f95aa7b1fefefaf7498b5b4d40da8cd6d654f23a
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
91     real             *vftab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_elec_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
119     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
120     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
147                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152         fix1             = _mm_setzero_pd();
153         fiy1             = _mm_setzero_pd();
154         fiz1             = _mm_setzero_pd();
155         fix2             = _mm_setzero_pd();
156         fiy2             = _mm_setzero_pd();
157         fiz2             = _mm_setzero_pd();
158         fix3             = _mm_setzero_pd();
159         fiy3             = _mm_setzero_pd();
160         fiz3             = _mm_setzero_pd();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184             dx10             = _mm_sub_pd(ix1,jx0);
185             dy10             = _mm_sub_pd(iy1,jy0);
186             dz10             = _mm_sub_pd(iz1,jz0);
187             dx20             = _mm_sub_pd(ix2,jx0);
188             dy20             = _mm_sub_pd(iy2,jy0);
189             dz20             = _mm_sub_pd(iz2,jz0);
190             dx30             = _mm_sub_pd(ix3,jx0);
191             dy30             = _mm_sub_pd(iy3,jy0);
192             dz30             = _mm_sub_pd(iz3,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203             rinv30           = gmx_mm_invsqrt_pd(rsq30);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209
210             fjx0             = _mm_setzero_pd();
211             fjy0             = _mm_setzero_pd();
212             fjz0             = _mm_setzero_pd();
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             r00              = _mm_mul_pd(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
222                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
223
224             /* Calculate table index by multiplying r with table scale and truncate to integer */
225             rt               = _mm_mul_pd(r00,vftabscale);
226             vfitab           = _mm_cvttpd_epi32(rt);
227 #ifdef __XOP__
228             vfeps            = _mm_frcz_pd(rt);
229 #else
230             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
231 #endif
232             twovfeps         = _mm_add_pd(vfeps,vfeps);
233             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
234
235             /* CUBIC SPLINE TABLE DISPERSION */
236             vfitab           = _mm_add_epi32(vfitab,ifour);
237             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
239             GMX_MM_TRANSPOSE2_PD(Y,F);
240             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
241             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(G,H);
243             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
244             VV               = _mm_macc_pd(vfeps,Fp,Y);
245             vvdw6            = _mm_mul_pd(c6_00,VV);
246             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
247             fvdw6            = _mm_mul_pd(c6_00,FF);
248
249             /* CUBIC SPLINE TABLE REPULSION */
250             vfitab           = _mm_add_epi32(vfitab,ifour);
251             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
253             GMX_MM_TRANSPOSE2_PD(Y,F);
254             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
255             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
256             GMX_MM_TRANSPOSE2_PD(G,H);
257             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
258             VV               = _mm_macc_pd(vfeps,Fp,Y);
259             vvdw12           = _mm_mul_pd(c12_00,VV);
260             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
261             fvdw12           = _mm_mul_pd(c12_00,FF);
262             vvdw             = _mm_add_pd(vvdw12,vvdw6);
263             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
267
268             fscal            = fvdw;
269
270             /* Update vectorial force */
271             fix0             = _mm_macc_pd(dx00,fscal,fix0);
272             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
273             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
274             
275             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
276             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
277             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r10              = _mm_mul_pd(rsq10,rinv10);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_pd(iq1,jq0);
287
288             /* Calculate table index by multiplying r with table scale and truncate to integer */
289             rt               = _mm_mul_pd(r10,vftabscale);
290             vfitab           = _mm_cvttpd_epi32(rt);
291 #ifdef __XOP__
292             vfeps            = _mm_frcz_pd(rt);
293 #else
294             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
295 #endif
296             twovfeps         = _mm_add_pd(vfeps,vfeps);
297             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
298
299             /* CUBIC SPLINE TABLE ELECTROSTATICS */
300             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
301             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
302             GMX_MM_TRANSPOSE2_PD(Y,F);
303             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
304             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
305             GMX_MM_TRANSPOSE2_PD(G,H);
306             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
307             VV               = _mm_macc_pd(vfeps,Fp,Y);
308             velec            = _mm_mul_pd(qq10,VV);
309             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
310             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_pd(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Update vectorial force */
318             fix1             = _mm_macc_pd(dx10,fscal,fix1);
319             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
320             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
321             
322             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
323             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
324             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r20              = _mm_mul_pd(rsq20,rinv20);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_pd(iq2,jq0);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _mm_mul_pd(r20,vftabscale);
337             vfitab           = _mm_cvttpd_epi32(rt);
338 #ifdef __XOP__
339             vfeps            = _mm_frcz_pd(rt);
340 #else
341             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
342 #endif
343             twovfeps         = _mm_add_pd(vfeps,vfeps);
344             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
345
346             /* CUBIC SPLINE TABLE ELECTROSTATICS */
347             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
348             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
349             GMX_MM_TRANSPOSE2_PD(Y,F);
350             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
351             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
352             GMX_MM_TRANSPOSE2_PD(G,H);
353             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
354             VV               = _mm_macc_pd(vfeps,Fp,Y);
355             velec            = _mm_mul_pd(qq20,VV);
356             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
357             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Update vectorial force */
365             fix2             = _mm_macc_pd(dx20,fscal,fix2);
366             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
367             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
368             
369             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
370             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
371             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             r30              = _mm_mul_pd(rsq30,rinv30);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq30             = _mm_mul_pd(iq3,jq0);
381
382             /* Calculate table index by multiplying r with table scale and truncate to integer */
383             rt               = _mm_mul_pd(r30,vftabscale);
384             vfitab           = _mm_cvttpd_epi32(rt);
385 #ifdef __XOP__
386             vfeps            = _mm_frcz_pd(rt);
387 #else
388             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
389 #endif
390             twovfeps         = _mm_add_pd(vfeps,vfeps);
391             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
392
393             /* CUBIC SPLINE TABLE ELECTROSTATICS */
394             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
395             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
396             GMX_MM_TRANSPOSE2_PD(Y,F);
397             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
398             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
399             GMX_MM_TRANSPOSE2_PD(G,H);
400             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
401             VV               = _mm_macc_pd(vfeps,Fp,Y);
402             velec            = _mm_mul_pd(qq30,VV);
403             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
404             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velecsum         = _mm_add_pd(velecsum,velec);
408
409             fscal            = felec;
410
411             /* Update vectorial force */
412             fix3             = _mm_macc_pd(dx30,fscal,fix3);
413             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
414             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
415             
416             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
417             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
418             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
419
420             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
421
422             /* Inner loop uses 200 flops */
423         }
424
425         if(jidx<j_index_end)
426         {
427
428             jnrA             = jjnr[jidx];
429             j_coord_offsetA  = DIM*jnrA;
430
431             /* load j atom coordinates */
432             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
433                                               &jx0,&jy0,&jz0);
434
435             /* Calculate displacement vector */
436             dx00             = _mm_sub_pd(ix0,jx0);
437             dy00             = _mm_sub_pd(iy0,jy0);
438             dz00             = _mm_sub_pd(iz0,jz0);
439             dx10             = _mm_sub_pd(ix1,jx0);
440             dy10             = _mm_sub_pd(iy1,jy0);
441             dz10             = _mm_sub_pd(iz1,jz0);
442             dx20             = _mm_sub_pd(ix2,jx0);
443             dy20             = _mm_sub_pd(iy2,jy0);
444             dz20             = _mm_sub_pd(iz2,jz0);
445             dx30             = _mm_sub_pd(ix3,jx0);
446             dy30             = _mm_sub_pd(iy3,jy0);
447             dz30             = _mm_sub_pd(iz3,jz0);
448
449             /* Calculate squared distance and things based on it */
450             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
451             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
452             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
453             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
454
455             rinv00           = gmx_mm_invsqrt_pd(rsq00);
456             rinv10           = gmx_mm_invsqrt_pd(rsq10);
457             rinv20           = gmx_mm_invsqrt_pd(rsq20);
458             rinv30           = gmx_mm_invsqrt_pd(rsq30);
459
460             /* Load parameters for j particles */
461             jq0              = _mm_load_sd(charge+jnrA+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463
464             fjx0             = _mm_setzero_pd();
465             fjy0             = _mm_setzero_pd();
466             fjz0             = _mm_setzero_pd();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             r00              = _mm_mul_pd(rsq00,rinv00);
473
474             /* Compute parameters for interactions between i and j atoms */
475             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
476
477             /* Calculate table index by multiplying r with table scale and truncate to integer */
478             rt               = _mm_mul_pd(r00,vftabscale);
479             vfitab           = _mm_cvttpd_epi32(rt);
480 #ifdef __XOP__
481             vfeps            = _mm_frcz_pd(rt);
482 #else
483             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
484 #endif
485             twovfeps         = _mm_add_pd(vfeps,vfeps);
486             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
487
488             /* CUBIC SPLINE TABLE DISPERSION */
489             vfitab           = _mm_add_epi32(vfitab,ifour);
490             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
491             F                = _mm_setzero_pd();
492             GMX_MM_TRANSPOSE2_PD(Y,F);
493             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
494             H                = _mm_setzero_pd();
495             GMX_MM_TRANSPOSE2_PD(G,H);
496             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
497             VV               = _mm_macc_pd(vfeps,Fp,Y);
498             vvdw6            = _mm_mul_pd(c6_00,VV);
499             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
500             fvdw6            = _mm_mul_pd(c6_00,FF);
501
502             /* CUBIC SPLINE TABLE REPULSION */
503             vfitab           = _mm_add_epi32(vfitab,ifour);
504             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
505             F                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
511             VV               = _mm_macc_pd(vfeps,Fp,Y);
512             vvdw12           = _mm_mul_pd(c12_00,VV);
513             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
514             fvdw12           = _mm_mul_pd(c12_00,FF);
515             vvdw             = _mm_add_pd(vvdw12,vvdw6);
516             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
520             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
521
522             fscal            = fvdw;
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Update vectorial force */
527             fix0             = _mm_macc_pd(dx00,fscal,fix0);
528             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
529             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
530             
531             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
532             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
533             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r10              = _mm_mul_pd(rsq10,rinv10);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_pd(iq1,jq0);
543
544             /* Calculate table index by multiplying r with table scale and truncate to integer */
545             rt               = _mm_mul_pd(r10,vftabscale);
546             vfitab           = _mm_cvttpd_epi32(rt);
547 #ifdef __XOP__
548             vfeps            = _mm_frcz_pd(rt);
549 #else
550             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
551 #endif
552             twovfeps         = _mm_add_pd(vfeps,vfeps);
553             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
554
555             /* CUBIC SPLINE TABLE ELECTROSTATICS */
556             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
557             F                = _mm_setzero_pd();
558             GMX_MM_TRANSPOSE2_PD(Y,F);
559             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
560             H                = _mm_setzero_pd();
561             GMX_MM_TRANSPOSE2_PD(G,H);
562             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
563             VV               = _mm_macc_pd(vfeps,Fp,Y);
564             velec            = _mm_mul_pd(qq10,VV);
565             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
566             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
575
576             /* Update vectorial force */
577             fix1             = _mm_macc_pd(dx10,fscal,fix1);
578             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
579             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
580             
581             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
582             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
583             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r20              = _mm_mul_pd(rsq20,rinv20);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq20             = _mm_mul_pd(iq2,jq0);
593
594             /* Calculate table index by multiplying r with table scale and truncate to integer */
595             rt               = _mm_mul_pd(r20,vftabscale);
596             vfitab           = _mm_cvttpd_epi32(rt);
597 #ifdef __XOP__
598             vfeps            = _mm_frcz_pd(rt);
599 #else
600             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
601 #endif
602             twovfeps         = _mm_add_pd(vfeps,vfeps);
603             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
604
605             /* CUBIC SPLINE TABLE ELECTROSTATICS */
606             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
607             F                = _mm_setzero_pd();
608             GMX_MM_TRANSPOSE2_PD(Y,F);
609             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
610             H                = _mm_setzero_pd();
611             GMX_MM_TRANSPOSE2_PD(G,H);
612             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
613             VV               = _mm_macc_pd(vfeps,Fp,Y);
614             velec            = _mm_mul_pd(qq20,VV);
615             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
616             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
620             velecsum         = _mm_add_pd(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
625
626             /* Update vectorial force */
627             fix2             = _mm_macc_pd(dx20,fscal,fix2);
628             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
629             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
630             
631             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
632             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
633             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             r30              = _mm_mul_pd(rsq30,rinv30);
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq30             = _mm_mul_pd(iq3,jq0);
643
644             /* Calculate table index by multiplying r with table scale and truncate to integer */
645             rt               = _mm_mul_pd(r30,vftabscale);
646             vfitab           = _mm_cvttpd_epi32(rt);
647 #ifdef __XOP__
648             vfeps            = _mm_frcz_pd(rt);
649 #else
650             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
651 #endif
652             twovfeps         = _mm_add_pd(vfeps,vfeps);
653             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
654
655             /* CUBIC SPLINE TABLE ELECTROSTATICS */
656             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
657             F                = _mm_setzero_pd();
658             GMX_MM_TRANSPOSE2_PD(Y,F);
659             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
660             H                = _mm_setzero_pd();
661             GMX_MM_TRANSPOSE2_PD(G,H);
662             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
663             VV               = _mm_macc_pd(vfeps,Fp,Y);
664             velec            = _mm_mul_pd(qq30,VV);
665             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
666             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
667
668             /* Update potential sum for this i atom from the interaction with this j atom. */
669             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
670             velecsum         = _mm_add_pd(velecsum,velec);
671
672             fscal            = felec;
673
674             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
675
676             /* Update vectorial force */
677             fix3             = _mm_macc_pd(dx30,fscal,fix3);
678             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
679             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
680             
681             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
682             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
683             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
684
685             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
686
687             /* Inner loop uses 200 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
693                                               f+i_coord_offset,fshift+i_shift_offset);
694
695         ggid                        = gid[iidx];
696         /* Update potential energies */
697         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
698         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
699
700         /* Increment number of inner iterations */
701         inneriter                  += j_index_end - j_index_start;
702
703         /* Outer loop uses 26 flops */
704     }
705
706     /* Increment number of outer iterations */
707     outeriter        += nri;
708
709     /* Update outer/inner flops */
710
711     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*200);
712 }
713 /*
714  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_double
715  * Electrostatics interaction: CubicSplineTable
716  * VdW interaction:            CubicSplineTable
717  * Geometry:                   Water4-Particle
718  * Calculate force/pot:        Force
719  */
720 void
721 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_double
722                     (t_nblist * gmx_restrict                nlist,
723                      rvec * gmx_restrict                    xx,
724                      rvec * gmx_restrict                    ff,
725                      t_forcerec * gmx_restrict              fr,
726                      t_mdatoms * gmx_restrict               mdatoms,
727                      nb_kernel_data_t * gmx_restrict        kernel_data,
728                      t_nrnb * gmx_restrict                  nrnb)
729 {
730     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
731      * just 0 for non-waters.
732      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
733      * jnr indices corresponding to data put in the four positions in the SIMD register.
734      */
735     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
736     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
737     int              jnrA,jnrB;
738     int              j_coord_offsetA,j_coord_offsetB;
739     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
740     real             rcutoff_scalar;
741     real             *shiftvec,*fshift,*x,*f;
742     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
743     int              vdwioffset0;
744     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
745     int              vdwioffset1;
746     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
747     int              vdwioffset2;
748     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
749     int              vdwioffset3;
750     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
751     int              vdwjidx0A,vdwjidx0B;
752     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
753     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
754     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
755     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
756     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
757     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
758     real             *charge;
759     int              nvdwtype;
760     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
761     int              *vdwtype;
762     real             *vdwparam;
763     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
764     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
765     __m128i          vfitab;
766     __m128i          ifour       = _mm_set1_epi32(4);
767     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
768     real             *vftab;
769     __m128d          dummy_mask,cutoff_mask;
770     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
771     __m128d          one     = _mm_set1_pd(1.0);
772     __m128d          two     = _mm_set1_pd(2.0);
773     x                = xx[0];
774     f                = ff[0];
775
776     nri              = nlist->nri;
777     iinr             = nlist->iinr;
778     jindex           = nlist->jindex;
779     jjnr             = nlist->jjnr;
780     shiftidx         = nlist->shift;
781     gid              = nlist->gid;
782     shiftvec         = fr->shift_vec[0];
783     fshift           = fr->fshift[0];
784     facel            = _mm_set1_pd(fr->epsfac);
785     charge           = mdatoms->chargeA;
786     nvdwtype         = fr->ntype;
787     vdwparam         = fr->nbfp;
788     vdwtype          = mdatoms->typeA;
789
790     vftab            = kernel_data->table_elec_vdw->data;
791     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
796     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
797     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
798     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
799
800     /* Avoid stupid compiler warnings */
801     jnrA = jnrB = 0;
802     j_coord_offsetA = 0;
803     j_coord_offsetB = 0;
804
805     outeriter        = 0;
806     inneriter        = 0;
807
808     /* Start outer loop over neighborlists */
809     for(iidx=0; iidx<nri; iidx++)
810     {
811         /* Load shift vector for this list */
812         i_shift_offset   = DIM*shiftidx[iidx];
813
814         /* Load limits for loop over neighbors */
815         j_index_start    = jindex[iidx];
816         j_index_end      = jindex[iidx+1];
817
818         /* Get outer coordinate index */
819         inr              = iinr[iidx];
820         i_coord_offset   = DIM*inr;
821
822         /* Load i particle coords and add shift vector */
823         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
824                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
825
826         fix0             = _mm_setzero_pd();
827         fiy0             = _mm_setzero_pd();
828         fiz0             = _mm_setzero_pd();
829         fix1             = _mm_setzero_pd();
830         fiy1             = _mm_setzero_pd();
831         fiz1             = _mm_setzero_pd();
832         fix2             = _mm_setzero_pd();
833         fiy2             = _mm_setzero_pd();
834         fiz2             = _mm_setzero_pd();
835         fix3             = _mm_setzero_pd();
836         fiy3             = _mm_setzero_pd();
837         fiz3             = _mm_setzero_pd();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             j_coord_offsetA  = DIM*jnrA;
847             j_coord_offsetB  = DIM*jnrB;
848
849             /* load j atom coordinates */
850             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
851                                               &jx0,&jy0,&jz0);
852
853             /* Calculate displacement vector */
854             dx00             = _mm_sub_pd(ix0,jx0);
855             dy00             = _mm_sub_pd(iy0,jy0);
856             dz00             = _mm_sub_pd(iz0,jz0);
857             dx10             = _mm_sub_pd(ix1,jx0);
858             dy10             = _mm_sub_pd(iy1,jy0);
859             dz10             = _mm_sub_pd(iz1,jz0);
860             dx20             = _mm_sub_pd(ix2,jx0);
861             dy20             = _mm_sub_pd(iy2,jy0);
862             dz20             = _mm_sub_pd(iz2,jz0);
863             dx30             = _mm_sub_pd(ix3,jx0);
864             dy30             = _mm_sub_pd(iy3,jy0);
865             dz30             = _mm_sub_pd(iz3,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
871             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
872
873             rinv00           = gmx_mm_invsqrt_pd(rsq00);
874             rinv10           = gmx_mm_invsqrt_pd(rsq10);
875             rinv20           = gmx_mm_invsqrt_pd(rsq20);
876             rinv30           = gmx_mm_invsqrt_pd(rsq30);
877
878             /* Load parameters for j particles */
879             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
880             vdwjidx0A        = 2*vdwtype[jnrA+0];
881             vdwjidx0B        = 2*vdwtype[jnrB+0];
882
883             fjx0             = _mm_setzero_pd();
884             fjy0             = _mm_setzero_pd();
885             fjz0             = _mm_setzero_pd();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r00              = _mm_mul_pd(rsq00,rinv00);
892
893             /* Compute parameters for interactions between i and j atoms */
894             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
895                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
896
897             /* Calculate table index by multiplying r with table scale and truncate to integer */
898             rt               = _mm_mul_pd(r00,vftabscale);
899             vfitab           = _mm_cvttpd_epi32(rt);
900 #ifdef __XOP__
901             vfeps            = _mm_frcz_pd(rt);
902 #else
903             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
904 #endif
905             twovfeps         = _mm_add_pd(vfeps,vfeps);
906             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
907
908             /* CUBIC SPLINE TABLE DISPERSION */
909             vfitab           = _mm_add_epi32(vfitab,ifour);
910             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
911             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
912             GMX_MM_TRANSPOSE2_PD(Y,F);
913             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
914             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
915             GMX_MM_TRANSPOSE2_PD(G,H);
916             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
917             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
918             fvdw6            = _mm_mul_pd(c6_00,FF);
919
920             /* CUBIC SPLINE TABLE REPULSION */
921             vfitab           = _mm_add_epi32(vfitab,ifour);
922             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
923             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
924             GMX_MM_TRANSPOSE2_PD(Y,F);
925             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
926             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
927             GMX_MM_TRANSPOSE2_PD(G,H);
928             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
929             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
930             fvdw12           = _mm_mul_pd(c12_00,FF);
931             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
932
933             fscal            = fvdw;
934
935             /* Update vectorial force */
936             fix0             = _mm_macc_pd(dx00,fscal,fix0);
937             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
938             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
939             
940             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
941             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
942             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _mm_mul_pd(rsq10,rinv10);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _mm_mul_pd(iq1,jq0);
952
953             /* Calculate table index by multiplying r with table scale and truncate to integer */
954             rt               = _mm_mul_pd(r10,vftabscale);
955             vfitab           = _mm_cvttpd_epi32(rt);
956 #ifdef __XOP__
957             vfeps            = _mm_frcz_pd(rt);
958 #else
959             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
960 #endif
961             twovfeps         = _mm_add_pd(vfeps,vfeps);
962             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
963
964             /* CUBIC SPLINE TABLE ELECTROSTATICS */
965             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
966             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
967             GMX_MM_TRANSPOSE2_PD(Y,F);
968             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
969             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
970             GMX_MM_TRANSPOSE2_PD(G,H);
971             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
972             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
973             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
974
975             fscal            = felec;
976
977             /* Update vectorial force */
978             fix1             = _mm_macc_pd(dx10,fscal,fix1);
979             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
980             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
981             
982             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
983             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
984             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
985
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             r20              = _mm_mul_pd(rsq20,rinv20);
991
992             /* Compute parameters for interactions between i and j atoms */
993             qq20             = _mm_mul_pd(iq2,jq0);
994
995             /* Calculate table index by multiplying r with table scale and truncate to integer */
996             rt               = _mm_mul_pd(r20,vftabscale);
997             vfitab           = _mm_cvttpd_epi32(rt);
998 #ifdef __XOP__
999             vfeps            = _mm_frcz_pd(rt);
1000 #else
1001             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1002 #endif
1003             twovfeps         = _mm_add_pd(vfeps,vfeps);
1004             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1005
1006             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1007             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1008             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1009             GMX_MM_TRANSPOSE2_PD(Y,F);
1010             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1011             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1012             GMX_MM_TRANSPOSE2_PD(G,H);
1013             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1014             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1015             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1016
1017             fscal            = felec;
1018
1019             /* Update vectorial force */
1020             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1021             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1022             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1023             
1024             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1025             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1026             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             r30              = _mm_mul_pd(rsq30,rinv30);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq30             = _mm_mul_pd(iq3,jq0);
1036
1037             /* Calculate table index by multiplying r with table scale and truncate to integer */
1038             rt               = _mm_mul_pd(r30,vftabscale);
1039             vfitab           = _mm_cvttpd_epi32(rt);
1040 #ifdef __XOP__
1041             vfeps            = _mm_frcz_pd(rt);
1042 #else
1043             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1044 #endif
1045             twovfeps         = _mm_add_pd(vfeps,vfeps);
1046             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1047
1048             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1049             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1050             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1051             GMX_MM_TRANSPOSE2_PD(Y,F);
1052             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1053             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1054             GMX_MM_TRANSPOSE2_PD(G,H);
1055             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1056             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1057             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1058
1059             fscal            = felec;
1060
1061             /* Update vectorial force */
1062             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1063             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1064             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1065             
1066             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1067             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1068             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1069
1070             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1071
1072             /* Inner loop uses 180 flops */
1073         }
1074
1075         if(jidx<j_index_end)
1076         {
1077
1078             jnrA             = jjnr[jidx];
1079             j_coord_offsetA  = DIM*jnrA;
1080
1081             /* load j atom coordinates */
1082             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1083                                               &jx0,&jy0,&jz0);
1084
1085             /* Calculate displacement vector */
1086             dx00             = _mm_sub_pd(ix0,jx0);
1087             dy00             = _mm_sub_pd(iy0,jy0);
1088             dz00             = _mm_sub_pd(iz0,jz0);
1089             dx10             = _mm_sub_pd(ix1,jx0);
1090             dy10             = _mm_sub_pd(iy1,jy0);
1091             dz10             = _mm_sub_pd(iz1,jz0);
1092             dx20             = _mm_sub_pd(ix2,jx0);
1093             dy20             = _mm_sub_pd(iy2,jy0);
1094             dz20             = _mm_sub_pd(iz2,jz0);
1095             dx30             = _mm_sub_pd(ix3,jx0);
1096             dy30             = _mm_sub_pd(iy3,jy0);
1097             dz30             = _mm_sub_pd(iz3,jz0);
1098
1099             /* Calculate squared distance and things based on it */
1100             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1101             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1102             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1103             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1104
1105             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1106             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1107             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1108             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1109
1110             /* Load parameters for j particles */
1111             jq0              = _mm_load_sd(charge+jnrA+0);
1112             vdwjidx0A        = 2*vdwtype[jnrA+0];
1113
1114             fjx0             = _mm_setzero_pd();
1115             fjy0             = _mm_setzero_pd();
1116             fjz0             = _mm_setzero_pd();
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             r00              = _mm_mul_pd(rsq00,rinv00);
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1126
1127             /* Calculate table index by multiplying r with table scale and truncate to integer */
1128             rt               = _mm_mul_pd(r00,vftabscale);
1129             vfitab           = _mm_cvttpd_epi32(rt);
1130 #ifdef __XOP__
1131             vfeps            = _mm_frcz_pd(rt);
1132 #else
1133             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1134 #endif
1135             twovfeps         = _mm_add_pd(vfeps,vfeps);
1136             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1137
1138             /* CUBIC SPLINE TABLE DISPERSION */
1139             vfitab           = _mm_add_epi32(vfitab,ifour);
1140             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1141             F                = _mm_setzero_pd();
1142             GMX_MM_TRANSPOSE2_PD(Y,F);
1143             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1144             H                = _mm_setzero_pd();
1145             GMX_MM_TRANSPOSE2_PD(G,H);
1146             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1147             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1148             fvdw6            = _mm_mul_pd(c6_00,FF);
1149
1150             /* CUBIC SPLINE TABLE REPULSION */
1151             vfitab           = _mm_add_epi32(vfitab,ifour);
1152             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1153             F                = _mm_setzero_pd();
1154             GMX_MM_TRANSPOSE2_PD(Y,F);
1155             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1156             H                = _mm_setzero_pd();
1157             GMX_MM_TRANSPOSE2_PD(G,H);
1158             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1159             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1160             fvdw12           = _mm_mul_pd(c12_00,FF);
1161             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1162
1163             fscal            = fvdw;
1164
1165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1166
1167             /* Update vectorial force */
1168             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1169             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1170             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1171             
1172             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1173             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1174             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1175
1176             /**************************
1177              * CALCULATE INTERACTIONS *
1178              **************************/
1179
1180             r10              = _mm_mul_pd(rsq10,rinv10);
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm_mul_pd(iq1,jq0);
1184
1185             /* Calculate table index by multiplying r with table scale and truncate to integer */
1186             rt               = _mm_mul_pd(r10,vftabscale);
1187             vfitab           = _mm_cvttpd_epi32(rt);
1188 #ifdef __XOP__
1189             vfeps            = _mm_frcz_pd(rt);
1190 #else
1191             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1192 #endif
1193             twovfeps         = _mm_add_pd(vfeps,vfeps);
1194             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1195
1196             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1197             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1198             F                = _mm_setzero_pd();
1199             GMX_MM_TRANSPOSE2_PD(Y,F);
1200             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1201             H                = _mm_setzero_pd();
1202             GMX_MM_TRANSPOSE2_PD(G,H);
1203             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1204             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1205             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1210
1211             /* Update vectorial force */
1212             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1213             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1214             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1215             
1216             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1217             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1218             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             r20              = _mm_mul_pd(rsq20,rinv20);
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq20             = _mm_mul_pd(iq2,jq0);
1228
1229             /* Calculate table index by multiplying r with table scale and truncate to integer */
1230             rt               = _mm_mul_pd(r20,vftabscale);
1231             vfitab           = _mm_cvttpd_epi32(rt);
1232 #ifdef __XOP__
1233             vfeps            = _mm_frcz_pd(rt);
1234 #else
1235             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1236 #endif
1237             twovfeps         = _mm_add_pd(vfeps,vfeps);
1238             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1239
1240             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1241             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1242             F                = _mm_setzero_pd();
1243             GMX_MM_TRANSPOSE2_PD(Y,F);
1244             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1245             H                = _mm_setzero_pd();
1246             GMX_MM_TRANSPOSE2_PD(G,H);
1247             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1248             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1249             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1250
1251             fscal            = felec;
1252
1253             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1254
1255             /* Update vectorial force */
1256             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1257             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1258             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1259             
1260             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1261             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1262             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1263
1264             /**************************
1265              * CALCULATE INTERACTIONS *
1266              **************************/
1267
1268             r30              = _mm_mul_pd(rsq30,rinv30);
1269
1270             /* Compute parameters for interactions between i and j atoms */
1271             qq30             = _mm_mul_pd(iq3,jq0);
1272
1273             /* Calculate table index by multiplying r with table scale and truncate to integer */
1274             rt               = _mm_mul_pd(r30,vftabscale);
1275             vfitab           = _mm_cvttpd_epi32(rt);
1276 #ifdef __XOP__
1277             vfeps            = _mm_frcz_pd(rt);
1278 #else
1279             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1280 #endif
1281             twovfeps         = _mm_add_pd(vfeps,vfeps);
1282             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1283
1284             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1285             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1286             F                = _mm_setzero_pd();
1287             GMX_MM_TRANSPOSE2_PD(Y,F);
1288             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1289             H                = _mm_setzero_pd();
1290             GMX_MM_TRANSPOSE2_PD(G,H);
1291             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1292             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1293             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1294
1295             fscal            = felec;
1296
1297             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1298
1299             /* Update vectorial force */
1300             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1301             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1302             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1303             
1304             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1305             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1306             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1307
1308             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1309
1310             /* Inner loop uses 180 flops */
1311         }
1312
1313         /* End of innermost loop */
1314
1315         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1316                                               f+i_coord_offset,fshift+i_shift_offset);
1317
1318         /* Increment number of inner iterations */
1319         inneriter                  += j_index_end - j_index_start;
1320
1321         /* Outer loop uses 24 flops */
1322     }
1323
1324     /* Increment number of outer iterations */
1325     outeriter        += nri;
1326
1327     /* Update outer/inner flops */
1328
1329     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*180);
1330 }