made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_elec_vdw->data;
111     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191             rinv10           = gmx_mm_invsqrt_pd(rsq10);
192             rinv20           = gmx_mm_invsqrt_pd(rsq20);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             fjx0             = _mm_setzero_pd();
200             fjy0             = _mm_setzero_pd();
201             fjz0             = _mm_setzero_pd();
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = _mm_mul_pd(r00,vftabscale);
216             vfitab           = _mm_cvttpd_epi32(rt);
217 #ifdef __XOP__
218             vfeps            = _mm_frcz_pd(rt);
219 #else
220             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
221 #endif
222             twovfeps         = _mm_add_pd(vfeps,vfeps);
223             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
224
225             /* CUBIC SPLINE TABLE ELECTROSTATICS */
226             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
227             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
230             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
233             VV               = _mm_macc_pd(vfeps,Fp,Y);
234             velec            = _mm_mul_pd(qq00,VV);
235             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
236             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
237
238             /* CUBIC SPLINE TABLE DISPERSION */
239             vfitab           = _mm_add_epi32(vfitab,ifour);
240             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
242             GMX_MM_TRANSPOSE2_PD(Y,F);
243             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
244             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
245             GMX_MM_TRANSPOSE2_PD(G,H);
246             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
247             VV               = _mm_macc_pd(vfeps,Fp,Y);
248             vvdw6            = _mm_mul_pd(c6_00,VV);
249             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
250             fvdw6            = _mm_mul_pd(c6_00,FF);
251
252             /* CUBIC SPLINE TABLE REPULSION */
253             vfitab           = _mm_add_epi32(vfitab,ifour);
254             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
255             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
256             GMX_MM_TRANSPOSE2_PD(Y,F);
257             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
258             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(G,H);
260             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
261             VV               = _mm_macc_pd(vfeps,Fp,Y);
262             vvdw12           = _mm_mul_pd(c12_00,VV);
263             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
264             fvdw12           = _mm_mul_pd(c12_00,FF);
265             vvdw             = _mm_add_pd(vvdw12,vvdw6);
266             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_pd(velecsum,velec);
270             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
271
272             fscal            = _mm_add_pd(felec,fvdw);
273
274             /* Update vectorial force */
275             fix0             = _mm_macc_pd(dx00,fscal,fix0);
276             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
277             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
278             
279             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
280             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
281             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             r10              = _mm_mul_pd(rsq10,rinv10);
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq10             = _mm_mul_pd(iq1,jq0);
291
292             /* Calculate table index by multiplying r with table scale and truncate to integer */
293             rt               = _mm_mul_pd(r10,vftabscale);
294             vfitab           = _mm_cvttpd_epi32(rt);
295 #ifdef __XOP__
296             vfeps            = _mm_frcz_pd(rt);
297 #else
298             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
299 #endif
300             twovfeps         = _mm_add_pd(vfeps,vfeps);
301             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
302
303             /* CUBIC SPLINE TABLE ELECTROSTATICS */
304             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
305             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
306             GMX_MM_TRANSPOSE2_PD(Y,F);
307             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
308             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
309             GMX_MM_TRANSPOSE2_PD(G,H);
310             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
311             VV               = _mm_macc_pd(vfeps,Fp,Y);
312             velec            = _mm_mul_pd(qq10,VV);
313             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
314             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm_add_pd(velecsum,velec);
318
319             fscal            = felec;
320
321             /* Update vectorial force */
322             fix1             = _mm_macc_pd(dx10,fscal,fix1);
323             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
324             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
325             
326             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
327             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
328             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             r20              = _mm_mul_pd(rsq20,rinv20);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm_mul_pd(iq2,jq0);
338
339             /* Calculate table index by multiplying r with table scale and truncate to integer */
340             rt               = _mm_mul_pd(r20,vftabscale);
341             vfitab           = _mm_cvttpd_epi32(rt);
342 #ifdef __XOP__
343             vfeps            = _mm_frcz_pd(rt);
344 #else
345             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
346 #endif
347             twovfeps         = _mm_add_pd(vfeps,vfeps);
348             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
349
350             /* CUBIC SPLINE TABLE ELECTROSTATICS */
351             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
352             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
353             GMX_MM_TRANSPOSE2_PD(Y,F);
354             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
355             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
356             GMX_MM_TRANSPOSE2_PD(G,H);
357             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
358             VV               = _mm_macc_pd(vfeps,Fp,Y);
359             velec            = _mm_mul_pd(qq20,VV);
360             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
361             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Update vectorial force */
369             fix2             = _mm_macc_pd(dx20,fscal,fix2);
370             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
371             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
372             
373             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
374             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
375             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
376
377             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
378
379             /* Inner loop uses 171 flops */
380         }
381
382         if(jidx<j_index_end)
383         {
384
385             jnrA             = jjnr[jidx];
386             j_coord_offsetA  = DIM*jnrA;
387
388             /* load j atom coordinates */
389             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
390                                               &jx0,&jy0,&jz0);
391
392             /* Calculate displacement vector */
393             dx00             = _mm_sub_pd(ix0,jx0);
394             dy00             = _mm_sub_pd(iy0,jy0);
395             dz00             = _mm_sub_pd(iz0,jz0);
396             dx10             = _mm_sub_pd(ix1,jx0);
397             dy10             = _mm_sub_pd(iy1,jy0);
398             dz10             = _mm_sub_pd(iz1,jz0);
399             dx20             = _mm_sub_pd(ix2,jx0);
400             dy20             = _mm_sub_pd(iy2,jy0);
401             dz20             = _mm_sub_pd(iz2,jz0);
402
403             /* Calculate squared distance and things based on it */
404             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
405             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
406             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
407
408             rinv00           = gmx_mm_invsqrt_pd(rsq00);
409             rinv10           = gmx_mm_invsqrt_pd(rsq10);
410             rinv20           = gmx_mm_invsqrt_pd(rsq20);
411
412             /* Load parameters for j particles */
413             jq0              = _mm_load_sd(charge+jnrA+0);
414             vdwjidx0A        = 2*vdwtype[jnrA+0];
415
416             fjx0             = _mm_setzero_pd();
417             fjy0             = _mm_setzero_pd();
418             fjz0             = _mm_setzero_pd();
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             r00              = _mm_mul_pd(rsq00,rinv00);
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq00             = _mm_mul_pd(iq0,jq0);
428             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
429
430             /* Calculate table index by multiplying r with table scale and truncate to integer */
431             rt               = _mm_mul_pd(r00,vftabscale);
432             vfitab           = _mm_cvttpd_epi32(rt);
433 #ifdef __XOP__
434             vfeps            = _mm_frcz_pd(rt);
435 #else
436             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
437 #endif
438             twovfeps         = _mm_add_pd(vfeps,vfeps);
439             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
440
441             /* CUBIC SPLINE TABLE ELECTROSTATICS */
442             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
443             F                = _mm_setzero_pd();
444             GMX_MM_TRANSPOSE2_PD(Y,F);
445             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
446             H                = _mm_setzero_pd();
447             GMX_MM_TRANSPOSE2_PD(G,H);
448             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
449             VV               = _mm_macc_pd(vfeps,Fp,Y);
450             velec            = _mm_mul_pd(qq00,VV);
451             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
452             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
453
454             /* CUBIC SPLINE TABLE DISPERSION */
455             vfitab           = _mm_add_epi32(vfitab,ifour);
456             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
463             VV               = _mm_macc_pd(vfeps,Fp,Y);
464             vvdw6            = _mm_mul_pd(c6_00,VV);
465             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
466             fvdw6            = _mm_mul_pd(c6_00,FF);
467
468             /* CUBIC SPLINE TABLE REPULSION */
469             vfitab           = _mm_add_epi32(vfitab,ifour);
470             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
471             F                = _mm_setzero_pd();
472             GMX_MM_TRANSPOSE2_PD(Y,F);
473             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
474             H                = _mm_setzero_pd();
475             GMX_MM_TRANSPOSE2_PD(G,H);
476             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
477             VV               = _mm_macc_pd(vfeps,Fp,Y);
478             vvdw12           = _mm_mul_pd(c12_00,VV);
479             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
480             fvdw12           = _mm_mul_pd(c12_00,FF);
481             vvdw             = _mm_add_pd(vvdw12,vvdw6);
482             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
486             velecsum         = _mm_add_pd(velecsum,velec);
487             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
488             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
489
490             fscal            = _mm_add_pd(felec,fvdw);
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Update vectorial force */
495             fix0             = _mm_macc_pd(dx00,fscal,fix0);
496             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
497             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
498             
499             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
500             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
501             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             r10              = _mm_mul_pd(rsq10,rinv10);
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq10             = _mm_mul_pd(iq1,jq0);
511
512             /* Calculate table index by multiplying r with table scale and truncate to integer */
513             rt               = _mm_mul_pd(r10,vftabscale);
514             vfitab           = _mm_cvttpd_epi32(rt);
515 #ifdef __XOP__
516             vfeps            = _mm_frcz_pd(rt);
517 #else
518             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
519 #endif
520             twovfeps         = _mm_add_pd(vfeps,vfeps);
521             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
522
523             /* CUBIC SPLINE TABLE ELECTROSTATICS */
524             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
525             F                = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(Y,F);
527             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
528             H                = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(G,H);
530             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
531             VV               = _mm_macc_pd(vfeps,Fp,Y);
532             velec            = _mm_mul_pd(qq10,VV);
533             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
534             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
538             velecsum         = _mm_add_pd(velecsum,velec);
539
540             fscal            = felec;
541
542             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
543
544             /* Update vectorial force */
545             fix1             = _mm_macc_pd(dx10,fscal,fix1);
546             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
547             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
548             
549             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
550             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
551             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             r20              = _mm_mul_pd(rsq20,rinv20);
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq20             = _mm_mul_pd(iq2,jq0);
561
562             /* Calculate table index by multiplying r with table scale and truncate to integer */
563             rt               = _mm_mul_pd(r20,vftabscale);
564             vfitab           = _mm_cvttpd_epi32(rt);
565 #ifdef __XOP__
566             vfeps            = _mm_frcz_pd(rt);
567 #else
568             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
569 #endif
570             twovfeps         = _mm_add_pd(vfeps,vfeps);
571             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
572
573             /* CUBIC SPLINE TABLE ELECTROSTATICS */
574             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
575             F                = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(Y,F);
577             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
578             H                = _mm_setzero_pd();
579             GMX_MM_TRANSPOSE2_PD(G,H);
580             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
581             VV               = _mm_macc_pd(vfeps,Fp,Y);
582             velec            = _mm_mul_pd(qq20,VV);
583             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
584             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
588             velecsum         = _mm_add_pd(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
593
594             /* Update vectorial force */
595             fix2             = _mm_macc_pd(dx20,fscal,fix2);
596             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
597             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
598             
599             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
600             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
601             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
602
603             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 171 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
611                                               f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 20 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
633  * Electrostatics interaction: CubicSplineTable
634  * VdW interaction:            CubicSplineTable
635  * Geometry:                   Water3-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
640                     (t_nblist * gmx_restrict                nlist,
641                      rvec * gmx_restrict                    xx,
642                      rvec * gmx_restrict                    ff,
643                      t_forcerec * gmx_restrict              fr,
644                      t_mdatoms * gmx_restrict               mdatoms,
645                      nb_kernel_data_t * gmx_restrict        kernel_data,
646                      t_nrnb * gmx_restrict                  nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
649      * just 0 for non-waters.
650      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB;
656     int              j_coord_offsetA,j_coord_offsetB;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
661     int              vdwioffset0;
662     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
663     int              vdwioffset1;
664     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
665     int              vdwioffset2;
666     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
667     int              vdwjidx0A,vdwjidx0B;
668     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
669     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
670     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
671     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
672     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
673     real             *charge;
674     int              nvdwtype;
675     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
676     int              *vdwtype;
677     real             *vdwparam;
678     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
679     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
680     __m128i          vfitab;
681     __m128i          ifour       = _mm_set1_epi32(4);
682     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
683     real             *vftab;
684     __m128d          dummy_mask,cutoff_mask;
685     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
686     __m128d          one     = _mm_set1_pd(1.0);
687     __m128d          two     = _mm_set1_pd(2.0);
688     x                = xx[0];
689     f                = ff[0];
690
691     nri              = nlist->nri;
692     iinr             = nlist->iinr;
693     jindex           = nlist->jindex;
694     jjnr             = nlist->jjnr;
695     shiftidx         = nlist->shift;
696     gid              = nlist->gid;
697     shiftvec         = fr->shift_vec[0];
698     fshift           = fr->fshift[0];
699     facel            = _mm_set1_pd(fr->epsfac);
700     charge           = mdatoms->chargeA;
701     nvdwtype         = fr->ntype;
702     vdwparam         = fr->nbfp;
703     vdwtype          = mdatoms->typeA;
704
705     vftab            = kernel_data->table_elec_vdw->data;
706     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
707
708     /* Setup water-specific parameters */
709     inr              = nlist->iinr[0];
710     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
711     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
712     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
713     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
714
715     /* Avoid stupid compiler warnings */
716     jnrA = jnrB = 0;
717     j_coord_offsetA = 0;
718     j_coord_offsetB = 0;
719
720     outeriter        = 0;
721     inneriter        = 0;
722
723     /* Start outer loop over neighborlists */
724     for(iidx=0; iidx<nri; iidx++)
725     {
726         /* Load shift vector for this list */
727         i_shift_offset   = DIM*shiftidx[iidx];
728
729         /* Load limits for loop over neighbors */
730         j_index_start    = jindex[iidx];
731         j_index_end      = jindex[iidx+1];
732
733         /* Get outer coordinate index */
734         inr              = iinr[iidx];
735         i_coord_offset   = DIM*inr;
736
737         /* Load i particle coords and add shift vector */
738         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
739                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
740
741         fix0             = _mm_setzero_pd();
742         fiy0             = _mm_setzero_pd();
743         fiz0             = _mm_setzero_pd();
744         fix1             = _mm_setzero_pd();
745         fiy1             = _mm_setzero_pd();
746         fiz1             = _mm_setzero_pd();
747         fix2             = _mm_setzero_pd();
748         fiy2             = _mm_setzero_pd();
749         fiz2             = _mm_setzero_pd();
750
751         /* Start inner kernel loop */
752         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
753         {
754
755             /* Get j neighbor index, and coordinate index */
756             jnrA             = jjnr[jidx];
757             jnrB             = jjnr[jidx+1];
758             j_coord_offsetA  = DIM*jnrA;
759             j_coord_offsetB  = DIM*jnrB;
760
761             /* load j atom coordinates */
762             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
763                                               &jx0,&jy0,&jz0);
764
765             /* Calculate displacement vector */
766             dx00             = _mm_sub_pd(ix0,jx0);
767             dy00             = _mm_sub_pd(iy0,jy0);
768             dz00             = _mm_sub_pd(iz0,jz0);
769             dx10             = _mm_sub_pd(ix1,jx0);
770             dy10             = _mm_sub_pd(iy1,jy0);
771             dz10             = _mm_sub_pd(iz1,jz0);
772             dx20             = _mm_sub_pd(ix2,jx0);
773             dy20             = _mm_sub_pd(iy2,jy0);
774             dz20             = _mm_sub_pd(iz2,jz0);
775
776             /* Calculate squared distance and things based on it */
777             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
778             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
779             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
780
781             rinv00           = gmx_mm_invsqrt_pd(rsq00);
782             rinv10           = gmx_mm_invsqrt_pd(rsq10);
783             rinv20           = gmx_mm_invsqrt_pd(rsq20);
784
785             /* Load parameters for j particles */
786             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
787             vdwjidx0A        = 2*vdwtype[jnrA+0];
788             vdwjidx0B        = 2*vdwtype[jnrB+0];
789
790             fjx0             = _mm_setzero_pd();
791             fjy0             = _mm_setzero_pd();
792             fjz0             = _mm_setzero_pd();
793
794             /**************************
795              * CALCULATE INTERACTIONS *
796              **************************/
797
798             r00              = _mm_mul_pd(rsq00,rinv00);
799
800             /* Compute parameters for interactions between i and j atoms */
801             qq00             = _mm_mul_pd(iq0,jq0);
802             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
803                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
804
805             /* Calculate table index by multiplying r with table scale and truncate to integer */
806             rt               = _mm_mul_pd(r00,vftabscale);
807             vfitab           = _mm_cvttpd_epi32(rt);
808 #ifdef __XOP__
809             vfeps            = _mm_frcz_pd(rt);
810 #else
811             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
812 #endif
813             twovfeps         = _mm_add_pd(vfeps,vfeps);
814             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
815
816             /* CUBIC SPLINE TABLE ELECTROSTATICS */
817             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
818             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
819             GMX_MM_TRANSPOSE2_PD(Y,F);
820             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
821             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
822             GMX_MM_TRANSPOSE2_PD(G,H);
823             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
824             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
825             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
826
827             /* CUBIC SPLINE TABLE DISPERSION */
828             vfitab           = _mm_add_epi32(vfitab,ifour);
829             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
830             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
831             GMX_MM_TRANSPOSE2_PD(Y,F);
832             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
833             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
834             GMX_MM_TRANSPOSE2_PD(G,H);
835             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
836             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
837             fvdw6            = _mm_mul_pd(c6_00,FF);
838
839             /* CUBIC SPLINE TABLE REPULSION */
840             vfitab           = _mm_add_epi32(vfitab,ifour);
841             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
842             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
843             GMX_MM_TRANSPOSE2_PD(Y,F);
844             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
845             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
846             GMX_MM_TRANSPOSE2_PD(G,H);
847             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
848             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
849             fvdw12           = _mm_mul_pd(c12_00,FF);
850             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
851
852             fscal            = _mm_add_pd(felec,fvdw);
853
854             /* Update vectorial force */
855             fix0             = _mm_macc_pd(dx00,fscal,fix0);
856             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
857             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
858             
859             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
860             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
861             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r10              = _mm_mul_pd(rsq10,rinv10);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq10             = _mm_mul_pd(iq1,jq0);
871
872             /* Calculate table index by multiplying r with table scale and truncate to integer */
873             rt               = _mm_mul_pd(r10,vftabscale);
874             vfitab           = _mm_cvttpd_epi32(rt);
875 #ifdef __XOP__
876             vfeps            = _mm_frcz_pd(rt);
877 #else
878             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
879 #endif
880             twovfeps         = _mm_add_pd(vfeps,vfeps);
881             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
882
883             /* CUBIC SPLINE TABLE ELECTROSTATICS */
884             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
885             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
886             GMX_MM_TRANSPOSE2_PD(Y,F);
887             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
888             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
889             GMX_MM_TRANSPOSE2_PD(G,H);
890             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
891             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
892             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
893
894             fscal            = felec;
895
896             /* Update vectorial force */
897             fix1             = _mm_macc_pd(dx10,fscal,fix1);
898             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
899             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
900             
901             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
902             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
903             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             r20              = _mm_mul_pd(rsq20,rinv20);
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq20             = _mm_mul_pd(iq2,jq0);
913
914             /* Calculate table index by multiplying r with table scale and truncate to integer */
915             rt               = _mm_mul_pd(r20,vftabscale);
916             vfitab           = _mm_cvttpd_epi32(rt);
917 #ifdef __XOP__
918             vfeps            = _mm_frcz_pd(rt);
919 #else
920             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
921 #endif
922             twovfeps         = _mm_add_pd(vfeps,vfeps);
923             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
924
925             /* CUBIC SPLINE TABLE ELECTROSTATICS */
926             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
927             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
928             GMX_MM_TRANSPOSE2_PD(Y,F);
929             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
930             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
931             GMX_MM_TRANSPOSE2_PD(G,H);
932             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
933             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
934             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
935
936             fscal            = felec;
937
938             /* Update vectorial force */
939             fix2             = _mm_macc_pd(dx20,fscal,fix2);
940             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
941             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
942             
943             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
944             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
945             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
946
947             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
948
949             /* Inner loop uses 151 flops */
950         }
951
952         if(jidx<j_index_end)
953         {
954
955             jnrA             = jjnr[jidx];
956             j_coord_offsetA  = DIM*jnrA;
957
958             /* load j atom coordinates */
959             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
960                                               &jx0,&jy0,&jz0);
961
962             /* Calculate displacement vector */
963             dx00             = _mm_sub_pd(ix0,jx0);
964             dy00             = _mm_sub_pd(iy0,jy0);
965             dz00             = _mm_sub_pd(iz0,jz0);
966             dx10             = _mm_sub_pd(ix1,jx0);
967             dy10             = _mm_sub_pd(iy1,jy0);
968             dz10             = _mm_sub_pd(iz1,jz0);
969             dx20             = _mm_sub_pd(ix2,jx0);
970             dy20             = _mm_sub_pd(iy2,jy0);
971             dz20             = _mm_sub_pd(iz2,jz0);
972
973             /* Calculate squared distance and things based on it */
974             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
975             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
976             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
977
978             rinv00           = gmx_mm_invsqrt_pd(rsq00);
979             rinv10           = gmx_mm_invsqrt_pd(rsq10);
980             rinv20           = gmx_mm_invsqrt_pd(rsq20);
981
982             /* Load parameters for j particles */
983             jq0              = _mm_load_sd(charge+jnrA+0);
984             vdwjidx0A        = 2*vdwtype[jnrA+0];
985
986             fjx0             = _mm_setzero_pd();
987             fjy0             = _mm_setzero_pd();
988             fjz0             = _mm_setzero_pd();
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             r00              = _mm_mul_pd(rsq00,rinv00);
995
996             /* Compute parameters for interactions between i and j atoms */
997             qq00             = _mm_mul_pd(iq0,jq0);
998             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
999
1000             /* Calculate table index by multiplying r with table scale and truncate to integer */
1001             rt               = _mm_mul_pd(r00,vftabscale);
1002             vfitab           = _mm_cvttpd_epi32(rt);
1003 #ifdef __XOP__
1004             vfeps            = _mm_frcz_pd(rt);
1005 #else
1006             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1007 #endif
1008             twovfeps         = _mm_add_pd(vfeps,vfeps);
1009             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1010
1011             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1012             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1013             F                = _mm_setzero_pd();
1014             GMX_MM_TRANSPOSE2_PD(Y,F);
1015             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1016             H                = _mm_setzero_pd();
1017             GMX_MM_TRANSPOSE2_PD(G,H);
1018             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1019             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1020             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
1021
1022             /* CUBIC SPLINE TABLE DISPERSION */
1023             vfitab           = _mm_add_epi32(vfitab,ifour);
1024             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1025             F                = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(Y,F);
1027             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1028             H                = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(G,H);
1030             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1031             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1032             fvdw6            = _mm_mul_pd(c6_00,FF);
1033
1034             /* CUBIC SPLINE TABLE REPULSION */
1035             vfitab           = _mm_add_epi32(vfitab,ifour);
1036             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1037             F                = _mm_setzero_pd();
1038             GMX_MM_TRANSPOSE2_PD(Y,F);
1039             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1040             H                = _mm_setzero_pd();
1041             GMX_MM_TRANSPOSE2_PD(G,H);
1042             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1043             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1044             fvdw12           = _mm_mul_pd(c12_00,FF);
1045             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1046
1047             fscal            = _mm_add_pd(felec,fvdw);
1048
1049             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1050
1051             /* Update vectorial force */
1052             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1053             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1054             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1055             
1056             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1057             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1058             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             r10              = _mm_mul_pd(rsq10,rinv10);
1065
1066             /* Compute parameters for interactions between i and j atoms */
1067             qq10             = _mm_mul_pd(iq1,jq0);
1068
1069             /* Calculate table index by multiplying r with table scale and truncate to integer */
1070             rt               = _mm_mul_pd(r10,vftabscale);
1071             vfitab           = _mm_cvttpd_epi32(rt);
1072 #ifdef __XOP__
1073             vfeps            = _mm_frcz_pd(rt);
1074 #else
1075             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1076 #endif
1077             twovfeps         = _mm_add_pd(vfeps,vfeps);
1078             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1079
1080             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1081             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1082             F                = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(Y,F);
1084             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1085             H                = _mm_setzero_pd();
1086             GMX_MM_TRANSPOSE2_PD(G,H);
1087             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1088             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1089             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1094
1095             /* Update vectorial force */
1096             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1097             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1098             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1099             
1100             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1101             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1102             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             r20              = _mm_mul_pd(rsq20,rinv20);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq20             = _mm_mul_pd(iq2,jq0);
1112
1113             /* Calculate table index by multiplying r with table scale and truncate to integer */
1114             rt               = _mm_mul_pd(r20,vftabscale);
1115             vfitab           = _mm_cvttpd_epi32(rt);
1116 #ifdef __XOP__
1117             vfeps            = _mm_frcz_pd(rt);
1118 #else
1119             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1120 #endif
1121             twovfeps         = _mm_add_pd(vfeps,vfeps);
1122             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1123
1124             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1125             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1126             F                = _mm_setzero_pd();
1127             GMX_MM_TRANSPOSE2_PD(Y,F);
1128             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1129             H                = _mm_setzero_pd();
1130             GMX_MM_TRANSPOSE2_PD(G,H);
1131             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1132             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1133             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1138
1139             /* Update vectorial force */
1140             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1141             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1142             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1143             
1144             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1145             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1146             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1147
1148             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1149
1150             /* Inner loop uses 151 flops */
1151         }
1152
1153         /* End of innermost loop */
1154
1155         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1156                                               f+i_coord_offset,fshift+i_shift_offset);
1157
1158         /* Increment number of inner iterations */
1159         inneriter                  += j_index_end - j_index_start;
1160
1161         /* Outer loop uses 18 flops */
1162     }
1163
1164     /* Increment number of outer iterations */
1165     outeriter        += nri;
1166
1167     /* Update outer/inner flops */
1168
1169     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1170 }