550c507ee67b29abd343dbf6d5a58b3625dd0da9
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128d          dummy_mask,cutoff_mask;
77     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
78     __m128d          one     = _mm_set1_pd(1.0);
79     __m128d          two     = _mm_set1_pd(2.0);
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = _mm_set1_pd(fr->epsfac);
92     charge           = mdatoms->chargeA;
93
94     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
95     ewtab            = fr->ic->tabq_coul_FDV0;
96     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
97     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
98
99     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
100     rcutoff_scalar   = fr->rcoulomb;
101     rcutoff          = _mm_set1_pd(rcutoff_scalar);
102     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
103
104     /* Avoid stupid compiler warnings */
105     jnrA = jnrB = 0;
106     j_coord_offsetA = 0;
107     j_coord_offsetB = 0;
108
109     outeriter        = 0;
110     inneriter        = 0;
111
112     /* Start outer loop over neighborlists */
113     for(iidx=0; iidx<nri; iidx++)
114     {
115         /* Load shift vector for this list */
116         i_shift_offset   = DIM*shiftidx[iidx];
117
118         /* Load limits for loop over neighbors */
119         j_index_start    = jindex[iidx];
120         j_index_end      = jindex[iidx+1];
121
122         /* Get outer coordinate index */
123         inr              = iinr[iidx];
124         i_coord_offset   = DIM*inr;
125
126         /* Load i particle coords and add shift vector */
127         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
128
129         fix0             = _mm_setzero_pd();
130         fiy0             = _mm_setzero_pd();
131         fiz0             = _mm_setzero_pd();
132
133         /* Load parameters for i particles */
134         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
135
136         /* Reset potential sums */
137         velecsum         = _mm_setzero_pd();
138
139         /* Start inner kernel loop */
140         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
141         {
142
143             /* Get j neighbor index, and coordinate index */
144             jnrA             = jjnr[jidx];
145             jnrB             = jjnr[jidx+1];
146             j_coord_offsetA  = DIM*jnrA;
147             j_coord_offsetB  = DIM*jnrB;
148
149             /* load j atom coordinates */
150             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
151                                               &jx0,&jy0,&jz0);
152
153             /* Calculate displacement vector */
154             dx00             = _mm_sub_pd(ix0,jx0);
155             dy00             = _mm_sub_pd(iy0,jy0);
156             dz00             = _mm_sub_pd(iz0,jz0);
157
158             /* Calculate squared distance and things based on it */
159             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
160
161             rinv00           = gmx_mm_invsqrt_pd(rsq00);
162
163             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
164
165             /* Load parameters for j particles */
166             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
167
168             /**************************
169              * CALCULATE INTERACTIONS *
170              **************************/
171
172             if (gmx_mm_any_lt(rsq00,rcutoff2))
173             {
174
175             r00              = _mm_mul_pd(rsq00,rinv00);
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm_mul_pd(iq0,jq0);
179
180             /* EWALD ELECTROSTATICS */
181
182             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
183             ewrt             = _mm_mul_pd(r00,ewtabscale);
184             ewitab           = _mm_cvttpd_epi32(ewrt);
185 #ifdef __XOP__
186             eweps            = _mm_frcz_pd(ewrt);
187 #else
188             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
189 #endif
190             twoeweps         = _mm_add_pd(eweps,eweps);
191             ewitab           = _mm_slli_epi32(ewitab,2);
192             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
193             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
194             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
195             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
196             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
197             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
198             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
199             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
200             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
201             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
202
203             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
204
205             /* Update potential sum for this i atom from the interaction with this j atom. */
206             velec            = _mm_and_pd(velec,cutoff_mask);
207             velecsum         = _mm_add_pd(velecsum,velec);
208
209             fscal            = felec;
210
211             fscal            = _mm_and_pd(fscal,cutoff_mask);
212
213             /* Update vectorial force */
214             fix0             = _mm_macc_pd(dx00,fscal,fix0);
215             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
216             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
217             
218             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
219                                                    _mm_mul_pd(dx00,fscal),
220                                                    _mm_mul_pd(dy00,fscal),
221                                                    _mm_mul_pd(dz00,fscal));
222
223             }
224
225             /* Inner loop uses 49 flops */
226         }
227
228         if(jidx<j_index_end)
229         {
230
231             jnrA             = jjnr[jidx];
232             j_coord_offsetA  = DIM*jnrA;
233
234             /* load j atom coordinates */
235             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
236                                               &jx0,&jy0,&jz0);
237
238             /* Calculate displacement vector */
239             dx00             = _mm_sub_pd(ix0,jx0);
240             dy00             = _mm_sub_pd(iy0,jy0);
241             dz00             = _mm_sub_pd(iz0,jz0);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
245
246             rinv00           = gmx_mm_invsqrt_pd(rsq00);
247
248             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
249
250             /* Load parameters for j particles */
251             jq0              = _mm_load_sd(charge+jnrA+0);
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             qq00             = _mm_mul_pd(iq0,jq0);
264
265             /* EWALD ELECTROSTATICS */
266
267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
268             ewrt             = _mm_mul_pd(r00,ewtabscale);
269             ewitab           = _mm_cvttpd_epi32(ewrt);
270 #ifdef __XOP__
271             eweps            = _mm_frcz_pd(ewrt);
272 #else
273             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
274 #endif
275             twoeweps         = _mm_add_pd(eweps,eweps);
276             ewitab           = _mm_slli_epi32(ewitab,2);
277             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
278             ewtabD           = _mm_setzero_pd();
279             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
280             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
281             ewtabFn          = _mm_setzero_pd();
282             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
283             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
284             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
285             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
286             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
287
288             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velec            = _mm_and_pd(velec,cutoff_mask);
292             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
293             velecsum         = _mm_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             fscal            = _mm_and_pd(fscal,cutoff_mask);
298
299             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
300
301             /* Update vectorial force */
302             fix0             = _mm_macc_pd(dx00,fscal,fix0);
303             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
304             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
305             
306             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
307                                                    _mm_mul_pd(dx00,fscal),
308                                                    _mm_mul_pd(dy00,fscal),
309                                                    _mm_mul_pd(dz00,fscal));
310
311             }
312
313             /* Inner loop uses 49 flops */
314         }
315
316         /* End of innermost loop */
317
318         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
319                                               f+i_coord_offset,fshift+i_shift_offset);
320
321         ggid                        = gid[iidx];
322         /* Update potential energies */
323         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
324
325         /* Increment number of inner iterations */
326         inneriter                  += j_index_end - j_index_start;
327
328         /* Outer loop uses 8 flops */
329     }
330
331     /* Increment number of outer iterations */
332     outeriter        += nri;
333
334     /* Update outer/inner flops */
335
336     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*49);
337 }
338 /*
339  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_128_fma_double
340  * Electrostatics interaction: Ewald
341  * VdW interaction:            None
342  * Geometry:                   Particle-Particle
343  * Calculate force/pot:        Force
344  */
345 void
346 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_128_fma_double
347                     (t_nblist * gmx_restrict                nlist,
348                      rvec * gmx_restrict                    xx,
349                      rvec * gmx_restrict                    ff,
350                      t_forcerec * gmx_restrict              fr,
351                      t_mdatoms * gmx_restrict               mdatoms,
352                      nb_kernel_data_t * gmx_restrict        kernel_data,
353                      t_nrnb * gmx_restrict                  nrnb)
354 {
355     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
356      * just 0 for non-waters.
357      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
358      * jnr indices corresponding to data put in the four positions in the SIMD register.
359      */
360     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
361     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
362     int              jnrA,jnrB;
363     int              j_coord_offsetA,j_coord_offsetB;
364     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
365     real             rcutoff_scalar;
366     real             *shiftvec,*fshift,*x,*f;
367     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
368     int              vdwioffset0;
369     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
370     int              vdwjidx0A,vdwjidx0B;
371     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
372     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
373     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
374     real             *charge;
375     __m128i          ewitab;
376     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
377     real             *ewtab;
378     __m128d          dummy_mask,cutoff_mask;
379     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
380     __m128d          one     = _mm_set1_pd(1.0);
381     __m128d          two     = _mm_set1_pd(2.0);
382     x                = xx[0];
383     f                = ff[0];
384
385     nri              = nlist->nri;
386     iinr             = nlist->iinr;
387     jindex           = nlist->jindex;
388     jjnr             = nlist->jjnr;
389     shiftidx         = nlist->shift;
390     gid              = nlist->gid;
391     shiftvec         = fr->shift_vec[0];
392     fshift           = fr->fshift[0];
393     facel            = _mm_set1_pd(fr->epsfac);
394     charge           = mdatoms->chargeA;
395
396     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
397     ewtab            = fr->ic->tabq_coul_F;
398     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
399     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
400
401     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
402     rcutoff_scalar   = fr->rcoulomb;
403     rcutoff          = _mm_set1_pd(rcutoff_scalar);
404     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
405
406     /* Avoid stupid compiler warnings */
407     jnrA = jnrB = 0;
408     j_coord_offsetA = 0;
409     j_coord_offsetB = 0;
410
411     outeriter        = 0;
412     inneriter        = 0;
413
414     /* Start outer loop over neighborlists */
415     for(iidx=0; iidx<nri; iidx++)
416     {
417         /* Load shift vector for this list */
418         i_shift_offset   = DIM*shiftidx[iidx];
419
420         /* Load limits for loop over neighbors */
421         j_index_start    = jindex[iidx];
422         j_index_end      = jindex[iidx+1];
423
424         /* Get outer coordinate index */
425         inr              = iinr[iidx];
426         i_coord_offset   = DIM*inr;
427
428         /* Load i particle coords and add shift vector */
429         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
430
431         fix0             = _mm_setzero_pd();
432         fiy0             = _mm_setzero_pd();
433         fiz0             = _mm_setzero_pd();
434
435         /* Load parameters for i particles */
436         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
437
438         /* Start inner kernel loop */
439         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
440         {
441
442             /* Get j neighbor index, and coordinate index */
443             jnrA             = jjnr[jidx];
444             jnrB             = jjnr[jidx+1];
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447
448             /* load j atom coordinates */
449             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
450                                               &jx0,&jy0,&jz0);
451
452             /* Calculate displacement vector */
453             dx00             = _mm_sub_pd(ix0,jx0);
454             dy00             = _mm_sub_pd(iy0,jy0);
455             dz00             = _mm_sub_pd(iz0,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
459
460             rinv00           = gmx_mm_invsqrt_pd(rsq00);
461
462             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
463
464             /* Load parameters for j particles */
465             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             if (gmx_mm_any_lt(rsq00,rcutoff2))
472             {
473
474             r00              = _mm_mul_pd(rsq00,rinv00);
475
476             /* Compute parameters for interactions between i and j atoms */
477             qq00             = _mm_mul_pd(iq0,jq0);
478
479             /* EWALD ELECTROSTATICS */
480
481             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
482             ewrt             = _mm_mul_pd(r00,ewtabscale);
483             ewitab           = _mm_cvttpd_epi32(ewrt);
484 #ifdef __XOP__
485             eweps            = _mm_frcz_pd(ewrt);
486 #else
487             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
488 #endif
489             twoeweps         = _mm_add_pd(eweps,eweps);
490             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
491                                          &ewtabF,&ewtabFn);
492             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
493             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
494
495             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
496
497             fscal            = felec;
498
499             fscal            = _mm_and_pd(fscal,cutoff_mask);
500
501             /* Update vectorial force */
502             fix0             = _mm_macc_pd(dx00,fscal,fix0);
503             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
504             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
505             
506             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
507                                                    _mm_mul_pd(dx00,fscal),
508                                                    _mm_mul_pd(dy00,fscal),
509                                                    _mm_mul_pd(dz00,fscal));
510
511             }
512
513             /* Inner loop uses 42 flops */
514         }
515
516         if(jidx<j_index_end)
517         {
518
519             jnrA             = jjnr[jidx];
520             j_coord_offsetA  = DIM*jnrA;
521
522             /* load j atom coordinates */
523             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
524                                               &jx0,&jy0,&jz0);
525
526             /* Calculate displacement vector */
527             dx00             = _mm_sub_pd(ix0,jx0);
528             dy00             = _mm_sub_pd(iy0,jy0);
529             dz00             = _mm_sub_pd(iz0,jz0);
530
531             /* Calculate squared distance and things based on it */
532             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
533
534             rinv00           = gmx_mm_invsqrt_pd(rsq00);
535
536             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
537
538             /* Load parameters for j particles */
539             jq0              = _mm_load_sd(charge+jnrA+0);
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm_any_lt(rsq00,rcutoff2))
546             {
547
548             r00              = _mm_mul_pd(rsq00,rinv00);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq00             = _mm_mul_pd(iq0,jq0);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = _mm_mul_pd(r00,ewtabscale);
557             ewitab           = _mm_cvttpd_epi32(ewrt);
558 #ifdef __XOP__
559             eweps            = _mm_frcz_pd(ewrt);
560 #else
561             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
562 #endif
563             twoeweps         = _mm_add_pd(eweps,eweps);
564             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
565             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
566             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
567
568             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
569
570             fscal            = felec;
571
572             fscal            = _mm_and_pd(fscal,cutoff_mask);
573
574             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
575
576             /* Update vectorial force */
577             fix0             = _mm_macc_pd(dx00,fscal,fix0);
578             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
579             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
580             
581             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
582                                                    _mm_mul_pd(dx00,fscal),
583                                                    _mm_mul_pd(dy00,fscal),
584                                                    _mm_mul_pd(dz00,fscal));
585
586             }
587
588             /* Inner loop uses 42 flops */
589         }
590
591         /* End of innermost loop */
592
593         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
594                                               f+i_coord_offset,fshift+i_shift_offset);
595
596         /* Increment number of inner iterations */
597         inneriter                  += j_index_end - j_index_start;
598
599         /* Outer loop uses 7 flops */
600     }
601
602     /* Increment number of outer iterations */
603     outeriter        += nri;
604
605     /* Update outer/inner flops */
606
607     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*42);
608 }