_setzero_pd();
815             fjy1             = _mm_setzero_pd();
816             fjz1             = _mm_setzero_pd();
817             fjx2             = _mm_setzero_pd();
818             fjy2             = _mm_setzero_pd();
819             fjz2             = _mm_setzero_pd();
820             fjx3             = _mm_setzero_pd();
821             fjy3             = _mm_setzero_pd();
822             fjz3             = _mm_setzero_pd();
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             if (gmx_mm_any_lt(rsq11,rcutoff2))
829             {
830
831             r11              = _mm_mul_pd(rsq11,rinv11);
832
833             /* EWALD ELECTROSTATICS */
834
835             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
836             ewrt             = _mm_mul_pd(r11,ewtabscale);
837             ewitab           = _mm_cvttpd_epi32(ewrt);
838 #ifdef __XOP__
839             eweps            = _mm_frcz_pd(ewrt);
840 #else
841             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
842 #endif
843             twoeweps         = _mm_add_pd(eweps,eweps);
844             ewitab           = _mm_slli_epi32(ewitab,2);
845             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
846             ewtabD           = _mm_setzero_pd();
847             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
848             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
849             ewtabFn          = _mm_setzero_pd();
850             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
851             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
852             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
853             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
854             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
855
856             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
857
858             /* Update potential sum for this i atom from the interaction with this j atom. */
859             velec            = _mm_and_pd(velec,cutoff_mask);
860             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
861             velecsum         = _mm_add_pd(velecsum,velec);
862
863             fscal            = felec;
864
865             fscal            = _mm_and_pd(fscal,cutoff_mask);
866
867             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
868
869             /* Update vectorial force */
870             fix1             = _mm_macc_pd(dx11,fscal,fix1);
871             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
872             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
873             
874             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
875             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
876             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
877
878             }
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             if (gmx_mm_any_lt(rsq12,rcutoff2))
885             {
886
887             r12              = _mm_mul_pd(rsq12,rinv12);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = _mm_mul_pd(r12,ewtabscale);
893             ewitab           = _mm_cvttpd_epi32(ewrt);
894 #ifdef __XOP__
895             eweps            = _mm_frcz_pd(ewrt);
896 #else
897             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
898 #endif
899             twoeweps         = _mm_add_pd(eweps,eweps);
900             ewitab           = _mm_slli_epi32(ewitab,2);
901             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
902             ewtabD           = _mm_setzero_pd();
903             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
904             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
905             ewtabFn          = _mm_setzero_pd();
906             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
907             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
908             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
909             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
910             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
911
912             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
913
914             /* Update potential sum for this i atom from the interaction with this j atom. */
915             velec            = _mm_and_pd(velec,cutoff_mask);
916             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
917             velecsum         = _mm_add_pd(velecsum,velec);
918
919             fscal            = felec;
920
921             fscal            = _mm_and_pd(fscal,cutoff_mask);
922
923             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
924
925             /* Update vectorial force */
926             fix1             = _mm_macc_pd(dx12,fscal,fix1);
927             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
928             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
929             
930             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
931             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
932             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
933
934             }
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             if (gmx_mm_any_lt(rsq13,rcutoff2))
941             {
942
943             r13              = _mm_mul_pd(rsq13,rinv13);
944
945             /* EWALD ELECTROSTATICS */
946
947             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948             ewrt             = _mm_mul_pd(r13,ewtabscale);
949             ewitab           = _mm_cvttpd_epi32(ewrt);
950 #ifdef __XOP__
951             eweps            = _mm_frcz_pd(ewrt);
952 #else
953             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
954 #endif
955             twoeweps         = _mm_add_pd(eweps,eweps);
956             ewitab           = _mm_slli_epi32(ewitab,2);
957             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
958             ewtabD           = _mm_setzero_pd();
959             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
960             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
961             ewtabFn          = _mm_setzero_pd();
962             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
963             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
964             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
965             velec            = _mm_mul_pd(qq13,_mm_sub_pd(_mm_sub_pd(rinv13,sh_ewald),velec));
966             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
967
968             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
969
970             /* Update potential sum for this i atom from the interaction with this j atom. */
971             velec            = _mm_and_pd(velec,cutoff_mask);
972             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
973             velecsum         = _mm_add_pd(velecsum,velec);
974
975             fscal            = felec;
976
977             fscal            = _mm_and_pd(fscal,cutoff_mask);
978
979             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
980
981             /* Update vectorial force */
982             fix1             = _mm_macc_pd(dx13,fscal,fix1);
983             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
984             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
985             
986             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
987             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
988             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
989
990             }
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             if (gmx_mm_any_lt(rsq21,rcutoff2))
997             {
998
999             r21              = _mm_mul_pd(rsq21,rinv21);
1000
1001             /* EWALD ELECTROSTATICS */
1002
1003             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1004             ewrt             = _mm_mul_pd(r21,ewtabscale);
1005             ewitab           = _mm_cvttpd_epi32(ewrt);
1006 #ifdef __XOP__
1007             eweps            = _mm_frcz_pd(ewrt);
1008 #else
1009             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1010 #endif
1011             twoeweps         = _mm_add_pd(eweps,eweps);
1012             ewitab           = _mm_slli_epi32(ewitab,2);
1013             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1014             ewtabD           = _mm_setzero_pd();
1015             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1016             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1017             ewtabFn          = _mm_setzero_pd();
1018             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1019             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1020             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1021             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1022             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1023
1024             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1025
1026             /* Update potential sum for this i atom from the interaction with this j atom. */
1027             velec            = _mm_and_pd(velec,cutoff_mask);
1028             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1029             velecsum         = _mm_add_pd(velecsum,velec);
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm_and_pd(fscal,cutoff_mask);
1034
1035             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1036
1037             /* Update vectorial force */
1038             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1039             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1040             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1041             
1042             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1043             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1044             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1045
1046             }
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             if (gmx_mm_any_lt(rsq22,rcutoff2))
1053             {
1054
1055             r22              = _mm_mul_pd(rsq22,rinv22);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r22,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062 #ifdef __XOP__
1063             eweps            = _mm_frcz_pd(ewrt);
1064 #else
1065             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1066 #endif
1067             twoeweps         = _mm_add_pd(eweps,eweps);
1068             ewitab           = _mm_slli_epi32(ewitab,2);
1069             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1070             ewtabD           = _mm_setzero_pd();
1071             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1072             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1073             ewtabFn          = _mm_setzero_pd();
1074             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1075             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1076             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1077             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1078             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1079
1080             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1081
1082             /* Update potential sum for this i atom from the interaction with this j atom. */
1083             velec            = _mm_and_pd(velec,cutoff_mask);
1084             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1085             velecsum         = _mm_add_pd(velecsum,velec);
1086
1087             fscal            = felec;
1088
1089             fscal            = _mm_and_pd(fscal,cutoff_mask);
1090
1091             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1092
1093             /* Update vectorial force */
1094             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1095             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1096             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1097             
1098             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1099             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1100             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1101
1102             }
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             if (gmx_mm_any_lt(rsq23,rcutoff2))
1109             {
1110
1111             r23              = _mm_mul_pd(rsq23,rinv23);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _mm_mul_pd(r23,ewtabscale);
1117             ewitab           = _mm_cvttpd_epi32(ewrt);
1118 #ifdef __XOP__
1119             eweps            = _mm_frcz_pd(ewrt);
1120 #else
1121             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1122 #endif
1123             twoeweps         = _mm_add_pd(eweps,eweps);
1124             ewitab           = _mm_slli_epi32(ewitab,2);
1125             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1126             ewtabD           = _mm_setzero_pd();
1127             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1128             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1129             ewtabFn          = _mm_setzero_pd();
1130             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1131             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1132             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1133             velec            = _mm_mul_pd(qq23,_mm_sub_pd(_mm_sub_pd(rinv23,sh_ewald),velec));
1134             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1135
1136             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
1137
1138             /* Update potential sum for this i atom from the interaction with this j atom. */
1139             velec            = _mm_and_pd(velec,cutoff_mask);
1140             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1141             velecsum         = _mm_add_pd(velecsum,velec);
1142
1143             fscal            = felec;
1144
1145             fscal            = _mm_and_pd(fscal,cutoff_mask);
1146
1147             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1148
1149             /* Update vectorial force */
1150             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1151             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1152             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1153             
1154             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1155             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1156             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1157
1158             }
1159
1160             /**************************
1161              * CALCULATE INTERACTIONS *
1162              **************************/
1163
1164             if (gmx_mm_any_lt(rsq31,rcutoff2))
1165             {
1166
1167             r31              = _mm_mul_pd(rsq31,rinv31);
1168
1169             /* EWALD ELECTROSTATICS */
1170
1171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1172             ewrt             = _mm_mul_pd(r31,ewtabscale);
1173             ewitab           = _mm_cvttpd_epi32(ewrt);
1174 #ifdef __XOP__
1175             eweps            = _mm_frcz_pd(ewrt);
1176 #else
1177             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1178 #endif
1179             twoeweps         = _mm_add_pd(eweps,eweps);
1180             ewitab           = _mm_slli_epi32(ewitab,2);
1181             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1182             ewtabD           = _mm_setzero_pd();
1183             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1184             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1185             ewtabFn          = _mm_setzero_pd();
1186             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1187             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1188             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1189             velec            = _mm_mul_pd(qq31,_mm_sub_pd(_mm_sub_pd(rinv31,sh_ewald),velec));
1190             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1191
1192             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
1193
1194             /* Update potential sum for this i atom from the interaction with this j atom. */
1195             velec            = _mm_and_pd(velec,cutoff_mask);
1196             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1197             velecsum         = _mm_add_pd(velecsum,velec);
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm_and_pd(fscal,cutoff_mask);
1202
1203             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1204
1205             /* Update vectorial force */
1206             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1207             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1208             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1209             
1210             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1211             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1212             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1213
1214             }
1215
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             if (gmx_mm_any_lt(rsq32,rcutoff2))
1221             {
1222
1223             r32              = _mm_mul_pd(rsq32,rinv32);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm_mul_pd(r32,ewtabscale);
1229             ewitab           = _mm_cvttpd_epi32(ewrt);
1230 #ifdef __XOP__
1231             eweps            = _mm_frcz_pd(ewrt);
1232 #else
1233             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1234 #endif
1235             twoeweps         = _mm_add_pd(eweps,eweps);
1236             ewitab           = _mm_slli_epi32(ewitab,2);
1237             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1238             ewtabD           = _mm_setzero_pd();
1239             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1240             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1241             ewtabFn          = _mm_setzero_pd();
1242             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1243             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1244             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1245             velec            = _mm_mul_pd(qq32,_mm_sub_pd(_mm_sub_pd(rinv32,sh_ewald),velec));
1246             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1247
1248             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
1249
1250             /* Update potential sum for this i atom from the interaction with this j atom. */
1251             velec            = _mm_and_pd(velec,cutoff_mask);
1252             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1253             velecsum         = _mm_add_pd(velecsum,velec);
1254
1255             fscal            = felec;
1256
1257             fscal            = _mm_and_pd(fscal,cutoff_mask);
1258
1259             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1260
1261             /* Update vectorial force */
1262             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1263             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1264             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1265             
1266             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1267             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1268             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1269
1270             }
1271
1272             /**************************
1273              * CALCULATE INTERACTIONS *
1274              **************************/
1275
1276             if (gmx_mm_any_lt(rsq33,rcutoff2))
1277             {
1278
1279             r33              = _mm_mul_pd(rsq33,rinv33);
1280
1281             /* EWALD ELECTROSTATICS */
1282
1283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1284             ewrt             = _mm_mul_pd(r33,ewtabscale);
1285             ewitab           = _mm_cvttpd_epi32(ewrt);
1286 #ifdef __XOP__
1287             eweps            = _mm_frcz_pd(ewrt);
1288 #else
1289             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1290 #endif
1291             twoeweps         = _mm_add_pd(eweps,eweps);
1292             ewitab           = _mm_slli_epi32(ewitab,2);
1293             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1294             ewtabD           = _mm_setzero_pd();
1295             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1296             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1297             ewtabFn          = _mm_setzero_pd();
1298             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1299             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1300             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1301             velec            = _mm_mul_pd(qq33,_mm_sub_pd(_mm_sub_pd(rinv33,sh_ewald),velec));
1302             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1303
1304             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
1305
1306             /* Update potential sum for this i atom from the interaction with this j atom. */
1307             velec            = _mm_and_pd(velec,cutoff_mask);
1308             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1309             velecsum         = _mm_add_pd(velecsum,velec);
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm_and_pd(fscal,cutoff_mask);
1314
1315             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1316
1317             /* Update vectorial force */
1318             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1319             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1320             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1321             
1322             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1323             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1324             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1325
1326             }
1327
1328             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1329
1330             /* Inner loop uses 441 flops */
1331         }
1332
1333         /* End of innermost loop */
1334
1335         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1336                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1337
1338         ggid                        = gid[iidx];
1339         /* Update potential energies */
1340         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1341
1342         /* Increment number of inner iterations */
1343         inneriter                  += j_index_end - j_index_start;
1344
1345         /* Outer loop uses 19 flops */
1346     }
1347
1348     /* Increment number of outer iterations */
1349     outeriter        += nri;
1350
1351     /* Update outer/inner flops */
1352
1353     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*441);
1354 }
1355 /*
1356  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4W4_F_avx_128_fma_double
1357  * Electrostatics interaction: Ewald
1358  * VdW interaction:            None
1359  * Geometry:                   Water4-Water4
1360  * Calculate force/pot:        Force
1361  */
1362 void
1363 nb_kernel_ElecEwSh_VdwNone_GeomW4W4_F_avx_128_fma_double
1364                     (t_nblist * gmx_restrict                nlist,
1365                      rvec * gmx_restrict                    xx,
1366                      rvec * gmx_restrict                    ff,
1367                      t_forcerec * gmx_restrict              fr,
1368                      t_mdatoms * gmx_restrict               mdatoms,
1369                      nb_kernel_data_t * gmx_restrict        kernel_data,
1370                      t_nrnb * gmx_restrict                  nrnb)
1371 {
1372     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1373      * just 0 for non-waters.
1374      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1375      * jnr indices corresponding to data put in the four positions in the SIMD register.
1376      */
1377     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1378     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1379     int              jnrA,jnrB;
1380     int              j_coord_offsetA,j_coord_offsetB;
1381     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1382     real             rcutoff_scalar;
1383     real             *shiftvec,*fshift,*x,*f;
1384     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1385     int              vdwioffset1;
1386     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1387     int              vdwioffset2;
1388     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1389     int              vdwioffset3;
1390     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1391     int              vdwjidx1A,vdwjidx1B;
1392     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1393     int              vdwjidx2A,vdwjidx2B;
1394     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1395     int              vdwjidx3A,vdwjidx3B;
1396     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1397     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1398     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1399     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1400     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1401     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1402     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1403     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1404     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1405     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1406     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1407     real             *charge;
1408     __m128i          ewitab;
1409     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1410     real             *ewtab;
1411     __m128d          dummy_mask,cutoff_mask;
1412     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1413     __m128d          one     = _mm_set1_pd(1.0);
1414     __m128d          two     = _mm_set1_pd(2.0);
1415     x                = xx[0];
1416     f                = ff[0];
1417
1418     nri              = nlist->nri;
1419     iinr             = nlist->iinr;
1420     jindex           = nlist->jindex;
1421     jjnr             = nlist->jjnr;
1422     shiftidx         = nlist->shift;
1423     gid              = nlist->gid;
1424     shiftvec         = fr->shift_vec[0];
1425     fshift           = fr->fshift[0];
1426     facel            = _mm_set1_pd(fr->epsfac);
1427     charge           = mdatoms->chargeA;
1428
1429     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1430     ewtab            = fr->ic->tabq_coul_F;
1431     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1432     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1433
1434     /* Setup water-specific parameters */
1435     inr              = nlist->iinr[0];
1436     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1437     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1438     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1439
1440     jq1              = _mm_set1_pd(charge[inr+1]);
1441     jq2              = _mm_set1_pd(charge[inr+2]);
1442     jq3              = _mm_set1_pd(charge[inr+3]);
1443     qq11             = _mm_mul_pd(iq1,jq1);
1444     qq12             = _mm_mul_pd(iq1,jq2);
1445     qq13             = _mm_mul_pd(iq1,jq3);
1446     qq21             = _mm_mul_pd(iq2,jq1);
1447     qq22             = _mm_mul_pd(iq2,jq2);
1448     qq23             = _mm_mul_pd(iq2,jq3);
1449     qq31             = _mm_mul_pd(iq3,jq1);
1450     qq32             = _mm_mul_pd(iq3,jq2);
1451     qq33             = _mm_mul_pd(iq3,jq3);
1452
1453     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1454     rcutoff_scalar   = fr->rcoulomb;
1455     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1456     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1457
1458     /* Avoid stupid compiler warnings */
1459     jnrA = jnrB = 0;
1460     j_coord_offsetA = 0;
1461     j_coord_offsetB = 0;
1462
1463     outeriter        = 0;
1464     inneriter        = 0;
1465
1466     /* Start outer loop over neighborlists */
1467     for(iidx=0; iidx<nri; iidx++)
1468     {
1469         /* Load shift vector for this list */
1470         i_shift_offset   = DIM*shiftidx[iidx];
1471
1472         /* Load limits for loop over neighbors */
1473         j_index_start    = jindex[iidx];
1474         j_index_end      = jindex[iidx+1];
1475
1476         /* Get outer coordinate index */
1477         inr              = iinr[iidx];
1478         i_coord_offset   = DIM*inr;
1479
1480         /* Load i particle coords and add shift vector */
1481         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1482                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1483
1484         fix1             = _mm_setzero_pd();
1485         fiy1             = _mm_setzero_pd();
1486         fiz1             = _mm_setzero_pd();
1487         fix2             = _mm_setzero_pd();
1488         fiy2             = _mm_setzero_pd();
1489         fiz2             = _mm_setzero_pd();
1490         fix3             = _mm_setzero_pd();
1491         fiy3             = _mm_setzero_pd();
1492         fiz3             = _mm_setzero_pd();
1493
1494         /* Start inner kernel loop */
1495         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1496         {
1497
1498             /* Get j neighbor index, and coordinate index */
1499             jnrA             = jjnr[jidx];
1500             jnrB             = jjnr[jidx+1];
1501             j_coord_offsetA  = DIM*jnrA;
1502             j_coord_offsetB  = DIM*jnrB;
1503
1504             /* load j atom coordinates */
1505             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1506                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1507
1508             /* Calculate displacement vector */
1509             dx11             = _mm_sub_pd(ix1,jx1);
1510             dy11             = _mm_sub_pd(iy1,jy1);
1511             dz11             = _mm_sub_pd(iz1,jz1);
1512             dx12             = _mm_sub_pd(ix1,jx2);
1513             dy12             = _mm_sub_pd(iy1,jy2);
1514             dz12             = _mm_sub_pd(iz1,jz2);
1515             dx13             = _mm_sub_pd(ix1,jx3);
1516             dy13             = _mm_sub_pd(iy1,jy3);
1517             dz13             = _mm_sub_pd(iz1,jz3);
1518             dx21             = _mm_sub_pd(ix2,jx1);
1519             dy21             = _mm_sub_pd(iy2,jy1);
1520             dz21             = _mm_sub_pd(iz2,jz1);
1521             dx22             = _mm_sub_pd(ix2,jx2);
1522             dy22             = _mm_sub_pd(iy2,jy2);
1523             dz22             = _mm_sub_pd(iz2,jz2);
1524             dx23             = _mm_sub_pd(ix2,jx3);
1525             dy23             = _mm_sub_pd(iy2,jy3);
1526             dz23             = _mm_sub_pd(iz2,jz3);
1527             dx31             = _mm_sub_pd(ix3,jx1);
1528             dy31             = _mm_sub_pd(iy3,jy1);
1529             dz31             = _mm_sub_pd(iz3,jz1);
1530             dx32             = _mm_sub_pd(ix3,jx2);
1531             dy32             = _mm_sub_pd(iy3,jy2);
1532             dz32             = _mm_sub_pd(iz3,jz2);
1533             dx33             = _mm_sub_pd(ix3,jx3);
1534             dy33             = _mm_sub_pd(iy3,jy3);
1535             dz33             = _mm_sub_pd(iz3,jz3);
1536
1537             /* Calculate squared distance and things based on it */
1538             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1539             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1540             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1541             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1542             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1543             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1544             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1545             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1546             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1547
1548             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1549             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1550             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1551             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1552             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1553             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1554             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1555             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1556             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1557
1558             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1559             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1560             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1561             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1562             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1563             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1564             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1565             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1566             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1567
1568             fjx1             = _mm_setzero_pd();
1569             fjy1             = _mm_setzero_pd();
1570             fjz1             = _mm_setzero_pd();
1571             fjx2             = _mm_setzero_pd();
1572             fjy2             = _mm_setzero_pd();
1573             fjz2             = _mm_setzero_pd();
1574             fjx3             = _mm_setzero_pd();
1575             fjy3             = _mm_setzero_pd();
1576             fjz3             = _mm_setzero_pd();
1577
1578             /**************************
1579              * CALCULATE INTERACTIONS *
1580              **************************/
1581
1582             if (gmx_mm_any_lt(rsq11,rcutoff2))
1583             {
1584
1585             r11              = _mm_mul_pd(rsq11,rinv11);
1586
1587             /* EWALD ELECTROSTATICS */
1588
1589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1590             ewrt             = _mm_mul_pd(r11,ewtabscale);
1591             ewitab           = _mm_cvttpd_epi32(ewrt);
1592 #ifdef __XOP__
1593             eweps            = _mm_frcz_pd(ewrt);
1594 #else
1595             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1596 #endif
1597             twoeweps         = _mm_add_pd(eweps,eweps);
1598             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1599                                          &ewtabF,&ewtabFn);
1600             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1601             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1602
1603             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1604
1605             fscal            = felec;
1606
1607             fscal            = _mm_and_pd(fscal,cutoff_mask);
1608
1609             /* Update vectorial force */
1610             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1611             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1612             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1613             
1614             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1615             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1616             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1617
1618             }
1619
1620             /**************************
1621              * CALCULATE INTERACTIONS *
1622              **************************/
1623
1624             if (gmx_mm_any_lt(rsq12,rcutoff2))
1625             {
1626
1627             r12              = _mm_mul_pd(rsq12,rinv12);
1628
1629             /* EWALD ELECTROSTATICS */
1630
1631             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1632             ewrt             = _mm_mul_pd(r12,ewtabscale);
1633             ewitab           = _mm_cvttpd_epi32(ewrt);
1634 #ifdef __XOP__
1635             eweps            = _mm_frcz_pd(ewrt);
1636 #else
1637             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1638 #endif
1639             twoeweps         = _mm_add_pd(eweps,eweps);
1640             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1641                                          &ewtabF,&ewtabFn);
1642             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1643             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1644
1645             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1646
1647             fscal            = felec;
1648
1649             fscal            = _mm_and_pd(fscal,cutoff_mask);
1650
1651             /* Update vectorial force */
1652             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1653             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1654             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1655             
1656             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1657             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1658             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1659
1660             }
1661
1662             /**************************
1663              * CALCULATE INTERACTIONS *
1664              **************************/
1665
1666             if (gmx_mm_any_lt(rsq13,rcutoff2))
1667             {
1668
1669             r13              = _mm_mul_pd(rsq13,rinv13);
1670
1671             /* EWALD ELECTROSTATICS */
1672
1673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1674             ewrt             = _mm_mul_pd(r13,ewtabscale);
1675             ewitab           = _mm_cvttpd_epi32(ewrt);
1676 #ifdef __XOP__
1677             eweps            = _mm_frcz_pd(ewrt);
1678 #else
1679             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1680 #endif
1681             twoeweps         = _mm_add_pd(eweps,eweps);
1682             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1683                                          &ewtabF,&ewtabFn);
1684             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1685             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1686
1687             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
1688
1689             fscal            = felec;
1690
1691             fscal            = _mm_and_pd(fscal,cutoff_mask);
1692
1693             /* Update vectorial force */
1694             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1695             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1696             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1697             
1698             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1699             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1700             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1701
1702             }
1703
1704             /**************************
1705              * CALCULATE INTERACTIONS *
1706              **************************/
1707
1708             if (gmx_mm_any_lt(rsq21,rcutoff2))
1709             {
1710
1711             r21              = _mm_mul_pd(rsq21,rinv21);
1712
1713             /* EWALD ELECTROSTATICS */
1714
1715             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1716             ewrt             = _mm_mul_pd(r21,ewtabscale);
1717             ewitab           = _mm_cvttpd_epi32(ewrt);
1718 #ifdef __XOP__
1719             eweps            = _mm_frcz_pd(ewrt);
1720 #else
1721             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1722 #endif
1723             twoeweps         = _mm_add_pd(eweps,eweps);
1724             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1725                                          &ewtabF,&ewtabFn);
1726             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1727             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1728
1729             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1730
1731             fscal            = felec;
1732
1733             fscal            = _mm_and_pd(fscal,cutoff_mask);
1734
1735             /* Update vectorial force */
1736             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1737             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1738             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1739             
1740             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1741             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1742             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1743
1744             }
1745
1746             /**************************
1747              * CALCULATE INTERACTIONS *
1748              **************************/
1749
1750             if (gmx_mm_any_lt(rsq22,rcutoff2))
1751             {
1752
1753             r22              = _mm_mul_pd(rsq22,rinv22);
1754
1755             /* EWALD ELECTROSTATICS */
1756
1757             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1758             ewrt             = _mm_mul_pd(r22,ewtabscale);
1759             ewitab           = _mm_cvttpd_epi32(ewrt);
1760 #ifdef __XOP__
1761             eweps            = _mm_frcz_pd(ewrt);
1762 #else
1763             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1764 #endif
1765             twoeweps         = _mm_add_pd(eweps,eweps);
1766             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1767                                          &ewtabF,&ewtabFn);
1768             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1769             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1770
1771             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1772
1773             fscal            = felec;
1774
1775             fscal            = _mm_and_pd(fscal,cutoff_mask);
1776
1777             /* Update vectorial force */
1778             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1779             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1780             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1781             
1782             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1783             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1784             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1785
1786             }
1787
1788             /**************************
1789              * CALCULATE INTERACTIONS *
1790              **************************/
1791
1792             if (gmx_mm_any_lt(rsq23,rcutoff2))
1793             {
1794
1795             r23              = _mm_mul_pd(rsq23,rinv23);
1796
1797             /* EWALD ELECTROSTATICS */
1798
1799             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1800             ewrt             = _mm_mul_pd(r23,ewtabscale);
1801             ewitab           = _mm_cvttpd_epi32(ewrt);
1802 #ifdef __XOP__
1803             eweps            = _mm_frcz_pd(ewrt);
1804 #else
1805             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1806 #endif
1807             twoeweps         = _mm_add_pd(eweps,eweps);
1808             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1809                                          &ewtabF,&ewtabFn);
1810             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1811             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1812
1813             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
1814
1815             fscal            = felec;
1816
1817             fscal            = _mm_and_pd(fscal,cutoff_mask);
1818
1819             /* Update vectorial force */
1820             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1821             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1822             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1823             
1824             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1825             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1826             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1827
1828             }
1829
1830             /**************************
1831              * CALCULATE INTERACTIONS *
1832              **************************/
1833
1834             if (gmx_mm_any_lt(rsq31,rcutoff2))
1835             {
1836
1837             r31              = _mm_mul_pd(rsq31,rinv31);
1838
1839             /* EWALD ELECTROSTATICS */
1840
1841             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1842             ewrt             = _mm_mul_pd(r31,ewtabscale);
1843             ewitab           = _mm_cvttpd_epi32(ewrt);
1844 #ifdef __XOP__
1845             eweps            = _mm_frcz_pd(ewrt);
1846 #else
1847             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1848 #endif
1849             twoeweps         = _mm_add_pd(eweps,eweps);
1850             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1851                                          &ewtabF,&ewtabFn);
1852             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1853             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1854
1855             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
1856
1857             fscal            = felec;
1858
1859             fscal            = _mm_and_pd(fscal,cutoff_mask);
1860
1861             /* Update vectorial force */
1862             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1863             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1864             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1865             
1866             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1867             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1868             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1869
1870             }
1871
1872             /**************************
1873              * CALCULATE INTERACTIONS *
1874              **************************/
1875
1876             if (gmx_mm_any_lt(rsq32,rcutoff2))
1877             {
1878
1879             r32              = _mm_mul_pd(rsq32,rinv32);
1880
1881             /* EWALD ELECTROSTATICS */
1882
1883             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1884             ewrt             = _mm_mul_pd(r32,ewtabscale);
1885             ewitab           = _mm_cvttpd_epi32(ewrt);
1886 #ifdef __XOP__
1887             eweps            = _mm_frcz_pd(ewrt);
1888 #else
1889             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1890 #endif
1891             twoeweps         = _mm_add_pd(eweps,eweps);
1892             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1893                                          &ewtabF,&ewtabFn);
1894             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1895             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1896
1897             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
1898
1899             fscal            = felec;
1900
1901             fscal            = _mm_and_pd(fscal,cutoff_mask);
1902
1903             /* Update vectorial force */
1904             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1905             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1906             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1907             
1908             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1909             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1910             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1911
1912             }
1913
1914             /**************************
1915              * CALCULATE INTERACTIONS *
1916              **************************/
1917
1918             if (gmx_mm_any_lt(rsq33,rcutoff2))
1919             {
1920
1921             r33              = _mm_mul_pd(rsq33,rinv33);
1922
1923             /* EWALD ELECTROSTATICS */
1924
1925             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1926             ewrt             = _mm_mul_pd(r33,ewtabscale);
1927             ewitab           = _mm_cvttpd_epi32(ewrt);
1928 #ifdef __XOP__
1929             eweps            = _mm_frcz_pd(ewrt);
1930 #else
1931             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1932 #endif
1933             twoeweps         = _mm_add_pd(eweps,eweps);
1934             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1935                                          &ewtabF,&ewtabFn);
1936             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1937             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1938
1939             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
1940
1941             fscal            = felec;
1942
1943             fscal            = _mm_and_pd(fscal,cutoff_mask);
1944
1945             /* Update vectorial force */
1946             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1947             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1948             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1949             
1950             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1951             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1952             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1953
1954             }
1955
1956             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA+DIM,f+j_coord_offsetB+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1957
1958             /* Inner loop uses 378 flops */
1959         }
1960
1961         if(jidx<j_index_end)
1962         {
1963
1964             jnrA             = jjnr[jidx];
1965             j_coord_offsetA  = DIM*jnrA;
1966
1967             /* load j atom coordinates */
1968             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA+DIM,
1969                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1970
1971             /* Calculate displacement vector */
1972             dx11             = _mm_sub_pd(ix1,jx1);
1973             dy11             = _mm_sub_pd(iy1,jy1);
1974             dz11             = _mm_sub_pd(iz1,jz1);
1975             dx12             = _mm_sub_pd(ix1,jx2);
1976             dy12             = _mm_sub_pd(iy1,jy2);
1977             dz12             = _mm_sub_pd(iz1,jz2);
1978             dx13             = _mm_sub_pd(ix1,jx3);
1979             dy13             = _mm_sub_pd(iy1,jy3);
1980             dz13             = _mm_sub_pd(iz1,jz3);
1981             dx21             = _mm_sub_pd(ix2,jx1);
1982             dy21             = _mm_sub_pd(iy2,jy1);
1983             dz21             = _mm_sub_pd(iz2,jz1);
1984             dx22             = _mm_sub_pd(ix2,jx2);
1985             dy22             = _mm_sub_pd(iy2,jy2);
1986             dz22             = _mm_sub_pd(iz2,jz2);
1987             dx23             = _mm_sub_pd(ix2,jx3);
1988             dy23             = _mm_sub_pd(iy2,jy3);
1989             dz23             = _mm_sub_pd(iz2,jz3);
1990             dx31             = _mm_sub_pd(ix3,jx1);
1991             dy31             = _mm_sub_pd(iy3,jy1);
1992             dz31             = _mm_sub_pd(iz3,jz1);
1993             dx32             = _mm_sub_pd(ix3,jx2);
1994             dy32             = _mm_sub_pd(iy3,jy2);
1995             dz32             = _mm_sub_pd(iz3,jz2);
1996             dx33             = _mm_sub_pd(ix3,jx3);
1997             dy33             = _mm_sub_pd(iy3,jy3);
1998             dz33             = _mm_sub_pd(iz3,jz3);
1999
2000             /* Calculate squared distance and things based on it */
2001             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2002             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2003             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
2004             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2005             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2006             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
2007             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
2008             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
2009             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
2010
2011             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2012             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2013             rinv13           = gmx_mm_invsqrt_pd(rsq13);
2014             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2015             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2016             rinv23           = gmx_mm_invsqrt_pd(rsq23);
2017             rinv31           = gmx_mm_invsqrt_pd(rsq31);
2018             rinv32           = gmx_mm_invsqrt_pd(rsq32);
2019             rinv33           = gmx_mm_invsqrt_pd(rsq33);
2020
2021             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2022             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2023             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
2024             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2025             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2026             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
2027             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
2028             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
2029             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
2030
2031             fjx1             = _mm_setzero_pd();
2032             fjy1             = _mm_setzero_pd();
2033             fjz1             = _mm_setzero_pd();
2034             fjx2             = _mm_setzero_pd();
2035             fjy2             = _mm_setzero_pd();
2036             fjz2             = _mm_setzero_pd();
2037             fjx3             = _mm_setzero_pd();
2038             fjy3             = _mm_setzero_pd();
2039             fjz3             = _mm_setzero_pd();
2040
2041             /**************************
2042              * CALCULATE INTERACTIONS *
2043              **************************/
2044
2045             if (gmx_mm_any_lt(rsq11,rcutoff2))
2046             {
2047
2048             r11              = _mm_mul_pd(rsq11,rinv11);
2049
2050             /* EWALD ELECTROSTATICS */
2051
2052             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2053             ewrt             = _mm_mul_pd(r11,ewtabscale);
2054             ewitab           = _mm_cvttpd_epi32(ewrt);
2055 #ifdef __XOP__
2056             eweps            = _mm_frcz_pd(ewrt);
2057 #else
2058             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2059 #endif
2060             twoeweps         = _mm_add_pd(eweps,eweps);
2061             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2062             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2063             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2064
2065             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2066
2067             fscal            = felec;
2068
2069             fscal            = _mm_and_pd(fscal,cutoff_mask);
2070
2071             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2072
2073             /* Update vectorial force */
2074             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2075             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2076             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2077             
2078             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2079             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2080             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2081
2082             }
2083
2084             /**************************
2085              * CALCULATE INTERACTIONS *
2086              **************************/
2087
2088             if (gmx_mm_any_lt(rsq12,rcutoff2))
2089             {
2090
2091             r12              = _mm_mul_pd(rsq12,rinv12);
2092
2093             /* EWALD ELECTROSTATICS */
2094
2095             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2096             ewrt             = _mm_mul_pd(r12,ewtabscale);
2097             ewitab           = _mm_cvttpd_epi32(ewrt);
2098 #ifdef __XOP__
2099             eweps            = _mm_frcz_pd(ewrt);
2100 #else
2101             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2102 #endif
2103             twoeweps         = _mm_add_pd(eweps,eweps);
2104             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2105             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2106             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2107
2108             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2109
2110             fscal            = felec;
2111
2112             fscal            = _mm_and_pd(fscal,cutoff_mask);
2113
2114             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2115
2116             /* Update vectorial force */
2117             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2118             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2119             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2120             
2121             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2122             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2123             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2124
2125             }
2126
2127             /**************************
2128              * CALCULATE INTERACTIONS *
2129              **************************/
2130
2131             if (gmx_mm_any_lt(rsq13,rcutoff2))
2132             {
2133
2134             r13              = _mm_mul_pd(rsq13,rinv13);
2135
2136             /* EWALD ELECTROSTATICS */
2137
2138             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2139             ewrt             = _mm_mul_pd(r13,ewtabscale);
2140             ewitab           = _mm_cvttpd_epi32(ewrt);
2141 #ifdef __XOP__
2142             eweps            = _mm_frcz_pd(ewrt);
2143 #else
2144             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2145 #endif
2146             twoeweps         = _mm_add_pd(eweps,eweps);
2147             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2148             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2149             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2150
2151             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
2152
2153             fscal            = felec;
2154
2155             fscal            = _mm_and_pd(fscal,cutoff_mask);
2156
2157             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2158
2159             /* Update vectorial force */
2160             fix1             = _mm_macc_pd(dx13,fscal,fix1);
2161             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
2162             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
2163             
2164             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
2165             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
2166             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
2167
2168             }
2169
2170             /**************************
2171              * CALCULATE INTERACTIONS *
2172              **************************/
2173
2174             if (gmx_mm_any_lt(rsq21,rcutoff2))
2175             {
2176
2177             r21              = _mm_mul_pd(rsq21,rinv21);
2178
2179             /* EWALD ELECTROSTATICS */
2180
2181             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2182             ewrt             = _mm_mul_pd(r21,ewtabscale);
2183             ewitab           = _mm_cvttpd_epi32(ewrt);
2184 #ifdef __XOP__
2185             eweps            = _mm_frcz_pd(ewrt);
2186 #else
2187             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2188 #endif
2189             twoeweps         = _mm_add_pd(eweps,eweps);
2190             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2191             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2192             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2193
2194             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2195
2196             fscal            = felec;
2197
2198             fscal            = _mm_and_pd(fscal,cutoff_mask);
2199
2200             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2201
2202             /* Update vectorial force */
2203             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2204             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2205             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2206             
2207             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2208             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2209             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2210
2211             }
2212
2213             /**************************
2214              * CALCULATE INTERACTIONS *
2215              **************************/
2216
2217             if (gmx_mm_any_lt(rsq22,rcutoff2))
2218             {
2219
2220             r22              = _mm_mul_pd(rsq22,rinv22);
2221
2222             /* EWALD ELECTROSTATICS */
2223
2224             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2225             ewrt             = _mm_mul_pd(r22,ewtabscale);
2226             ewitab           = _mm_cvttpd_epi32(ewrt);
2227 #ifdef __XOP__
2228             eweps            = _mm_frcz_pd(ewrt);
2229 #else
2230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2231 #endif
2232             twoeweps         = _mm_add_pd(eweps,eweps);
2233             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2234             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2235             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2236
2237             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2238
2239             fscal            = felec;
2240
2241             fscal            = _mm_and_pd(fscal,cutoff_mask);
2242
2243             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2244
2245             /* Update vectorial force */
2246             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2247             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2248             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2249             
2250             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2251             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2252             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2253
2254             }
2255
2256             /**************************
2257              * CALCULATE INTERACTIONS *
2258              **************************/
2259
2260             if (gmx_mm_any_lt(rsq23,rcutoff2))
2261             {
2262
2263             r23              = _mm_mul_pd(rsq23,rinv23);
2264
2265             /* EWALD ELECTROSTATICS */
2266
2267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2268             ewrt             = _mm_mul_pd(r23,ewtabscale);
2269             ewitab           = _mm_cvttpd_epi32(ewrt);
2270 #ifdef __XOP__
2271             eweps            = _mm_frcz_pd(ewrt);
2272 #else
2273             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2274 #endif
2275             twoeweps         = _mm_add_pd(eweps,eweps);
2276             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2277             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2278             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2279
2280             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
2281
2282             fscal            = felec;
2283
2284             fscal            = _mm_and_pd(fscal,cutoff_mask);
2285
2286             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2287
2288             /* Update vectorial force */
2289             fix2             = _mm_macc_pd(dx23,fscal,fix2);
2290             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
2291             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
2292             
2293             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
2294             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
2295             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
2296
2297             }
2298
2299             /**************************
2300              * CALCULATE INTERACTIONS *
2301              **************************/
2302
2303             if (gmx_mm_any_lt(rsq31,rcutoff2))
2304             {
2305
2306             r31              = _mm_mul_pd(rsq31,rinv31);
2307
2308             /* EWALD ELECTROSTATICS */
2309
2310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2311             ewrt             = _mm_mul_pd(r31,ewtabscale);
2312             ewitab           = _mm_cvttpd_epi32(ewrt);
2313 #ifdef __XOP__
2314             eweps            = _mm_frcz_pd(ewrt);
2315 #else
2316             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2317 #endif
2318             twoeweps         = _mm_add_pd(eweps,eweps);
2319             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2320             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2321             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2322
2323             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
2324
2325             fscal            = felec;
2326
2327             fscal            = _mm_and_pd(fscal,cutoff_mask);
2328
2329             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2330
2331             /* Update vectorial force */
2332             fix3             = _mm_macc_pd(dx31,fscal,fix3);
2333             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
2334             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
2335             
2336             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
2337             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
2338             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
2339
2340             }
2341
2342             /**************************
2343              * CALCULATE INTERACTIONS *
2344              **************************/
2345
2346             if (gmx_mm_any_lt(rsq32,rcutoff2))
2347             {
2348
2349             r32              = _mm_mul_pd(rsq32,rinv32);
2350
2351             /* EWALD ELECTROSTATICS */
2352
2353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2354             ewrt             = _mm_mul_pd(r32,ewtabscale);
2355             ewitab           = _mm_cvttpd_epi32(ewrt);
2356 #ifdef __XOP__
2357             eweps            = _mm_frcz_pd(ewrt);
2358 #else
2359             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2360 #endif
2361             twoeweps         = _mm_add_pd(eweps,eweps);
2362             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2363             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2364             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2365
2366             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
2367
2368             fscal            = felec;
2369
2370             fscal            = _mm_and_pd(fscal,cutoff_mask);
2371
2372             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2373
2374             /* Update vectorial force */
2375             fix3             = _mm_macc_pd(dx32,fscal,fix3);
2376             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
2377             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
2378             
2379             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
2380             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
2381             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
2382
2383             }
2384
2385             /**************************
2386              * CALCULATE INTERACTIONS *
2387              **************************/
2388
2389             if (gmx_mm_any_lt(rsq33,rcutoff2))
2390             {
2391
2392             r33              = _mm_mul_pd(rsq33,rinv33);
2393
2394             /* EWALD ELECTROSTATICS */
2395
2396             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2397             ewrt             = _mm_mul_pd(r33,ewtabscale);
2398             ewitab           = _mm_cvttpd_epi32(ewrt);
2399 #ifdef __XOP__
2400             eweps            = _mm_frcz_pd(ewrt);
2401 #else
2402             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2403 #endif
2404             twoeweps         = _mm_add_pd(eweps,eweps);
2405             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2406             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2407             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2408
2409             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
2410
2411             fscal            = felec;
2412
2413             fscal            = _mm_and_pd(fscal,cutoff_mask);
2414
2415             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2416
2417             /* Update vectorial force */
2418             fix3             = _mm_macc_pd(dx33,fscal,fix3);
2419             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
2420             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
2421             
2422             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
2423             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
2424             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
2425
2426             }
2427
2428             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2429
2430             /* Inner loop uses 378 flops */
2431         }
2432
2433         /* End of innermost loop */
2434
2435         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2436                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
2437
2438         /* Increment number of inner iterations */
2439         inneriter                  += j_index_end - j_index_start;
2440
2441         /* Outer loop uses 18 flops */
2442     }
2443
2444     /* Increment number of outer iterations */
2445     outeriter        += nri;
2446
2447     /* Update outer/inner flops */
2448
2449     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*378);
2450 }