a7dff56e7492eca34fd229e69146c3c4a47b35bd
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
101     ewtab            = fr->ic->tabq_coul_FDV0;
102     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
103     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
108     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
109     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm_set1_pd(rcutoff_scalar);
114     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
140                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
141
142         fix1             = _mm_setzero_pd();
143         fiy1             = _mm_setzero_pd();
144         fiz1             = _mm_setzero_pd();
145         fix2             = _mm_setzero_pd();
146         fiy2             = _mm_setzero_pd();
147         fiz2             = _mm_setzero_pd();
148         fix3             = _mm_setzero_pd();
149         fiy3             = _mm_setzero_pd();
150         fiz3             = _mm_setzero_pd();
151
152         /* Reset potential sums */
153         velecsum         = _mm_setzero_pd();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             j_coord_offsetA  = DIM*jnrA;
163             j_coord_offsetB  = DIM*jnrB;
164
165             /* load j atom coordinates */
166             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx10             = _mm_sub_pd(ix1,jx0);
171             dy10             = _mm_sub_pd(iy1,jy0);
172             dz10             = _mm_sub_pd(iz1,jz0);
173             dx20             = _mm_sub_pd(ix2,jx0);
174             dy20             = _mm_sub_pd(iy2,jy0);
175             dz20             = _mm_sub_pd(iz2,jz0);
176             dx30             = _mm_sub_pd(ix3,jx0);
177             dy30             = _mm_sub_pd(iy3,jy0);
178             dz30             = _mm_sub_pd(iz3,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
182             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
183             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
184
185             rinv10           = gmx_mm_invsqrt_pd(rsq10);
186             rinv20           = gmx_mm_invsqrt_pd(rsq20);
187             rinv30           = gmx_mm_invsqrt_pd(rsq30);
188
189             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
190             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
191             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195
196             fjx0             = _mm_setzero_pd();
197             fjy0             = _mm_setzero_pd();
198             fjz0             = _mm_setzero_pd();
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             if (gmx_mm_any_lt(rsq10,rcutoff2))
205             {
206
207             r10              = _mm_mul_pd(rsq10,rinv10);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq10             = _mm_mul_pd(iq1,jq0);
211
212             /* EWALD ELECTROSTATICS */
213
214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215             ewrt             = _mm_mul_pd(r10,ewtabscale);
216             ewitab           = _mm_cvttpd_epi32(ewrt);
217 #ifdef __XOP__
218             eweps            = _mm_frcz_pd(ewrt);
219 #else
220             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
221 #endif
222             twoeweps         = _mm_add_pd(eweps,eweps);
223             ewitab           = _mm_slli_epi32(ewitab,2);
224             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
225             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
226             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
227             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
228             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
229             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
230             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
231             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
232             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
233             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
234
235             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velec            = _mm_and_pd(velec,cutoff_mask);
239             velecsum         = _mm_add_pd(velecsum,velec);
240
241             fscal            = felec;
242
243             fscal            = _mm_and_pd(fscal,cutoff_mask);
244
245             /* Update vectorial force */
246             fix1             = _mm_macc_pd(dx10,fscal,fix1);
247             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
248             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
249             
250             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
251             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
252             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
253
254             }
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq20,rcutoff2))
261             {
262
263             r20              = _mm_mul_pd(rsq20,rinv20);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq20             = _mm_mul_pd(iq2,jq0);
267
268             /* EWALD ELECTROSTATICS */
269
270             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
271             ewrt             = _mm_mul_pd(r20,ewtabscale);
272             ewitab           = _mm_cvttpd_epi32(ewrt);
273 #ifdef __XOP__
274             eweps            = _mm_frcz_pd(ewrt);
275 #else
276             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
277 #endif
278             twoeweps         = _mm_add_pd(eweps,eweps);
279             ewitab           = _mm_slli_epi32(ewitab,2);
280             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
281             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
282             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
283             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
284             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
285             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
286             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
287             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
288             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
289             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
290
291             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm_and_pd(velec,cutoff_mask);
295             velecsum         = _mm_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             fscal            = _mm_and_pd(fscal,cutoff_mask);
300
301             /* Update vectorial force */
302             fix2             = _mm_macc_pd(dx20,fscal,fix2);
303             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
304             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
305             
306             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
307             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
308             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq30,rcutoff2))
317             {
318
319             r30              = _mm_mul_pd(rsq30,rinv30);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq30             = _mm_mul_pd(iq3,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_pd(r30,ewtabscale);
328             ewitab           = _mm_cvttpd_epi32(ewrt);
329 #ifdef __XOP__
330             eweps            = _mm_frcz_pd(ewrt);
331 #else
332             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
333 #endif
334             twoeweps         = _mm_add_pd(eweps,eweps);
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
338             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
339             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
340             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
341             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
342             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
343             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
344             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
345             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
346
347             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velec            = _mm_and_pd(velec,cutoff_mask);
351             velecsum         = _mm_add_pd(velecsum,velec);
352
353             fscal            = felec;
354
355             fscal            = _mm_and_pd(fscal,cutoff_mask);
356
357             /* Update vectorial force */
358             fix3             = _mm_macc_pd(dx30,fscal,fix3);
359             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
360             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
361             
362             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
363             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
364             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
365
366             }
367
368             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 150 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             jnrA             = jjnr[jidx];
377             j_coord_offsetA  = DIM*jnrA;
378
379             /* load j atom coordinates */
380             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
381                                               &jx0,&jy0,&jz0);
382
383             /* Calculate displacement vector */
384             dx10             = _mm_sub_pd(ix1,jx0);
385             dy10             = _mm_sub_pd(iy1,jy0);
386             dz10             = _mm_sub_pd(iz1,jz0);
387             dx20             = _mm_sub_pd(ix2,jx0);
388             dy20             = _mm_sub_pd(iy2,jy0);
389             dz20             = _mm_sub_pd(iz2,jz0);
390             dx30             = _mm_sub_pd(ix3,jx0);
391             dy30             = _mm_sub_pd(iy3,jy0);
392             dz30             = _mm_sub_pd(iz3,jz0);
393
394             /* Calculate squared distance and things based on it */
395             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
396             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
397             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
398
399             rinv10           = gmx_mm_invsqrt_pd(rsq10);
400             rinv20           = gmx_mm_invsqrt_pd(rsq20);
401             rinv30           = gmx_mm_invsqrt_pd(rsq30);
402
403             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
404             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
405             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
406
407             /* Load parameters for j particles */
408             jq0              = _mm_load_sd(charge+jnrA+0);
409
410             fjx0             = _mm_setzero_pd();
411             fjy0             = _mm_setzero_pd();
412             fjz0             = _mm_setzero_pd();
413
414             /**************************
415              * CALCULATE INTERACTIONS *
416              **************************/
417
418             if (gmx_mm_any_lt(rsq10,rcutoff2))
419             {
420
421             r10              = _mm_mul_pd(rsq10,rinv10);
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq10             = _mm_mul_pd(iq1,jq0);
425
426             /* EWALD ELECTROSTATICS */
427
428             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
429             ewrt             = _mm_mul_pd(r10,ewtabscale);
430             ewitab           = _mm_cvttpd_epi32(ewrt);
431 #ifdef __XOP__
432             eweps            = _mm_frcz_pd(ewrt);
433 #else
434             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
435 #endif
436             twoeweps         = _mm_add_pd(eweps,eweps);
437             ewitab           = _mm_slli_epi32(ewitab,2);
438             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
439             ewtabD           = _mm_setzero_pd();
440             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
441             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
442             ewtabFn          = _mm_setzero_pd();
443             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
444             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
445             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
446             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
447             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
448
449             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
450
451             /* Update potential sum for this i atom from the interaction with this j atom. */
452             velec            = _mm_and_pd(velec,cutoff_mask);
453             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
454             velecsum         = _mm_add_pd(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_and_pd(fscal,cutoff_mask);
459
460             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
461
462             /* Update vectorial force */
463             fix1             = _mm_macc_pd(dx10,fscal,fix1);
464             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
465             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
466             
467             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
468             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
469             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
470
471             }
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             if (gmx_mm_any_lt(rsq20,rcutoff2))
478             {
479
480             r20              = _mm_mul_pd(rsq20,rinv20);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq20             = _mm_mul_pd(iq2,jq0);
484
485             /* EWALD ELECTROSTATICS */
486
487             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
488             ewrt             = _mm_mul_pd(r20,ewtabscale);
489             ewitab           = _mm_cvttpd_epi32(ewrt);
490 #ifdef __XOP__
491             eweps            = _mm_frcz_pd(ewrt);
492 #else
493             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
494 #endif
495             twoeweps         = _mm_add_pd(eweps,eweps);
496             ewitab           = _mm_slli_epi32(ewitab,2);
497             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
498             ewtabD           = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
500             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
501             ewtabFn          = _mm_setzero_pd();
502             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
503             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
504             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
505             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
506             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
507
508             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm_and_pd(velec,cutoff_mask);
512             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
513             velecsum         = _mm_add_pd(velecsum,velec);
514
515             fscal            = felec;
516
517             fscal            = _mm_and_pd(fscal,cutoff_mask);
518
519             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
520
521             /* Update vectorial force */
522             fix2             = _mm_macc_pd(dx20,fscal,fix2);
523             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
524             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
525             
526             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
527             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
528             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
529
530             }
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq30,rcutoff2))
537             {
538
539             r30              = _mm_mul_pd(rsq30,rinv30);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq30             = _mm_mul_pd(iq3,jq0);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _mm_mul_pd(r30,ewtabscale);
548             ewitab           = _mm_cvttpd_epi32(ewrt);
549 #ifdef __XOP__
550             eweps            = _mm_frcz_pd(ewrt);
551 #else
552             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
553 #endif
554             twoeweps         = _mm_add_pd(eweps,eweps);
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_setzero_pd();
558             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
559             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
560             ewtabFn          = _mm_setzero_pd();
561             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
562             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
563             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
564             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
565             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
566
567             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_and_pd(velec,cutoff_mask);
571             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
572             velecsum         = _mm_add_pd(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_and_pd(fscal,cutoff_mask);
577
578             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
579
580             /* Update vectorial force */
581             fix3             = _mm_macc_pd(dx30,fscal,fix3);
582             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
583             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
584             
585             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
586             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
587             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
588
589             }
590
591             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
592
593             /* Inner loop uses 150 flops */
594         }
595
596         /* End of innermost loop */
597
598         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
599                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
600
601         ggid                        = gid[iidx];
602         /* Update potential energies */
603         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 19 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*150);
617 }
618 /*
619  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_128_fma_double
620  * Electrostatics interaction: Ewald
621  * VdW interaction:            None
622  * Geometry:                   Water4-Particle
623  * Calculate force/pot:        Force
624  */
625 void
626 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_128_fma_double
627                     (t_nblist * gmx_restrict                nlist,
628                      rvec * gmx_restrict                    xx,
629                      rvec * gmx_restrict                    ff,
630                      t_forcerec * gmx_restrict              fr,
631                      t_mdatoms * gmx_restrict               mdatoms,
632                      nb_kernel_data_t * gmx_restrict        kernel_data,
633                      t_nrnb * gmx_restrict                  nrnb)
634 {
635     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
636      * just 0 for non-waters.
637      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
638      * jnr indices corresponding to data put in the four positions in the SIMD register.
639      */
640     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
641     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
642     int              jnrA,jnrB;
643     int              j_coord_offsetA,j_coord_offsetB;
644     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
645     real             rcutoff_scalar;
646     real             *shiftvec,*fshift,*x,*f;
647     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
648     int              vdwioffset1;
649     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
650     int              vdwioffset2;
651     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
652     int              vdwioffset3;
653     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
654     int              vdwjidx0A,vdwjidx0B;
655     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
656     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
657     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
658     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
659     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
660     real             *charge;
661     __m128i          ewitab;
662     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
663     real             *ewtab;
664     __m128d          dummy_mask,cutoff_mask;
665     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
666     __m128d          one     = _mm_set1_pd(1.0);
667     __m128d          two     = _mm_set1_pd(2.0);
668     x                = xx[0];
669     f                = ff[0];
670
671     nri              = nlist->nri;
672     iinr             = nlist->iinr;
673     jindex           = nlist->jindex;
674     jjnr             = nlist->jjnr;
675     shiftidx         = nlist->shift;
676     gid              = nlist->gid;
677     shiftvec         = fr->shift_vec[0];
678     fshift           = fr->fshift[0];
679     facel            = _mm_set1_pd(fr->epsfac);
680     charge           = mdatoms->chargeA;
681
682     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
683     ewtab            = fr->ic->tabq_coul_F;
684     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
685     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
686
687     /* Setup water-specific parameters */
688     inr              = nlist->iinr[0];
689     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
690     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
691     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
692
693     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
694     rcutoff_scalar   = fr->rcoulomb;
695     rcutoff          = _mm_set1_pd(rcutoff_scalar);
696     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
697
698     /* Avoid stupid compiler warnings */
699     jnrA = jnrB = 0;
700     j_coord_offsetA = 0;
701     j_coord_offsetB = 0;
702
703     outeriter        = 0;
704     inneriter        = 0;
705
706     /* Start outer loop over neighborlists */
707     for(iidx=0; iidx<nri; iidx++)
708     {
709         /* Load shift vector for this list */
710         i_shift_offset   = DIM*shiftidx[iidx];
711
712         /* Load limits for loop over neighbors */
713         j_index_start    = jindex[iidx];
714         j_index_end      = jindex[iidx+1];
715
716         /* Get outer coordinate index */
717         inr              = iinr[iidx];
718         i_coord_offset   = DIM*inr;
719
720         /* Load i particle coords and add shift vector */
721         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
722                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
723
724         fix1             = _mm_setzero_pd();
725         fiy1             = _mm_setzero_pd();
726         fiz1             = _mm_setzero_pd();
727         fix2             = _mm_setzero_pd();
728         fiy2             = _mm_setzero_pd();
729         fiz2             = _mm_setzero_pd();
730         fix3             = _mm_setzero_pd();
731         fiy3             = _mm_setzero_pd();
732         fiz3             = _mm_setzero_pd();
733
734         /* Start inner kernel loop */
735         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
736         {
737
738             /* Get j neighbor index, and coordinate index */
739             jnrA             = jjnr[jidx];
740             jnrB             = jjnr[jidx+1];
741             j_coord_offsetA  = DIM*jnrA;
742             j_coord_offsetB  = DIM*jnrB;
743
744             /* load j atom coordinates */
745             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
746                                               &jx0,&jy0,&jz0);
747
748             /* Calculate displacement vector */
749             dx10             = _mm_sub_pd(ix1,jx0);
750             dy10             = _mm_sub_pd(iy1,jy0);
751             dz10             = _mm_sub_pd(iz1,jz0);
752             dx20             = _mm_sub_pd(ix2,jx0);
753             dy20             = _mm_sub_pd(iy2,jy0);
754             dz20             = _mm_sub_pd(iz2,jz0);
755             dx30             = _mm_sub_pd(ix3,jx0);
756             dy30             = _mm_sub_pd(iy3,jy0);
757             dz30             = _mm_sub_pd(iz3,jz0);
758
759             /* Calculate squared distance and things based on it */
760             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
761             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
762             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
763
764             rinv10           = gmx_mm_invsqrt_pd(rsq10);
765             rinv20           = gmx_mm_invsqrt_pd(rsq20);
766             rinv30           = gmx_mm_invsqrt_pd(rsq30);
767
768             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
769             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
770             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
771
772             /* Load parameters for j particles */
773             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
774
775             fjx0             = _mm_setzero_pd();
776             fjy0             = _mm_setzero_pd();
777             fjz0             = _mm_setzero_pd();
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             if (gmx_mm_any_lt(rsq10,rcutoff2))
784             {
785
786             r10              = _mm_mul_pd(rsq10,rinv10);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq10             = _mm_mul_pd(iq1,jq0);
790
791             /* EWALD ELECTROSTATICS */
792
793             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
794             ewrt             = _mm_mul_pd(r10,ewtabscale);
795             ewitab           = _mm_cvttpd_epi32(ewrt);
796 #ifdef __XOP__
797             eweps            = _mm_frcz_pd(ewrt);
798 #else
799             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
800 #endif
801             twoeweps         = _mm_add_pd(eweps,eweps);
802             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
803                                          &ewtabF,&ewtabFn);
804             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
805             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
806
807             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
808
809             fscal            = felec;
810
811             fscal            = _mm_and_pd(fscal,cutoff_mask);
812
813             /* Update vectorial force */
814             fix1             = _mm_macc_pd(dx10,fscal,fix1);
815             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
816             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
817             
818             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
819             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
820             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
821
822             }
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             if (gmx_mm_any_lt(rsq20,rcutoff2))
829             {
830
831             r20              = _mm_mul_pd(rsq20,rinv20);
832
833             /* Compute parameters for interactions between i and j atoms */
834             qq20             = _mm_mul_pd(iq2,jq0);
835
836             /* EWALD ELECTROSTATICS */
837
838             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
839             ewrt             = _mm_mul_pd(r20,ewtabscale);
840             ewitab           = _mm_cvttpd_epi32(ewrt);
841 #ifdef __XOP__
842             eweps            = _mm_frcz_pd(ewrt);
843 #else
844             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
845 #endif
846             twoeweps         = _mm_add_pd(eweps,eweps);
847             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
848                                          &ewtabF,&ewtabFn);
849             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
850             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
851
852             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
853
854             fscal            = felec;
855
856             fscal            = _mm_and_pd(fscal,cutoff_mask);
857
858             /* Update vectorial force */
859             fix2             = _mm_macc_pd(dx20,fscal,fix2);
860             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
861             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
862             
863             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
864             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
865             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
866
867             }
868
869             /**************************
870              * CALCULATE INTERACTIONS *
871              **************************/
872
873             if (gmx_mm_any_lt(rsq30,rcutoff2))
874             {
875
876             r30              = _mm_mul_pd(rsq30,rinv30);
877
878             /* Compute parameters for interactions between i and j atoms */
879             qq30             = _mm_mul_pd(iq3,jq0);
880
881             /* EWALD ELECTROSTATICS */
882
883             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
884             ewrt             = _mm_mul_pd(r30,ewtabscale);
885             ewitab           = _mm_cvttpd_epi32(ewrt);
886 #ifdef __XOP__
887             eweps            = _mm_frcz_pd(ewrt);
888 #else
889             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
890 #endif
891             twoeweps         = _mm_add_pd(eweps,eweps);
892             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
893                                          &ewtabF,&ewtabFn);
894             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
895             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
896
897             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
898
899             fscal            = felec;
900
901             fscal            = _mm_and_pd(fscal,cutoff_mask);
902
903             /* Update vectorial force */
904             fix3             = _mm_macc_pd(dx30,fscal,fix3);
905             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
906             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
907             
908             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
909             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
910             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
911
912             }
913
914             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
915
916             /* Inner loop uses 129 flops */
917         }
918
919         if(jidx<j_index_end)
920         {
921
922             jnrA             = jjnr[jidx];
923             j_coord_offsetA  = DIM*jnrA;
924
925             /* load j atom coordinates */
926             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx10             = _mm_sub_pd(ix1,jx0);
931             dy10             = _mm_sub_pd(iy1,jy0);
932             dz10             = _mm_sub_pd(iz1,jz0);
933             dx20             = _mm_sub_pd(ix2,jx0);
934             dy20             = _mm_sub_pd(iy2,jy0);
935             dz20             = _mm_sub_pd(iz2,jz0);
936             dx30             = _mm_sub_pd(ix3,jx0);
937             dy30             = _mm_sub_pd(iy3,jy0);
938             dz30             = _mm_sub_pd(iz3,jz0);
939
940             /* Calculate squared distance and things based on it */
941             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
942             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
943             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
944
945             rinv10           = gmx_mm_invsqrt_pd(rsq10);
946             rinv20           = gmx_mm_invsqrt_pd(rsq20);
947             rinv30           = gmx_mm_invsqrt_pd(rsq30);
948
949             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
950             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
951             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
952
953             /* Load parameters for j particles */
954             jq0              = _mm_load_sd(charge+jnrA+0);
955
956             fjx0             = _mm_setzero_pd();
957             fjy0             = _mm_setzero_pd();
958             fjz0             = _mm_setzero_pd();
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             if (gmx_mm_any_lt(rsq10,rcutoff2))
965             {
966
967             r10              = _mm_mul_pd(rsq10,rinv10);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq10             = _mm_mul_pd(iq1,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975             ewrt             = _mm_mul_pd(r10,ewtabscale);
976             ewitab           = _mm_cvttpd_epi32(ewrt);
977 #ifdef __XOP__
978             eweps            = _mm_frcz_pd(ewrt);
979 #else
980             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
981 #endif
982             twoeweps         = _mm_add_pd(eweps,eweps);
983             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
984             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
985             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
986
987             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
988
989             fscal            = felec;
990
991             fscal            = _mm_and_pd(fscal,cutoff_mask);
992
993             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
994
995             /* Update vectorial force */
996             fix1             = _mm_macc_pd(dx10,fscal,fix1);
997             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
998             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
999             
1000             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1001             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1002             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1003
1004             }
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             if (gmx_mm_any_lt(rsq20,rcutoff2))
1011             {
1012
1013             r20              = _mm_mul_pd(rsq20,rinv20);
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq20             = _mm_mul_pd(iq2,jq0);
1017
1018             /* EWALD ELECTROSTATICS */
1019
1020             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1021             ewrt             = _mm_mul_pd(r20,ewtabscale);
1022             ewitab           = _mm_cvttpd_epi32(ewrt);
1023 #ifdef __XOP__
1024             eweps            = _mm_frcz_pd(ewrt);
1025 #else
1026             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1027 #endif
1028             twoeweps         = _mm_add_pd(eweps,eweps);
1029             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1030             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1031             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1032
1033             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1034
1035             fscal            = felec;
1036
1037             fscal            = _mm_and_pd(fscal,cutoff_mask);
1038
1039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1040
1041             /* Update vectorial force */
1042             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1043             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1044             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1045             
1046             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1047             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1048             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1049
1050             }
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             if (gmx_mm_any_lt(rsq30,rcutoff2))
1057             {
1058
1059             r30              = _mm_mul_pd(rsq30,rinv30);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq30             = _mm_mul_pd(iq3,jq0);
1063
1064             /* EWALD ELECTROSTATICS */
1065
1066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1067             ewrt             = _mm_mul_pd(r30,ewtabscale);
1068             ewitab           = _mm_cvttpd_epi32(ewrt);
1069 #ifdef __XOP__
1070             eweps            = _mm_frcz_pd(ewrt);
1071 #else
1072             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1073 #endif
1074             twoeweps         = _mm_add_pd(eweps,eweps);
1075             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1076             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1077             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1078
1079             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1080
1081             fscal            = felec;
1082
1083             fscal            = _mm_and_pd(fscal,cutoff_mask);
1084
1085             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1086
1087             /* Update vectorial force */
1088             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1089             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1090             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1091             
1092             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1093             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1094             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1095
1096             }
1097
1098             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1099
1100             /* Inner loop uses 129 flops */
1101         }
1102
1103         /* End of innermost loop */
1104
1105         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1106                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1107
1108         /* Increment number of inner iterations */
1109         inneriter                  += j_index_end - j_index_start;
1110
1111         /* Outer loop uses 18 flops */
1112     }
1113
1114     /* Increment number of outer iterations */
1115     outeriter        += nri;
1116
1117     /* Update outer/inner flops */
1118
1119     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*129);
1120 }