made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          ewitab;
89     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
130     rvdw             = _mm_set1_pd(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161         fix1             = _mm_setzero_pd();
162         fiy1             = _mm_setzero_pd();
163         fiz1             = _mm_setzero_pd();
164         fix2             = _mm_setzero_pd();
165         fiy2             = _mm_setzero_pd();
166         fiz2             = _mm_setzero_pd();
167         fix3             = _mm_setzero_pd();
168         fiy3             = _mm_setzero_pd();
169         fiz3             = _mm_setzero_pd();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193             dx10             = _mm_sub_pd(ix1,jx0);
194             dy10             = _mm_sub_pd(iy1,jy0);
195             dz10             = _mm_sub_pd(iz1,jz0);
196             dx20             = _mm_sub_pd(ix2,jx0);
197             dy20             = _mm_sub_pd(iy2,jy0);
198             dz20             = _mm_sub_pd(iz2,jz0);
199             dx30             = _mm_sub_pd(ix3,jx0);
200             dy30             = _mm_sub_pd(iy3,jy0);
201             dz30             = _mm_sub_pd(iz3,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
207             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
208
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq00         = gmx_mm_inv_pd(rsq00);
214             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
215             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
216             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq00,rcutoff2))
232             {
233
234             /* Compute parameters for interactions between i and j atoms */
235             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* LENNARD-JONES DISPERSION/REPULSION */
239
240             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
241             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
242             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
243             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
244                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
245             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
246
247             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
251             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255             fscal            = _mm_and_pd(fscal,cutoff_mask);
256
257             /* Update vectorial force */
258             fix0             = _mm_macc_pd(dx00,fscal,fix0);
259             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
260             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
261             
262             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
263             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
264             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
265
266             }
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (gmx_mm_any_lt(rsq10,rcutoff2))
273             {
274
275             r10              = _mm_mul_pd(rsq10,rinv10);
276
277             /* Compute parameters for interactions between i and j atoms */
278             qq10             = _mm_mul_pd(iq1,jq0);
279
280             /* EWALD ELECTROSTATICS */
281
282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
283             ewrt             = _mm_mul_pd(r10,ewtabscale);
284             ewitab           = _mm_cvttpd_epi32(ewrt);
285 #ifdef __XOP__
286             eweps            = _mm_frcz_pd(ewrt);
287 #else
288             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
289 #endif
290             twoeweps         = _mm_add_pd(eweps,eweps);
291             ewitab           = _mm_slli_epi32(ewitab,2);
292             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
293             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
294             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
295             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
296             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
297             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
298             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
299             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
300             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
301             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
302
303             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velec            = _mm_and_pd(velec,cutoff_mask);
307             velecsum         = _mm_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             fscal            = _mm_and_pd(fscal,cutoff_mask);
312
313             /* Update vectorial force */
314             fix1             = _mm_macc_pd(dx10,fscal,fix1);
315             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
316             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
317             
318             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
319             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
320             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm_any_lt(rsq20,rcutoff2))
329             {
330
331             r20              = _mm_mul_pd(rsq20,rinv20);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq20             = _mm_mul_pd(iq2,jq0);
335
336             /* EWALD ELECTROSTATICS */
337
338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339             ewrt             = _mm_mul_pd(r20,ewtabscale);
340             ewitab           = _mm_cvttpd_epi32(ewrt);
341 #ifdef __XOP__
342             eweps            = _mm_frcz_pd(ewrt);
343 #else
344             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
345 #endif
346             twoeweps         = _mm_add_pd(eweps,eweps);
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
350             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
351             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
352             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
353             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
354             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
355             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
356             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
357             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
358
359             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_pd(velec,cutoff_mask);
363             velecsum         = _mm_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_pd(fscal,cutoff_mask);
368
369             /* Update vectorial force */
370             fix2             = _mm_macc_pd(dx20,fscal,fix2);
371             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
372             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
373             
374             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
375             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
376             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
377
378             }
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm_any_lt(rsq30,rcutoff2))
385             {
386
387             r30              = _mm_mul_pd(rsq30,rinv30);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq30             = _mm_mul_pd(iq3,jq0);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm_mul_pd(r30,ewtabscale);
396             ewitab           = _mm_cvttpd_epi32(ewrt);
397 #ifdef __XOP__
398             eweps            = _mm_frcz_pd(ewrt);
399 #else
400             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
401 #endif
402             twoeweps         = _mm_add_pd(eweps,eweps);
403             ewitab           = _mm_slli_epi32(ewitab,2);
404             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
405             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
406             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
407             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
408             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
409             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
410             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
411             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
412             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
413             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
414
415             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_and_pd(velec,cutoff_mask);
419             velecsum         = _mm_add_pd(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm_and_pd(fscal,cutoff_mask);
424
425             /* Update vectorial force */
426             fix3             = _mm_macc_pd(dx30,fscal,fix3);
427             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
428             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
429             
430             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
431             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
432             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
433
434             }
435
436             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
437
438             /* Inner loop uses 194 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             jnrA             = jjnr[jidx];
445             j_coord_offsetA  = DIM*jnrA;
446
447             /* load j atom coordinates */
448             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
449                                               &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm_sub_pd(ix0,jx0);
453             dy00             = _mm_sub_pd(iy0,jy0);
454             dz00             = _mm_sub_pd(iz0,jz0);
455             dx10             = _mm_sub_pd(ix1,jx0);
456             dy10             = _mm_sub_pd(iy1,jy0);
457             dz10             = _mm_sub_pd(iz1,jz0);
458             dx20             = _mm_sub_pd(ix2,jx0);
459             dy20             = _mm_sub_pd(iy2,jy0);
460             dz20             = _mm_sub_pd(iz2,jz0);
461             dx30             = _mm_sub_pd(ix3,jx0);
462             dy30             = _mm_sub_pd(iy3,jy0);
463             dz30             = _mm_sub_pd(iz3,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
467             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
468             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
469             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
470
471             rinv10           = gmx_mm_invsqrt_pd(rsq10);
472             rinv20           = gmx_mm_invsqrt_pd(rsq20);
473             rinv30           = gmx_mm_invsqrt_pd(rsq30);
474
475             rinvsq00         = gmx_mm_inv_pd(rsq00);
476             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
477             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
478             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
479
480             /* Load parameters for j particles */
481             jq0              = _mm_load_sd(charge+jnrA+0);
482             vdwjidx0A        = 2*vdwtype[jnrA+0];
483
484             fjx0             = _mm_setzero_pd();
485             fjy0             = _mm_setzero_pd();
486             fjz0             = _mm_setzero_pd();
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq00,rcutoff2))
493             {
494
495             /* Compute parameters for interactions between i and j atoms */
496             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
497
498             /* LENNARD-JONES DISPERSION/REPULSION */
499
500             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
501             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
502             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
503             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
504                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
505             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
506
507             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
511             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
512             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
513
514             fscal            = fvdw;
515
516             fscal            = _mm_and_pd(fscal,cutoff_mask);
517
518             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
519
520             /* Update vectorial force */
521             fix0             = _mm_macc_pd(dx00,fscal,fix0);
522             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
523             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
524             
525             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
526             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
527             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
528
529             }
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             if (gmx_mm_any_lt(rsq10,rcutoff2))
536             {
537
538             r10              = _mm_mul_pd(rsq10,rinv10);
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq10             = _mm_mul_pd(iq1,jq0);
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = _mm_mul_pd(r10,ewtabscale);
547             ewitab           = _mm_cvttpd_epi32(ewrt);
548 #ifdef __XOP__
549             eweps            = _mm_frcz_pd(ewrt);
550 #else
551             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
552 #endif
553             twoeweps         = _mm_add_pd(eweps,eweps);
554             ewitab           = _mm_slli_epi32(ewitab,2);
555             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
556             ewtabD           = _mm_setzero_pd();
557             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
558             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
559             ewtabFn          = _mm_setzero_pd();
560             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
561             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
562             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
563             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
564             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
565
566             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_and_pd(velec,cutoff_mask);
570             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
571             velecsum         = _mm_add_pd(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_and_pd(fscal,cutoff_mask);
576
577             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
578
579             /* Update vectorial force */
580             fix1             = _mm_macc_pd(dx10,fscal,fix1);
581             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
582             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
583             
584             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
585             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
586             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
587
588             }
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             if (gmx_mm_any_lt(rsq20,rcutoff2))
595             {
596
597             r20              = _mm_mul_pd(rsq20,rinv20);
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq20             = _mm_mul_pd(iq2,jq0);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_pd(r20,ewtabscale);
606             ewitab           = _mm_cvttpd_epi32(ewrt);
607 #ifdef __XOP__
608             eweps            = _mm_frcz_pd(ewrt);
609 #else
610             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
611 #endif
612             twoeweps         = _mm_add_pd(eweps,eweps);
613             ewitab           = _mm_slli_epi32(ewitab,2);
614             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
615             ewtabD           = _mm_setzero_pd();
616             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
617             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
618             ewtabFn          = _mm_setzero_pd();
619             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
620             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
621             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
622             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
623             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
624
625             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm_and_pd(velec,cutoff_mask);
629             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
630             velecsum         = _mm_add_pd(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _mm_and_pd(fscal,cutoff_mask);
635
636             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
637
638             /* Update vectorial force */
639             fix2             = _mm_macc_pd(dx20,fscal,fix2);
640             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
641             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
642             
643             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
644             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
645             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
646
647             }
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm_any_lt(rsq30,rcutoff2))
654             {
655
656             r30              = _mm_mul_pd(rsq30,rinv30);
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq30             = _mm_mul_pd(iq3,jq0);
660
661             /* EWALD ELECTROSTATICS */
662
663             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
664             ewrt             = _mm_mul_pd(r30,ewtabscale);
665             ewitab           = _mm_cvttpd_epi32(ewrt);
666 #ifdef __XOP__
667             eweps            = _mm_frcz_pd(ewrt);
668 #else
669             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
670 #endif
671             twoeweps         = _mm_add_pd(eweps,eweps);
672             ewitab           = _mm_slli_epi32(ewitab,2);
673             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
674             ewtabD           = _mm_setzero_pd();
675             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
676             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
677             ewtabFn          = _mm_setzero_pd();
678             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
679             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
680             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
681             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
682             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
683
684             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
685
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velec            = _mm_and_pd(velec,cutoff_mask);
688             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
689             velecsum         = _mm_add_pd(velecsum,velec);
690
691             fscal            = felec;
692
693             fscal            = _mm_and_pd(fscal,cutoff_mask);
694
695             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
696
697             /* Update vectorial force */
698             fix3             = _mm_macc_pd(dx30,fscal,fix3);
699             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
700             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
701             
702             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
703             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
704             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
705
706             }
707
708             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
709
710             /* Inner loop uses 194 flops */
711         }
712
713         /* End of innermost loop */
714
715         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
716                                               f+i_coord_offset,fshift+i_shift_offset);
717
718         ggid                        = gid[iidx];
719         /* Update potential energies */
720         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
721         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
722
723         /* Increment number of inner iterations */
724         inneriter                  += j_index_end - j_index_start;
725
726         /* Outer loop uses 26 flops */
727     }
728
729     /* Increment number of outer iterations */
730     outeriter        += nri;
731
732     /* Update outer/inner flops */
733
734     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
735 }
736 /*
737  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
738  * Electrostatics interaction: Ewald
739  * VdW interaction:            LennardJones
740  * Geometry:                   Water4-Particle
741  * Calculate force/pot:        Force
742  */
743 void
744 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
745                     (t_nblist * gmx_restrict                nlist,
746                      rvec * gmx_restrict                    xx,
747                      rvec * gmx_restrict                    ff,
748                      t_forcerec * gmx_restrict              fr,
749                      t_mdatoms * gmx_restrict               mdatoms,
750                      nb_kernel_data_t * gmx_restrict        kernel_data,
751                      t_nrnb * gmx_restrict                  nrnb)
752 {
753     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
754      * just 0 for non-waters.
755      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
756      * jnr indices corresponding to data put in the four positions in the SIMD register.
757      */
758     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
759     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
760     int              jnrA,jnrB;
761     int              j_coord_offsetA,j_coord_offsetB;
762     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
763     real             rcutoff_scalar;
764     real             *shiftvec,*fshift,*x,*f;
765     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
766     int              vdwioffset0;
767     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
768     int              vdwioffset1;
769     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
770     int              vdwioffset2;
771     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
772     int              vdwioffset3;
773     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
774     int              vdwjidx0A,vdwjidx0B;
775     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
776     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
777     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
778     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
779     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
780     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
781     real             *charge;
782     int              nvdwtype;
783     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
784     int              *vdwtype;
785     real             *vdwparam;
786     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
787     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
788     __m128i          ewitab;
789     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
790     real             *ewtab;
791     __m128d          dummy_mask,cutoff_mask;
792     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
793     __m128d          one     = _mm_set1_pd(1.0);
794     __m128d          two     = _mm_set1_pd(2.0);
795     x                = xx[0];
796     f                = ff[0];
797
798     nri              = nlist->nri;
799     iinr             = nlist->iinr;
800     jindex           = nlist->jindex;
801     jjnr             = nlist->jjnr;
802     shiftidx         = nlist->shift;
803     gid              = nlist->gid;
804     shiftvec         = fr->shift_vec[0];
805     fshift           = fr->fshift[0];
806     facel            = _mm_set1_pd(fr->epsfac);
807     charge           = mdatoms->chargeA;
808     nvdwtype         = fr->ntype;
809     vdwparam         = fr->nbfp;
810     vdwtype          = mdatoms->typeA;
811
812     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
813     ewtab            = fr->ic->tabq_coul_F;
814     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
815     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
816
817     /* Setup water-specific parameters */
818     inr              = nlist->iinr[0];
819     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
820     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
821     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
822     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
823
824     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
825     rcutoff_scalar   = fr->rcoulomb;
826     rcutoff          = _mm_set1_pd(rcutoff_scalar);
827     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
828
829     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
830     rvdw             = _mm_set1_pd(fr->rvdw);
831
832     /* Avoid stupid compiler warnings */
833     jnrA = jnrB = 0;
834     j_coord_offsetA = 0;
835     j_coord_offsetB = 0;
836
837     outeriter        = 0;
838     inneriter        = 0;
839
840     /* Start outer loop over neighborlists */
841     for(iidx=0; iidx<nri; iidx++)
842     {
843         /* Load shift vector for this list */
844         i_shift_offset   = DIM*shiftidx[iidx];
845
846         /* Load limits for loop over neighbors */
847         j_index_start    = jindex[iidx];
848         j_index_end      = jindex[iidx+1];
849
850         /* Get outer coordinate index */
851         inr              = iinr[iidx];
852         i_coord_offset   = DIM*inr;
853
854         /* Load i particle coords and add shift vector */
855         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
856                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
857
858         fix0             = _mm_setzero_pd();
859         fiy0             = _mm_setzero_pd();
860         fiz0             = _mm_setzero_pd();
861         fix1             = _mm_setzero_pd();
862         fiy1             = _mm_setzero_pd();
863         fiz1             = _mm_setzero_pd();
864         fix2             = _mm_setzero_pd();
865         fiy2             = _mm_setzero_pd();
866         fiz2             = _mm_setzero_pd();
867         fix3             = _mm_setzero_pd();
868         fiy3             = _mm_setzero_pd();
869         fiz3             = _mm_setzero_pd();
870
871         /* Start inner kernel loop */
872         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
873         {
874
875             /* Get j neighbor index, and coordinate index */
876             jnrA             = jjnr[jidx];
877             jnrB             = jjnr[jidx+1];
878             j_coord_offsetA  = DIM*jnrA;
879             j_coord_offsetB  = DIM*jnrB;
880
881             /* load j atom coordinates */
882             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
883                                               &jx0,&jy0,&jz0);
884
885             /* Calculate displacement vector */
886             dx00             = _mm_sub_pd(ix0,jx0);
887             dy00             = _mm_sub_pd(iy0,jy0);
888             dz00             = _mm_sub_pd(iz0,jz0);
889             dx10             = _mm_sub_pd(ix1,jx0);
890             dy10             = _mm_sub_pd(iy1,jy0);
891             dz10             = _mm_sub_pd(iz1,jz0);
892             dx20             = _mm_sub_pd(ix2,jx0);
893             dy20             = _mm_sub_pd(iy2,jy0);
894             dz20             = _mm_sub_pd(iz2,jz0);
895             dx30             = _mm_sub_pd(ix3,jx0);
896             dy30             = _mm_sub_pd(iy3,jy0);
897             dz30             = _mm_sub_pd(iz3,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
901             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
902             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
903             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
904
905             rinv10           = gmx_mm_invsqrt_pd(rsq10);
906             rinv20           = gmx_mm_invsqrt_pd(rsq20);
907             rinv30           = gmx_mm_invsqrt_pd(rsq30);
908
909             rinvsq00         = gmx_mm_inv_pd(rsq00);
910             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
911             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
912             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
913
914             /* Load parameters for j particles */
915             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
916             vdwjidx0A        = 2*vdwtype[jnrA+0];
917             vdwjidx0B        = 2*vdwtype[jnrB+0];
918
919             fjx0             = _mm_setzero_pd();
920             fjy0             = _mm_setzero_pd();
921             fjz0             = _mm_setzero_pd();
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             if (gmx_mm_any_lt(rsq00,rcutoff2))
928             {
929
930             /* Compute parameters for interactions between i and j atoms */
931             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
932                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
933
934             /* LENNARD-JONES DISPERSION/REPULSION */
935
936             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
937             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
938
939             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
940
941             fscal            = fvdw;
942
943             fscal            = _mm_and_pd(fscal,cutoff_mask);
944
945             /* Update vectorial force */
946             fix0             = _mm_macc_pd(dx00,fscal,fix0);
947             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
948             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
949             
950             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
951             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
952             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
953
954             }
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             if (gmx_mm_any_lt(rsq10,rcutoff2))
961             {
962
963             r10              = _mm_mul_pd(rsq10,rinv10);
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq10             = _mm_mul_pd(iq1,jq0);
967
968             /* EWALD ELECTROSTATICS */
969
970             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
971             ewrt             = _mm_mul_pd(r10,ewtabscale);
972             ewitab           = _mm_cvttpd_epi32(ewrt);
973 #ifdef __XOP__
974             eweps            = _mm_frcz_pd(ewrt);
975 #else
976             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
977 #endif
978             twoeweps         = _mm_add_pd(eweps,eweps);
979             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
980                                          &ewtabF,&ewtabFn);
981             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
982             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
983
984             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
985
986             fscal            = felec;
987
988             fscal            = _mm_and_pd(fscal,cutoff_mask);
989
990             /* Update vectorial force */
991             fix1             = _mm_macc_pd(dx10,fscal,fix1);
992             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
993             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
994             
995             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
996             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
997             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
998
999             }
1000
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             if (gmx_mm_any_lt(rsq20,rcutoff2))
1006             {
1007
1008             r20              = _mm_mul_pd(rsq20,rinv20);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq20             = _mm_mul_pd(iq2,jq0);
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016             ewrt             = _mm_mul_pd(r20,ewtabscale);
1017             ewitab           = _mm_cvttpd_epi32(ewrt);
1018 #ifdef __XOP__
1019             eweps            = _mm_frcz_pd(ewrt);
1020 #else
1021             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1022 #endif
1023             twoeweps         = _mm_add_pd(eweps,eweps);
1024             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1025                                          &ewtabF,&ewtabFn);
1026             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1027             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1028
1029             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm_and_pd(fscal,cutoff_mask);
1034
1035             /* Update vectorial force */
1036             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1037             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1038             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1039             
1040             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1041             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1042             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_mm_any_lt(rsq30,rcutoff2))
1051             {
1052
1053             r30              = _mm_mul_pd(rsq30,rinv30);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq30             = _mm_mul_pd(iq3,jq0);
1057
1058             /* EWALD ELECTROSTATICS */
1059
1060             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061             ewrt             = _mm_mul_pd(r30,ewtabscale);
1062             ewitab           = _mm_cvttpd_epi32(ewrt);
1063 #ifdef __XOP__
1064             eweps            = _mm_frcz_pd(ewrt);
1065 #else
1066             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1067 #endif
1068             twoeweps         = _mm_add_pd(eweps,eweps);
1069             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1070                                          &ewtabF,&ewtabFn);
1071             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1072             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1073
1074             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_and_pd(fscal,cutoff_mask);
1079
1080             /* Update vectorial force */
1081             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1082             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1083             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1084             
1085             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1086             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1087             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1088
1089             }
1090
1091             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1092
1093             /* Inner loop uses 162 flops */
1094         }
1095
1096         if(jidx<j_index_end)
1097         {
1098
1099             jnrA             = jjnr[jidx];
1100             j_coord_offsetA  = DIM*jnrA;
1101
1102             /* load j atom coordinates */
1103             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1104                                               &jx0,&jy0,&jz0);
1105
1106             /* Calculate displacement vector */
1107             dx00             = _mm_sub_pd(ix0,jx0);
1108             dy00             = _mm_sub_pd(iy0,jy0);
1109             dz00             = _mm_sub_pd(iz0,jz0);
1110             dx10             = _mm_sub_pd(ix1,jx0);
1111             dy10             = _mm_sub_pd(iy1,jy0);
1112             dz10             = _mm_sub_pd(iz1,jz0);
1113             dx20             = _mm_sub_pd(ix2,jx0);
1114             dy20             = _mm_sub_pd(iy2,jy0);
1115             dz20             = _mm_sub_pd(iz2,jz0);
1116             dx30             = _mm_sub_pd(ix3,jx0);
1117             dy30             = _mm_sub_pd(iy3,jy0);
1118             dz30             = _mm_sub_pd(iz3,jz0);
1119
1120             /* Calculate squared distance and things based on it */
1121             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1122             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1123             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1124             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1125
1126             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1127             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1128             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1129
1130             rinvsq00         = gmx_mm_inv_pd(rsq00);
1131             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1132             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1133             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1134
1135             /* Load parameters for j particles */
1136             jq0              = _mm_load_sd(charge+jnrA+0);
1137             vdwjidx0A        = 2*vdwtype[jnrA+0];
1138
1139             fjx0             = _mm_setzero_pd();
1140             fjy0             = _mm_setzero_pd();
1141             fjz0             = _mm_setzero_pd();
1142
1143             /**************************
1144              * CALCULATE INTERACTIONS *
1145              **************************/
1146
1147             if (gmx_mm_any_lt(rsq00,rcutoff2))
1148             {
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1152
1153             /* LENNARD-JONES DISPERSION/REPULSION */
1154
1155             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1156             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1157
1158             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1159
1160             fscal            = fvdw;
1161
1162             fscal            = _mm_and_pd(fscal,cutoff_mask);
1163
1164             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1165
1166             /* Update vectorial force */
1167             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1168             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1169             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1170             
1171             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1172             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1173             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1174
1175             }
1176
1177             /**************************
1178              * CALCULATE INTERACTIONS *
1179              **************************/
1180
1181             if (gmx_mm_any_lt(rsq10,rcutoff2))
1182             {
1183
1184             r10              = _mm_mul_pd(rsq10,rinv10);
1185
1186             /* Compute parameters for interactions between i and j atoms */
1187             qq10             = _mm_mul_pd(iq1,jq0);
1188
1189             /* EWALD ELECTROSTATICS */
1190
1191             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1192             ewrt             = _mm_mul_pd(r10,ewtabscale);
1193             ewitab           = _mm_cvttpd_epi32(ewrt);
1194 #ifdef __XOP__
1195             eweps            = _mm_frcz_pd(ewrt);
1196 #else
1197             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1198 #endif
1199             twoeweps         = _mm_add_pd(eweps,eweps);
1200             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1201             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1202             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1203
1204             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1205
1206             fscal            = felec;
1207
1208             fscal            = _mm_and_pd(fscal,cutoff_mask);
1209
1210             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1211
1212             /* Update vectorial force */
1213             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1214             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1215             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1216             
1217             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1218             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1219             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_mm_any_lt(rsq20,rcutoff2))
1228             {
1229
1230             r20              = _mm_mul_pd(rsq20,rinv20);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq20             = _mm_mul_pd(iq2,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236
1237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1238             ewrt             = _mm_mul_pd(r20,ewtabscale);
1239             ewitab           = _mm_cvttpd_epi32(ewrt);
1240 #ifdef __XOP__
1241             eweps            = _mm_frcz_pd(ewrt);
1242 #else
1243             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1244 #endif
1245             twoeweps         = _mm_add_pd(eweps,eweps);
1246             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1247             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1248             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1249
1250             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1251
1252             fscal            = felec;
1253
1254             fscal            = _mm_and_pd(fscal,cutoff_mask);
1255
1256             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1257
1258             /* Update vectorial force */
1259             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1260             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1261             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1262             
1263             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1264             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1265             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1266
1267             }
1268
1269             /**************************
1270              * CALCULATE INTERACTIONS *
1271              **************************/
1272
1273             if (gmx_mm_any_lt(rsq30,rcutoff2))
1274             {
1275
1276             r30              = _mm_mul_pd(rsq30,rinv30);
1277
1278             /* Compute parameters for interactions between i and j atoms */
1279             qq30             = _mm_mul_pd(iq3,jq0);
1280
1281             /* EWALD ELECTROSTATICS */
1282
1283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1284             ewrt             = _mm_mul_pd(r30,ewtabscale);
1285             ewitab           = _mm_cvttpd_epi32(ewrt);
1286 #ifdef __XOP__
1287             eweps            = _mm_frcz_pd(ewrt);
1288 #else
1289             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1290 #endif
1291             twoeweps         = _mm_add_pd(eweps,eweps);
1292             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1293             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1294             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1295
1296             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1297
1298             fscal            = felec;
1299
1300             fscal            = _mm_and_pd(fscal,cutoff_mask);
1301
1302             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1303
1304             /* Update vectorial force */
1305             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1306             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1307             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1308             
1309             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1310             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1311             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1312
1313             }
1314
1315             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1316
1317             /* Inner loop uses 162 flops */
1318         }
1319
1320         /* End of innermost loop */
1321
1322         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1323                                               f+i_coord_offset,fshift+i_shift_offset);
1324
1325         /* Increment number of inner iterations */
1326         inneriter                  += j_index_end - j_index_start;
1327
1328         /* Outer loop uses 24 flops */
1329     }
1330
1331     /* Increment number of outer iterations */
1332     outeriter        += nri;
1333
1334     /* Update outer/inner flops */
1335
1336     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*162);
1337 }