52659d31db0b96ff17f677f134eef085bfd51fec
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_elec->data;
111     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191             rinv10           = gmx_mm_invsqrt_pd(rsq10);
192             rinv20           = gmx_mm_invsqrt_pd(rsq20);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             fjx0             = _mm_setzero_pd();
202             fjy0             = _mm_setzero_pd();
203             fjz0             = _mm_setzero_pd();
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             r00              = _mm_mul_pd(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_pd(iq0,jq0);
213             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
214                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
215
216             /* Calculate table index by multiplying r with table scale and truncate to integer */
217             rt               = _mm_mul_pd(r00,vftabscale);
218             vfitab           = _mm_cvttpd_epi32(rt);
219 #ifdef __XOP__
220             vfeps            = _mm_frcz_pd(rt);
221 #else
222             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
223 #endif
224             twovfeps         = _mm_add_pd(vfeps,vfeps);
225             vfitab           = _mm_slli_epi32(vfitab,2);
226
227             /* CUBIC SPLINE TABLE ELECTROSTATICS */
228             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
229             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
230             GMX_MM_TRANSPOSE2_PD(Y,F);
231             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
232             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
233             GMX_MM_TRANSPOSE2_PD(G,H);
234             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
235             VV               = _mm_macc_pd(vfeps,Fp,Y);
236             velec            = _mm_mul_pd(qq00,VV);
237             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
238             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
244             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
245             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
246             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _mm_add_pd(velecsum,velec);
250             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
251
252             fscal            = _mm_add_pd(felec,fvdw);
253
254             /* Update vectorial force */
255             fix0             = _mm_macc_pd(dx00,fscal,fix0);
256             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
257             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
258             
259             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
260             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
261             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r10              = _mm_mul_pd(rsq10,rinv10);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq10             = _mm_mul_pd(iq1,jq0);
271
272             /* Calculate table index by multiplying r with table scale and truncate to integer */
273             rt               = _mm_mul_pd(r10,vftabscale);
274             vfitab           = _mm_cvttpd_epi32(rt);
275 #ifdef __XOP__
276             vfeps            = _mm_frcz_pd(rt);
277 #else
278             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
279 #endif
280             twovfeps         = _mm_add_pd(vfeps,vfeps);
281             vfitab           = _mm_slli_epi32(vfitab,2);
282
283             /* CUBIC SPLINE TABLE ELECTROSTATICS */
284             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
286             GMX_MM_TRANSPOSE2_PD(Y,F);
287             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
288             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
289             GMX_MM_TRANSPOSE2_PD(G,H);
290             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
291             VV               = _mm_macc_pd(vfeps,Fp,Y);
292             velec            = _mm_mul_pd(qq10,VV);
293             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
294             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velecsum         = _mm_add_pd(velecsum,velec);
298
299             fscal            = felec;
300
301             /* Update vectorial force */
302             fix1             = _mm_macc_pd(dx10,fscal,fix1);
303             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
304             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
305             
306             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
307             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
308             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             r20              = _mm_mul_pd(rsq20,rinv20);
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq20             = _mm_mul_pd(iq2,jq0);
318
319             /* Calculate table index by multiplying r with table scale and truncate to integer */
320             rt               = _mm_mul_pd(r20,vftabscale);
321             vfitab           = _mm_cvttpd_epi32(rt);
322 #ifdef __XOP__
323             vfeps            = _mm_frcz_pd(rt);
324 #else
325             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
326 #endif
327             twovfeps         = _mm_add_pd(vfeps,vfeps);
328             vfitab           = _mm_slli_epi32(vfitab,2);
329
330             /* CUBIC SPLINE TABLE ELECTROSTATICS */
331             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
332             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
333             GMX_MM_TRANSPOSE2_PD(Y,F);
334             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
335             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
336             GMX_MM_TRANSPOSE2_PD(G,H);
337             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
338             VV               = _mm_macc_pd(vfeps,Fp,Y);
339             velec            = _mm_mul_pd(qq20,VV);
340             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
341             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Update vectorial force */
349             fix2             = _mm_macc_pd(dx20,fscal,fix2);
350             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
351             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
352             
353             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
354             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
355             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
356
357             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
358
359             /* Inner loop uses 154 flops */
360         }
361
362         if(jidx<j_index_end)
363         {
364
365             jnrA             = jjnr[jidx];
366             j_coord_offsetA  = DIM*jnrA;
367
368             /* load j atom coordinates */
369             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
370                                               &jx0,&jy0,&jz0);
371
372             /* Calculate displacement vector */
373             dx00             = _mm_sub_pd(ix0,jx0);
374             dy00             = _mm_sub_pd(iy0,jy0);
375             dz00             = _mm_sub_pd(iz0,jz0);
376             dx10             = _mm_sub_pd(ix1,jx0);
377             dy10             = _mm_sub_pd(iy1,jy0);
378             dz10             = _mm_sub_pd(iz1,jz0);
379             dx20             = _mm_sub_pd(ix2,jx0);
380             dy20             = _mm_sub_pd(iy2,jy0);
381             dz20             = _mm_sub_pd(iz2,jz0);
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
385             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
386             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
387
388             rinv00           = gmx_mm_invsqrt_pd(rsq00);
389             rinv10           = gmx_mm_invsqrt_pd(rsq10);
390             rinv20           = gmx_mm_invsqrt_pd(rsq20);
391
392             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
393
394             /* Load parameters for j particles */
395             jq0              = _mm_load_sd(charge+jnrA+0);
396             vdwjidx0A        = 2*vdwtype[jnrA+0];
397
398             fjx0             = _mm_setzero_pd();
399             fjy0             = _mm_setzero_pd();
400             fjz0             = _mm_setzero_pd();
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             r00              = _mm_mul_pd(rsq00,rinv00);
407
408             /* Compute parameters for interactions between i and j atoms */
409             qq00             = _mm_mul_pd(iq0,jq0);
410             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
411
412             /* Calculate table index by multiplying r with table scale and truncate to integer */
413             rt               = _mm_mul_pd(r00,vftabscale);
414             vfitab           = _mm_cvttpd_epi32(rt);
415 #ifdef __XOP__
416             vfeps            = _mm_frcz_pd(rt);
417 #else
418             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
419 #endif
420             twovfeps         = _mm_add_pd(vfeps,vfeps);
421             vfitab           = _mm_slli_epi32(vfitab,2);
422
423             /* CUBIC SPLINE TABLE ELECTROSTATICS */
424             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
425             F                = _mm_setzero_pd();
426             GMX_MM_TRANSPOSE2_PD(Y,F);
427             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
428             H                = _mm_setzero_pd();
429             GMX_MM_TRANSPOSE2_PD(G,H);
430             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
431             VV               = _mm_macc_pd(vfeps,Fp,Y);
432             velec            = _mm_mul_pd(qq00,VV);
433             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
434             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
435
436             /* LENNARD-JONES DISPERSION/REPULSION */
437
438             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
439             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
440             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
441             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
442             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
446             velecsum         = _mm_add_pd(velecsum,velec);
447             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
448             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
449
450             fscal            = _mm_add_pd(felec,fvdw);
451
452             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
453
454             /* Update vectorial force */
455             fix0             = _mm_macc_pd(dx00,fscal,fix0);
456             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
457             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
458             
459             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
460             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
461             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             r10              = _mm_mul_pd(rsq10,rinv10);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq10             = _mm_mul_pd(iq1,jq0);
471
472             /* Calculate table index by multiplying r with table scale and truncate to integer */
473             rt               = _mm_mul_pd(r10,vftabscale);
474             vfitab           = _mm_cvttpd_epi32(rt);
475 #ifdef __XOP__
476             vfeps            = _mm_frcz_pd(rt);
477 #else
478             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
479 #endif
480             twovfeps         = _mm_add_pd(vfeps,vfeps);
481             vfitab           = _mm_slli_epi32(vfitab,2);
482
483             /* CUBIC SPLINE TABLE ELECTROSTATICS */
484             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
485             F                = _mm_setzero_pd();
486             GMX_MM_TRANSPOSE2_PD(Y,F);
487             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
488             H                = _mm_setzero_pd();
489             GMX_MM_TRANSPOSE2_PD(G,H);
490             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
491             VV               = _mm_macc_pd(vfeps,Fp,Y);
492             velec            = _mm_mul_pd(qq10,VV);
493             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
494             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
498             velecsum         = _mm_add_pd(velecsum,velec);
499
500             fscal            = felec;
501
502             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
503
504             /* Update vectorial force */
505             fix1             = _mm_macc_pd(dx10,fscal,fix1);
506             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
507             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
508             
509             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
510             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
511             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             r20              = _mm_mul_pd(rsq20,rinv20);
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq20             = _mm_mul_pd(iq2,jq0);
521
522             /* Calculate table index by multiplying r with table scale and truncate to integer */
523             rt               = _mm_mul_pd(r20,vftabscale);
524             vfitab           = _mm_cvttpd_epi32(rt);
525 #ifdef __XOP__
526             vfeps            = _mm_frcz_pd(rt);
527 #else
528             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
529 #endif
530             twovfeps         = _mm_add_pd(vfeps,vfeps);
531             vfitab           = _mm_slli_epi32(vfitab,2);
532
533             /* CUBIC SPLINE TABLE ELECTROSTATICS */
534             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
535             F                = _mm_setzero_pd();
536             GMX_MM_TRANSPOSE2_PD(Y,F);
537             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
538             H                = _mm_setzero_pd();
539             GMX_MM_TRANSPOSE2_PD(G,H);
540             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
541             VV               = _mm_macc_pd(vfeps,Fp,Y);
542             velec            = _mm_mul_pd(qq20,VV);
543             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
544             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
548             velecsum         = _mm_add_pd(velecsum,velec);
549
550             fscal            = felec;
551
552             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
553
554             /* Update vectorial force */
555             fix2             = _mm_macc_pd(dx20,fscal,fix2);
556             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
557             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
558             
559             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
560             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
561             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
562
563             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
564
565             /* Inner loop uses 154 flops */
566         }
567
568         /* End of innermost loop */
569
570         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
571                                               f+i_coord_offset,fshift+i_shift_offset);
572
573         ggid                        = gid[iidx];
574         /* Update potential energies */
575         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
576         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
577
578         /* Increment number of inner iterations */
579         inneriter                  += j_index_end - j_index_start;
580
581         /* Outer loop uses 20 flops */
582     }
583
584     /* Increment number of outer iterations */
585     outeriter        += nri;
586
587     /* Update outer/inner flops */
588
589     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
590 }
591 /*
592  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_double
593  * Electrostatics interaction: CubicSplineTable
594  * VdW interaction:            LennardJones
595  * Geometry:                   Water3-Particle
596  * Calculate force/pot:        Force
597  */
598 void
599 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_double
600                     (t_nblist * gmx_restrict                nlist,
601                      rvec * gmx_restrict                    xx,
602                      rvec * gmx_restrict                    ff,
603                      t_forcerec * gmx_restrict              fr,
604                      t_mdatoms * gmx_restrict               mdatoms,
605                      nb_kernel_data_t * gmx_restrict        kernel_data,
606                      t_nrnb * gmx_restrict                  nrnb)
607 {
608     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
609      * just 0 for non-waters.
610      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
611      * jnr indices corresponding to data put in the four positions in the SIMD register.
612      */
613     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
614     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
615     int              jnrA,jnrB;
616     int              j_coord_offsetA,j_coord_offsetB;
617     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
618     real             rcutoff_scalar;
619     real             *shiftvec,*fshift,*x,*f;
620     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
621     int              vdwioffset0;
622     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
623     int              vdwioffset1;
624     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
625     int              vdwioffset2;
626     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
627     int              vdwjidx0A,vdwjidx0B;
628     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
629     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
630     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
631     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
632     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
633     real             *charge;
634     int              nvdwtype;
635     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
636     int              *vdwtype;
637     real             *vdwparam;
638     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
639     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
640     __m128i          vfitab;
641     __m128i          ifour       = _mm_set1_epi32(4);
642     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
643     real             *vftab;
644     __m128d          dummy_mask,cutoff_mask;
645     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
646     __m128d          one     = _mm_set1_pd(1.0);
647     __m128d          two     = _mm_set1_pd(2.0);
648     x                = xx[0];
649     f                = ff[0];
650
651     nri              = nlist->nri;
652     iinr             = nlist->iinr;
653     jindex           = nlist->jindex;
654     jjnr             = nlist->jjnr;
655     shiftidx         = nlist->shift;
656     gid              = nlist->gid;
657     shiftvec         = fr->shift_vec[0];
658     fshift           = fr->fshift[0];
659     facel            = _mm_set1_pd(fr->epsfac);
660     charge           = mdatoms->chargeA;
661     nvdwtype         = fr->ntype;
662     vdwparam         = fr->nbfp;
663     vdwtype          = mdatoms->typeA;
664
665     vftab            = kernel_data->table_elec->data;
666     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
667
668     /* Setup water-specific parameters */
669     inr              = nlist->iinr[0];
670     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
671     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
672     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
673     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
674
675     /* Avoid stupid compiler warnings */
676     jnrA = jnrB = 0;
677     j_coord_offsetA = 0;
678     j_coord_offsetB = 0;
679
680     outeriter        = 0;
681     inneriter        = 0;
682
683     /* Start outer loop over neighborlists */
684     for(iidx=0; iidx<nri; iidx++)
685     {
686         /* Load shift vector for this list */
687         i_shift_offset   = DIM*shiftidx[iidx];
688
689         /* Load limits for loop over neighbors */
690         j_index_start    = jindex[iidx];
691         j_index_end      = jindex[iidx+1];
692
693         /* Get outer coordinate index */
694         inr              = iinr[iidx];
695         i_coord_offset   = DIM*inr;
696
697         /* Load i particle coords and add shift vector */
698         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
699                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
700
701         fix0             = _mm_setzero_pd();
702         fiy0             = _mm_setzero_pd();
703         fiz0             = _mm_setzero_pd();
704         fix1             = _mm_setzero_pd();
705         fiy1             = _mm_setzero_pd();
706         fiz1             = _mm_setzero_pd();
707         fix2             = _mm_setzero_pd();
708         fiy2             = _mm_setzero_pd();
709         fiz2             = _mm_setzero_pd();
710
711         /* Start inner kernel loop */
712         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
713         {
714
715             /* Get j neighbor index, and coordinate index */
716             jnrA             = jjnr[jidx];
717             jnrB             = jjnr[jidx+1];
718             j_coord_offsetA  = DIM*jnrA;
719             j_coord_offsetB  = DIM*jnrB;
720
721             /* load j atom coordinates */
722             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
723                                               &jx0,&jy0,&jz0);
724
725             /* Calculate displacement vector */
726             dx00             = _mm_sub_pd(ix0,jx0);
727             dy00             = _mm_sub_pd(iy0,jy0);
728             dz00             = _mm_sub_pd(iz0,jz0);
729             dx10             = _mm_sub_pd(ix1,jx0);
730             dy10             = _mm_sub_pd(iy1,jy0);
731             dz10             = _mm_sub_pd(iz1,jz0);
732             dx20             = _mm_sub_pd(ix2,jx0);
733             dy20             = _mm_sub_pd(iy2,jy0);
734             dz20             = _mm_sub_pd(iz2,jz0);
735
736             /* Calculate squared distance and things based on it */
737             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
738             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
739             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
740
741             rinv00           = gmx_mm_invsqrt_pd(rsq00);
742             rinv10           = gmx_mm_invsqrt_pd(rsq10);
743             rinv20           = gmx_mm_invsqrt_pd(rsq20);
744
745             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
746
747             /* Load parameters for j particles */
748             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
749             vdwjidx0A        = 2*vdwtype[jnrA+0];
750             vdwjidx0B        = 2*vdwtype[jnrB+0];
751
752             fjx0             = _mm_setzero_pd();
753             fjy0             = _mm_setzero_pd();
754             fjz0             = _mm_setzero_pd();
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             r00              = _mm_mul_pd(rsq00,rinv00);
761
762             /* Compute parameters for interactions between i and j atoms */
763             qq00             = _mm_mul_pd(iq0,jq0);
764             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
765                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
766
767             /* Calculate table index by multiplying r with table scale and truncate to integer */
768             rt               = _mm_mul_pd(r00,vftabscale);
769             vfitab           = _mm_cvttpd_epi32(rt);
770 #ifdef __XOP__
771             vfeps            = _mm_frcz_pd(rt);
772 #else
773             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
774 #endif
775             twovfeps         = _mm_add_pd(vfeps,vfeps);
776             vfitab           = _mm_slli_epi32(vfitab,2);
777
778             /* CUBIC SPLINE TABLE ELECTROSTATICS */
779             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
780             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
781             GMX_MM_TRANSPOSE2_PD(Y,F);
782             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
783             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
784             GMX_MM_TRANSPOSE2_PD(G,H);
785             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
786             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
787             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
788
789             /* LENNARD-JONES DISPERSION/REPULSION */
790
791             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
792             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
793
794             fscal            = _mm_add_pd(felec,fvdw);
795
796             /* Update vectorial force */
797             fix0             = _mm_macc_pd(dx00,fscal,fix0);
798             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
799             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
800             
801             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
802             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
803             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
804
805             /**************************
806              * CALCULATE INTERACTIONS *
807              **************************/
808
809             r10              = _mm_mul_pd(rsq10,rinv10);
810
811             /* Compute parameters for interactions between i and j atoms */
812             qq10             = _mm_mul_pd(iq1,jq0);
813
814             /* Calculate table index by multiplying r with table scale and truncate to integer */
815             rt               = _mm_mul_pd(r10,vftabscale);
816             vfitab           = _mm_cvttpd_epi32(rt);
817 #ifdef __XOP__
818             vfeps            = _mm_frcz_pd(rt);
819 #else
820             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
821 #endif
822             twovfeps         = _mm_add_pd(vfeps,vfeps);
823             vfitab           = _mm_slli_epi32(vfitab,2);
824
825             /* CUBIC SPLINE TABLE ELECTROSTATICS */
826             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
827             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
828             GMX_MM_TRANSPOSE2_PD(Y,F);
829             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
830             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
831             GMX_MM_TRANSPOSE2_PD(G,H);
832             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
833             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
834             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
835
836             fscal            = felec;
837
838             /* Update vectorial force */
839             fix1             = _mm_macc_pd(dx10,fscal,fix1);
840             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
841             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
842             
843             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
844             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
845             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
846
847             /**************************
848              * CALCULATE INTERACTIONS *
849              **************************/
850
851             r20              = _mm_mul_pd(rsq20,rinv20);
852
853             /* Compute parameters for interactions between i and j atoms */
854             qq20             = _mm_mul_pd(iq2,jq0);
855
856             /* Calculate table index by multiplying r with table scale and truncate to integer */
857             rt               = _mm_mul_pd(r20,vftabscale);
858             vfitab           = _mm_cvttpd_epi32(rt);
859 #ifdef __XOP__
860             vfeps            = _mm_frcz_pd(rt);
861 #else
862             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
863 #endif
864             twovfeps         = _mm_add_pd(vfeps,vfeps);
865             vfitab           = _mm_slli_epi32(vfitab,2);
866
867             /* CUBIC SPLINE TABLE ELECTROSTATICS */
868             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
869             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
870             GMX_MM_TRANSPOSE2_PD(Y,F);
871             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
872             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
873             GMX_MM_TRANSPOSE2_PD(G,H);
874             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
875             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
876             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
877
878             fscal            = felec;
879
880             /* Update vectorial force */
881             fix2             = _mm_macc_pd(dx20,fscal,fix2);
882             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
883             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
884             
885             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
886             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
887             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
888
889             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
890
891             /* Inner loop uses 137 flops */
892         }
893
894         if(jidx<j_index_end)
895         {
896
897             jnrA             = jjnr[jidx];
898             j_coord_offsetA  = DIM*jnrA;
899
900             /* load j atom coordinates */
901             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
902                                               &jx0,&jy0,&jz0);
903
904             /* Calculate displacement vector */
905             dx00             = _mm_sub_pd(ix0,jx0);
906             dy00             = _mm_sub_pd(iy0,jy0);
907             dz00             = _mm_sub_pd(iz0,jz0);
908             dx10             = _mm_sub_pd(ix1,jx0);
909             dy10             = _mm_sub_pd(iy1,jy0);
910             dz10             = _mm_sub_pd(iz1,jz0);
911             dx20             = _mm_sub_pd(ix2,jx0);
912             dy20             = _mm_sub_pd(iy2,jy0);
913             dz20             = _mm_sub_pd(iz2,jz0);
914
915             /* Calculate squared distance and things based on it */
916             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
917             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
918             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
919
920             rinv00           = gmx_mm_invsqrt_pd(rsq00);
921             rinv10           = gmx_mm_invsqrt_pd(rsq10);
922             rinv20           = gmx_mm_invsqrt_pd(rsq20);
923
924             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
925
926             /* Load parameters for j particles */
927             jq0              = _mm_load_sd(charge+jnrA+0);
928             vdwjidx0A        = 2*vdwtype[jnrA+0];
929
930             fjx0             = _mm_setzero_pd();
931             fjy0             = _mm_setzero_pd();
932             fjz0             = _mm_setzero_pd();
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             r00              = _mm_mul_pd(rsq00,rinv00);
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq00             = _mm_mul_pd(iq0,jq0);
942             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
943
944             /* Calculate table index by multiplying r with table scale and truncate to integer */
945             rt               = _mm_mul_pd(r00,vftabscale);
946             vfitab           = _mm_cvttpd_epi32(rt);
947 #ifdef __XOP__
948             vfeps            = _mm_frcz_pd(rt);
949 #else
950             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
951 #endif
952             twovfeps         = _mm_add_pd(vfeps,vfeps);
953             vfitab           = _mm_slli_epi32(vfitab,2);
954
955             /* CUBIC SPLINE TABLE ELECTROSTATICS */
956             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
957             F                = _mm_setzero_pd();
958             GMX_MM_TRANSPOSE2_PD(Y,F);
959             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
960             H                = _mm_setzero_pd();
961             GMX_MM_TRANSPOSE2_PD(G,H);
962             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
963             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
964             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
965
966             /* LENNARD-JONES DISPERSION/REPULSION */
967
968             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
969             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
970
971             fscal            = _mm_add_pd(felec,fvdw);
972
973             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
974
975             /* Update vectorial force */
976             fix0             = _mm_macc_pd(dx00,fscal,fix0);
977             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
978             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
979             
980             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
981             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
982             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r10              = _mm_mul_pd(rsq10,rinv10);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq10             = _mm_mul_pd(iq1,jq0);
992
993             /* Calculate table index by multiplying r with table scale and truncate to integer */
994             rt               = _mm_mul_pd(r10,vftabscale);
995             vfitab           = _mm_cvttpd_epi32(rt);
996 #ifdef __XOP__
997             vfeps            = _mm_frcz_pd(rt);
998 #else
999             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1000 #endif
1001             twovfeps         = _mm_add_pd(vfeps,vfeps);
1002             vfitab           = _mm_slli_epi32(vfitab,2);
1003
1004             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1005             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1006             F                = _mm_setzero_pd();
1007             GMX_MM_TRANSPOSE2_PD(Y,F);
1008             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1009             H                = _mm_setzero_pd();
1010             GMX_MM_TRANSPOSE2_PD(G,H);
1011             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1012             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1013             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1014
1015             fscal            = felec;
1016
1017             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1018
1019             /* Update vectorial force */
1020             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1021             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1022             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1023             
1024             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1025             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1026             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             r20              = _mm_mul_pd(rsq20,rinv20);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq20             = _mm_mul_pd(iq2,jq0);
1036
1037             /* Calculate table index by multiplying r with table scale and truncate to integer */
1038             rt               = _mm_mul_pd(r20,vftabscale);
1039             vfitab           = _mm_cvttpd_epi32(rt);
1040 #ifdef __XOP__
1041             vfeps            = _mm_frcz_pd(rt);
1042 #else
1043             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1044 #endif
1045             twovfeps         = _mm_add_pd(vfeps,vfeps);
1046             vfitab           = _mm_slli_epi32(vfitab,2);
1047
1048             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1049             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1050             F                = _mm_setzero_pd();
1051             GMX_MM_TRANSPOSE2_PD(Y,F);
1052             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1053             H                = _mm_setzero_pd();
1054             GMX_MM_TRANSPOSE2_PD(G,H);
1055             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1056             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1057             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1058
1059             fscal            = felec;
1060
1061             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1062
1063             /* Update vectorial force */
1064             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1065             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1066             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1067             
1068             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1069             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1070             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1071
1072             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1073
1074             /* Inner loop uses 137 flops */
1075         }
1076
1077         /* End of innermost loop */
1078
1079         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1080                                               f+i_coord_offset,fshift+i_shift_offset);
1081
1082         /* Increment number of inner iterations */
1083         inneriter                  += j_index_end - j_index_start;
1084
1085         /* Outer loop uses 18 flops */
1086     }
1087
1088     /* Increment number of outer iterations */
1089     outeriter        += nri;
1090
1091     /* Update outer/inner flops */
1092
1093     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1094 }