made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_elec_vdw->data;
105     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     /* Start outer loop over neighborlists */
116     for(iidx=0; iidx<nri; iidx++)
117     {
118         /* Load shift vector for this list */
119         i_shift_offset   = DIM*shiftidx[iidx];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
131
132         fix0             = _mm_setzero_pd();
133         fiy0             = _mm_setzero_pd();
134         fiz0             = _mm_setzero_pd();
135
136         /* Load parameters for i particles */
137         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_pd();
142         vvdwsum          = _mm_setzero_pd();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153
154             /* load j atom coordinates */
155             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
156                                               &jx0,&jy0,&jz0);
157
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_pd(ix0,jx0);
160             dy00             = _mm_sub_pd(iy0,jy0);
161             dz00             = _mm_sub_pd(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
165
166             rinv00           = gmx_mm_invsqrt_pd(rsq00);
167
168             /* Load parameters for j particles */
169             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
170             vdwjidx0A        = 2*vdwtype[jnrA+0];
171             vdwjidx0B        = 2*vdwtype[jnrB+0];
172
173             /**************************
174              * CALCULATE INTERACTIONS *
175              **************************/
176
177             r00              = _mm_mul_pd(rsq00,rinv00);
178
179             /* Compute parameters for interactions between i and j atoms */
180             qq00             = _mm_mul_pd(iq0,jq0);
181             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
182                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
183
184             /* Calculate table index by multiplying r with table scale and truncate to integer */
185             rt               = _mm_mul_pd(r00,vftabscale);
186             vfitab           = _mm_cvttpd_epi32(rt);
187 #ifdef __XOP__
188             vfeps            = _mm_frcz_pd(rt);
189 #else
190             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
191 #endif
192             twovfeps         = _mm_add_pd(vfeps,vfeps);
193             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
194
195             /* CUBIC SPLINE TABLE ELECTROSTATICS */
196             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
197             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
198             GMX_MM_TRANSPOSE2_PD(Y,F);
199             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
200             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
201             GMX_MM_TRANSPOSE2_PD(G,H);
202             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
203             VV               = _mm_macc_pd(vfeps,Fp,Y);
204             velec            = _mm_mul_pd(qq00,VV);
205             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
206             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
207
208             /* CUBIC SPLINE TABLE DISPERSION */
209             vfitab           = _mm_add_epi32(vfitab,ifour);
210             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
211             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
212             GMX_MM_TRANSPOSE2_PD(Y,F);
213             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
214             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
215             GMX_MM_TRANSPOSE2_PD(G,H);
216             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
217             VV               = _mm_macc_pd(vfeps,Fp,Y);
218             vvdw6            = _mm_mul_pd(c6_00,VV);
219             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
220             fvdw6            = _mm_mul_pd(c6_00,FF);
221
222             /* CUBIC SPLINE TABLE REPULSION */
223             vfitab           = _mm_add_epi32(vfitab,ifour);
224             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
225             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
226             GMX_MM_TRANSPOSE2_PD(Y,F);
227             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
228             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
229             GMX_MM_TRANSPOSE2_PD(G,H);
230             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
231             VV               = _mm_macc_pd(vfeps,Fp,Y);
232             vvdw12           = _mm_mul_pd(c12_00,VV);
233             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
234             fvdw12           = _mm_mul_pd(c12_00,FF);
235             vvdw             = _mm_add_pd(vvdw12,vvdw6);
236             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
237
238             /* Update potential sum for this i atom from the interaction with this j atom. */
239             velecsum         = _mm_add_pd(velecsum,velec);
240             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
241
242             fscal            = _mm_add_pd(felec,fvdw);
243
244             /* Update vectorial force */
245             fix0             = _mm_macc_pd(dx00,fscal,fix0);
246             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
247             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
248             
249             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
250                                                    _mm_mul_pd(dx00,fscal),
251                                                    _mm_mul_pd(dy00,fscal),
252                                                    _mm_mul_pd(dz00,fscal));
253
254             /* Inner loop uses 76 flops */
255         }
256
257         if(jidx<j_index_end)
258         {
259
260             jnrA             = jjnr[jidx];
261             j_coord_offsetA  = DIM*jnrA;
262
263             /* load j atom coordinates */
264             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
265                                               &jx0,&jy0,&jz0);
266
267             /* Calculate displacement vector */
268             dx00             = _mm_sub_pd(ix0,jx0);
269             dy00             = _mm_sub_pd(iy0,jy0);
270             dz00             = _mm_sub_pd(iz0,jz0);
271
272             /* Calculate squared distance and things based on it */
273             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
274
275             rinv00           = gmx_mm_invsqrt_pd(rsq00);
276
277             /* Load parameters for j particles */
278             jq0              = _mm_load_sd(charge+jnrA+0);
279             vdwjidx0A        = 2*vdwtype[jnrA+0];
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             r00              = _mm_mul_pd(rsq00,rinv00);
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq00             = _mm_mul_pd(iq0,jq0);
289             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
290
291             /* Calculate table index by multiplying r with table scale and truncate to integer */
292             rt               = _mm_mul_pd(r00,vftabscale);
293             vfitab           = _mm_cvttpd_epi32(rt);
294 #ifdef __XOP__
295             vfeps            = _mm_frcz_pd(rt);
296 #else
297             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
298 #endif
299             twovfeps         = _mm_add_pd(vfeps,vfeps);
300             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
301
302             /* CUBIC SPLINE TABLE ELECTROSTATICS */
303             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
304             F                = _mm_setzero_pd();
305             GMX_MM_TRANSPOSE2_PD(Y,F);
306             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
307             H                = _mm_setzero_pd();
308             GMX_MM_TRANSPOSE2_PD(G,H);
309             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
310             VV               = _mm_macc_pd(vfeps,Fp,Y);
311             velec            = _mm_mul_pd(qq00,VV);
312             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
313             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
314
315             /* CUBIC SPLINE TABLE DISPERSION */
316             vfitab           = _mm_add_epi32(vfitab,ifour);
317             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
318             F                = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(Y,F);
320             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
321             H                = _mm_setzero_pd();
322             GMX_MM_TRANSPOSE2_PD(G,H);
323             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
324             VV               = _mm_macc_pd(vfeps,Fp,Y);
325             vvdw6            = _mm_mul_pd(c6_00,VV);
326             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
327             fvdw6            = _mm_mul_pd(c6_00,FF);
328
329             /* CUBIC SPLINE TABLE REPULSION */
330             vfitab           = _mm_add_epi32(vfitab,ifour);
331             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
332             F                = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(Y,F);
334             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
335             H                = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(G,H);
337             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
338             VV               = _mm_macc_pd(vfeps,Fp,Y);
339             vvdw12           = _mm_mul_pd(c12_00,VV);
340             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
341             fvdw12           = _mm_mul_pd(c12_00,FF);
342             vvdw             = _mm_add_pd(vvdw12,vvdw6);
343             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
347             velecsum         = _mm_add_pd(velecsum,velec);
348             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
349             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
350
351             fscal            = _mm_add_pd(felec,fvdw);
352
353             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
354
355             /* Update vectorial force */
356             fix0             = _mm_macc_pd(dx00,fscal,fix0);
357             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
358             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
359             
360             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
361                                                    _mm_mul_pd(dx00,fscal),
362                                                    _mm_mul_pd(dy00,fscal),
363                                                    _mm_mul_pd(dz00,fscal));
364
365             /* Inner loop uses 76 flops */
366         }
367
368         /* End of innermost loop */
369
370         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
371                                               f+i_coord_offset,fshift+i_shift_offset);
372
373         ggid                        = gid[iidx];
374         /* Update potential energies */
375         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
376         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
377
378         /* Increment number of inner iterations */
379         inneriter                  += j_index_end - j_index_start;
380
381         /* Outer loop uses 9 flops */
382     }
383
384     /* Increment number of outer iterations */
385     outeriter        += nri;
386
387     /* Update outer/inner flops */
388
389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
390 }
391 /*
392  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_128_fma_double
393  * Electrostatics interaction: CubicSplineTable
394  * VdW interaction:            CubicSplineTable
395  * Geometry:                   Particle-Particle
396  * Calculate force/pot:        Force
397  */
398 void
399 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_128_fma_double
400                     (t_nblist * gmx_restrict                nlist,
401                      rvec * gmx_restrict                    xx,
402                      rvec * gmx_restrict                    ff,
403                      t_forcerec * gmx_restrict              fr,
404                      t_mdatoms * gmx_restrict               mdatoms,
405                      nb_kernel_data_t * gmx_restrict        kernel_data,
406                      t_nrnb * gmx_restrict                  nrnb)
407 {
408     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
409      * just 0 for non-waters.
410      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
411      * jnr indices corresponding to data put in the four positions in the SIMD register.
412      */
413     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
414     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
415     int              jnrA,jnrB;
416     int              j_coord_offsetA,j_coord_offsetB;
417     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
418     real             rcutoff_scalar;
419     real             *shiftvec,*fshift,*x,*f;
420     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
421     int              vdwioffset0;
422     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
423     int              vdwjidx0A,vdwjidx0B;
424     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
425     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
426     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
427     real             *charge;
428     int              nvdwtype;
429     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
430     int              *vdwtype;
431     real             *vdwparam;
432     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
433     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
434     __m128i          vfitab;
435     __m128i          ifour       = _mm_set1_epi32(4);
436     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
437     real             *vftab;
438     __m128d          dummy_mask,cutoff_mask;
439     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
440     __m128d          one     = _mm_set1_pd(1.0);
441     __m128d          two     = _mm_set1_pd(2.0);
442     x                = xx[0];
443     f                = ff[0];
444
445     nri              = nlist->nri;
446     iinr             = nlist->iinr;
447     jindex           = nlist->jindex;
448     jjnr             = nlist->jjnr;
449     shiftidx         = nlist->shift;
450     gid              = nlist->gid;
451     shiftvec         = fr->shift_vec[0];
452     fshift           = fr->fshift[0];
453     facel            = _mm_set1_pd(fr->epsfac);
454     charge           = mdatoms->chargeA;
455     nvdwtype         = fr->ntype;
456     vdwparam         = fr->nbfp;
457     vdwtype          = mdatoms->typeA;
458
459     vftab            = kernel_data->table_elec_vdw->data;
460     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
461
462     /* Avoid stupid compiler warnings */
463     jnrA = jnrB = 0;
464     j_coord_offsetA = 0;
465     j_coord_offsetB = 0;
466
467     outeriter        = 0;
468     inneriter        = 0;
469
470     /* Start outer loop over neighborlists */
471     for(iidx=0; iidx<nri; iidx++)
472     {
473         /* Load shift vector for this list */
474         i_shift_offset   = DIM*shiftidx[iidx];
475
476         /* Load limits for loop over neighbors */
477         j_index_start    = jindex[iidx];
478         j_index_end      = jindex[iidx+1];
479
480         /* Get outer coordinate index */
481         inr              = iinr[iidx];
482         i_coord_offset   = DIM*inr;
483
484         /* Load i particle coords and add shift vector */
485         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
486
487         fix0             = _mm_setzero_pd();
488         fiy0             = _mm_setzero_pd();
489         fiz0             = _mm_setzero_pd();
490
491         /* Load parameters for i particles */
492         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
493         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
494
495         /* Start inner kernel loop */
496         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrA             = jjnr[jidx];
501             jnrB             = jjnr[jidx+1];
502             j_coord_offsetA  = DIM*jnrA;
503             j_coord_offsetB  = DIM*jnrB;
504
505             /* load j atom coordinates */
506             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
507                                               &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm_sub_pd(ix0,jx0);
511             dy00             = _mm_sub_pd(iy0,jy0);
512             dz00             = _mm_sub_pd(iz0,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
516
517             rinv00           = gmx_mm_invsqrt_pd(rsq00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _mm_mul_pd(rsq00,rinv00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _mm_mul_pd(iq0,jq0);
532             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
534
535             /* Calculate table index by multiplying r with table scale and truncate to integer */
536             rt               = _mm_mul_pd(r00,vftabscale);
537             vfitab           = _mm_cvttpd_epi32(rt);
538 #ifdef __XOP__
539             vfeps            = _mm_frcz_pd(rt);
540 #else
541             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
542 #endif
543             twovfeps         = _mm_add_pd(vfeps,vfeps);
544             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
545
546             /* CUBIC SPLINE TABLE ELECTROSTATICS */
547             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
548             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
549             GMX_MM_TRANSPOSE2_PD(Y,F);
550             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
551             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
552             GMX_MM_TRANSPOSE2_PD(G,H);
553             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
554             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
555             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
556
557             /* CUBIC SPLINE TABLE DISPERSION */
558             vfitab           = _mm_add_epi32(vfitab,ifour);
559             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
560             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
561             GMX_MM_TRANSPOSE2_PD(Y,F);
562             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
563             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
564             GMX_MM_TRANSPOSE2_PD(G,H);
565             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
566             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
567             fvdw6            = _mm_mul_pd(c6_00,FF);
568
569             /* CUBIC SPLINE TABLE REPULSION */
570             vfitab           = _mm_add_epi32(vfitab,ifour);
571             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
572             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
573             GMX_MM_TRANSPOSE2_PD(Y,F);
574             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
575             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
576             GMX_MM_TRANSPOSE2_PD(G,H);
577             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
578             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
579             fvdw12           = _mm_mul_pd(c12_00,FF);
580             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
581
582             fscal            = _mm_add_pd(felec,fvdw);
583
584             /* Update vectorial force */
585             fix0             = _mm_macc_pd(dx00,fscal,fix0);
586             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
587             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
588             
589             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
590                                                    _mm_mul_pd(dx00,fscal),
591                                                    _mm_mul_pd(dy00,fscal),
592                                                    _mm_mul_pd(dz00,fscal));
593
594             /* Inner loop uses 64 flops */
595         }
596
597         if(jidx<j_index_end)
598         {
599
600             jnrA             = jjnr[jidx];
601             j_coord_offsetA  = DIM*jnrA;
602
603             /* load j atom coordinates */
604             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
605                                               &jx0,&jy0,&jz0);
606
607             /* Calculate displacement vector */
608             dx00             = _mm_sub_pd(ix0,jx0);
609             dy00             = _mm_sub_pd(iy0,jy0);
610             dz00             = _mm_sub_pd(iz0,jz0);
611
612             /* Calculate squared distance and things based on it */
613             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
614
615             rinv00           = gmx_mm_invsqrt_pd(rsq00);
616
617             /* Load parameters for j particles */
618             jq0              = _mm_load_sd(charge+jnrA+0);
619             vdwjidx0A        = 2*vdwtype[jnrA+0];
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r00              = _mm_mul_pd(rsq00,rinv00);
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq00             = _mm_mul_pd(iq0,jq0);
629             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
630
631             /* Calculate table index by multiplying r with table scale and truncate to integer */
632             rt               = _mm_mul_pd(r00,vftabscale);
633             vfitab           = _mm_cvttpd_epi32(rt);
634 #ifdef __XOP__
635             vfeps            = _mm_frcz_pd(rt);
636 #else
637             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
638 #endif
639             twovfeps         = _mm_add_pd(vfeps,vfeps);
640             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
641
642             /* CUBIC SPLINE TABLE ELECTROSTATICS */
643             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
644             F                = _mm_setzero_pd();
645             GMX_MM_TRANSPOSE2_PD(Y,F);
646             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
647             H                = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(G,H);
649             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
650             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
651             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
652
653             /* CUBIC SPLINE TABLE DISPERSION */
654             vfitab           = _mm_add_epi32(vfitab,ifour);
655             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
656             F                = _mm_setzero_pd();
657             GMX_MM_TRANSPOSE2_PD(Y,F);
658             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
659             H                = _mm_setzero_pd();
660             GMX_MM_TRANSPOSE2_PD(G,H);
661             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
662             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
663             fvdw6            = _mm_mul_pd(c6_00,FF);
664
665             /* CUBIC SPLINE TABLE REPULSION */
666             vfitab           = _mm_add_epi32(vfitab,ifour);
667             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
668             F                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(Y,F);
670             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
671             H                = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(G,H);
673             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
674             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
675             fvdw12           = _mm_mul_pd(c12_00,FF);
676             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
677
678             fscal            = _mm_add_pd(felec,fvdw);
679
680             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
681
682             /* Update vectorial force */
683             fix0             = _mm_macc_pd(dx00,fscal,fix0);
684             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
685             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
686             
687             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
688                                                    _mm_mul_pd(dx00,fscal),
689                                                    _mm_mul_pd(dy00,fscal),
690                                                    _mm_mul_pd(dz00,fscal));
691
692             /* Inner loop uses 64 flops */
693         }
694
695         /* End of innermost loop */
696
697         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
698                                               f+i_coord_offset,fshift+i_shift_offset);
699
700         /* Increment number of inner iterations */
701         inneriter                  += j_index_end - j_index_start;
702
703         /* Outer loop uses 7 flops */
704     }
705
706     /* Increment number of outer iterations */
707     outeriter        += nri;
708
709     /* Update outer/inner flops */
710
711     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
712 }