fsdfsdfsdfsd
[alexxy/gromacs-dssp.git] / src / dssptools.cpp
1 /*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2021, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35 /*! \internal \file
36 * \brief
37 * Implements gmx::analysismodules::Trajectory.
38 *
39 * \author Sergey Gorelov <gorelov_sv@pnpi.nrcki.ru>
40 * \author Anatoly Titov <titov_ai@pnpi.nrcki.ru>
41 * \author Alexey Shvetsov <alexxyum@gmail.com>
42 * \ingroup module_trajectoryanalysis
43 */
44
45 /*
46     There's something wrong with energy calculations of redidues with E ≈ -0
47 */
48
49
50 #include "dssptools.h"
51
52 #include <algorithm>
53 #include "gromacs/math/units.h"
54
55 #include "gromacs/pbcutil/pbc.h"
56 #include <gromacs/trajectoryanalysis.h>
57 #include "gromacs/trajectoryanalysis/topologyinformation.h"
58 #include <set>
59 #include <fstream>
60 #include <mutex>
61 #include <iostream>
62
63 namespace gmx
64 {
65
66 namespace analysismodules
67 {
68
69 //void ResInfo::setIndex(backboneAtomTypes atomTypeName, std::size_t atomIndex)
70 //{
71 //   _ResInfo.at(static_cast<std::size_t>(atomTypeName)) = atomIndex;
72 //}
73
74 //std::size_t ResInfo::getIndex(backboneAtomTypes atomTypeName) const
75 //{
76 //   return _ResInfo[static_cast<std::size_t>(atomTypeName)];
77 //}
78
79 std::size_t ResInfo::getIndex(backboneAtomTypes atomTypeName) const{
80     return _backboneIndices[static_cast<std::size_t>(atomTypeName)];
81 }
82
83 secondaryStructures::secondaryStructures(){
84 }
85 void secondaryStructures::initiateSearch(const std::vector<ResInfo> &ResInfoMatrix, const bool PiHelicesPreferencez){
86     SecondaryStructuresStatusMap.resize(0);
87     SecondaryStructuresStringLine.resize(0);
88     std::vector<std::size_t> temp; temp.resize(0),
89     PiHelixPreference = PiHelicesPreferencez;
90     ResInfoMap = &ResInfoMatrix;
91     SecondaryStructuresStatusMap.resize(ResInfoMatrix.size());
92     SecondaryStructuresStringLine.resize(ResInfoMatrix.size(), '~');
93 }
94
95 void secondaryStructures::secondaryStructuresData::setStatus(const secondaryStructureTypes secondaryStructureTypeName){
96     SecondaryStructuresStatusArray[static_cast<std::size_t>(secondaryStructureTypeName)] = true;
97 }
98
99 void secondaryStructures::secondaryStructuresData::setStatus(const HelixPositions helixPosition, const turnsTypes turn){
100     TurnsStatusArray[static_cast<std::size_t>(turn)] = helixPosition;
101 }
102
103 bool secondaryStructures::secondaryStructuresData::getStatus(const secondaryStructureTypes secondaryStructureTypeName) const{
104     return SecondaryStructuresStatusArray[static_cast<std::size_t>(secondaryStructureTypeName)];
105 }
106
107 bool secondaryStructures::secondaryStructuresData::isBreakPartnerWith(const secondaryStructuresData *partner) const{
108     return breakPartners[0] == partner || breakPartners[1] == partner;
109 }
110
111 HelixPositions secondaryStructures::secondaryStructuresData::getStatus(const turnsTypes turn) const{
112     return TurnsStatusArray[static_cast<std::size_t>(turn)];
113 }
114
115 void secondaryStructures::secondaryStructuresData::setBreak(secondaryStructuresData *breakPartner){
116     if (breakPartners[0] == nullptr){
117         breakPartners[0] = breakPartner;
118     }
119     else{
120         breakPartners[1] = breakPartner;
121     }
122     setStatus(secondaryStructureTypes::Break);
123 }
124
125 bool secondaryStructures::hasHBondBetween(std::size_t Donor, std::size_t Acceptor) const{ // prob should add resi name comparison ?
126     if( (*ResInfoMap)[Donor].acceptor[0] == nullptr ||
127         (*ResInfoMap)[Donor].acceptor[1] == nullptr ||
128         (*ResInfoMap)[Acceptor].info == nullptr ){
129         std::cout << "Bad hbond check. Reason(s): " ;
130         if ( (*ResInfoMap)[Donor].acceptor[0] == nullptr ){
131             std::cout << "Donor has no acceptor[0]; ";
132         }
133         if ( (*ResInfoMap)[Donor].acceptor[1] == nullptr ){
134             std::cout << "Donor has no acceptor[1]; ";
135         }
136         if ( (*ResInfoMap)[Acceptor].info == nullptr ){
137             std::cout << "No info about acceptor; ";
138         }
139         std::cout << std::endl;
140         return false;
141     }
142     else {
143         std::cout << "Comparing DONOR №" << (*ResInfoMap)[Donor].info->nr << " And ACCEPTOR №" << (*ResInfoMap)[Acceptor].info->nr << ": ";
144         std::cout << "DONOR's acceptors' nr are = " << (*ResInfoMap)[Donor].acceptor[0]->nr << " (chain " << (*ResInfoMap)[Donor].acceptor[0]->chainid << ") , " << (*ResInfoMap)[Donor].acceptor[1]->nr << " (chain " << (*ResInfoMap)[Donor].acceptor[1]->chainid << ")" << std::endl;
145         std::cout << "DONOR's acceptors' energy are = " << (*ResInfoMap)[Donor].acceptorEnergy[0] << ", " << (*ResInfoMap)[Donor].acceptorEnergy[1] << std::endl;
146         std::cout << "Acceptors's donors' nr are = " << (*ResInfoMap)[Acceptor].donor[0]->nr << " (chain " << (*ResInfoMap)[Acceptor].donor[0]->chainid << ") , " << (*ResInfoMap)[Acceptor].donor[1]->nr << " (chain " << (*ResInfoMap)[Acceptor].donor[1]->chainid << ")" << std::endl;
147         std::cout << "Acceptors's donors' energy are = " << (*ResInfoMap)[Acceptor].donorEnergy[0] << ", " << (*ResInfoMap)[Acceptor].donorEnergy[1] << std::endl;
148         if( ( (*ResInfoMap)[Donor].acceptor[0] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[0] < HBondEnergyCutOff ) ||
149                 ( (*ResInfoMap)[Donor].acceptor[1] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[1] < HBondEnergyCutOff ) ){
150             std::cout << "HBond Exist" << std::endl;
151         }
152     }
153
154     return ( (*ResInfoMap)[Donor].acceptor[0] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[0] < HBondEnergyCutOff ) ||
155            ( (*ResInfoMap)[Donor].acceptor[1] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[1] < HBondEnergyCutOff );
156
157
158 }
159
160 bool secondaryStructures::NoChainBreaksBetween(std::size_t Resi1, std::size_t Resi2) const{
161     std::size_t i{Resi1}, j{Resi2}; // From i to j → i <= j
162     if ( i > j ){
163         std::swap(i, j);
164     }
165
166     for (; i != j; ++i){
167         if ( SecondaryStructuresStatusMap[i].isBreakPartnerWith(&SecondaryStructuresStatusMap[i + 1]) && SecondaryStructuresStatusMap[i + 1].isBreakPartnerWith(&SecondaryStructuresStatusMap[i]) ){
168             std::cout << "Patternsearch has detected a CHAINBREAK between " << Resi1 << " and " << Resi2 << std::endl;
169             return false;
170         }
171     }
172     return true;
173 }
174
175 bridgeTypes secondaryStructures::calculateBridge(std::size_t i, std::size_t j) const{
176     if( i < 1 || j < 1 || i + 1 >= ResInfoMap->size() || j + 1 >= ResInfoMap->size() ){
177         return bridgeTypes::None;
178     }
179     if(NoChainBreaksBetween(i - 1, i + 1) && NoChainBreaksBetween(j - 1, j + 1)){
180         if((hasHBondBetween(i + 1, j) && hasHBondBetween(j, i - 1)) || (hasHBondBetween(j + 1, i) && hasHBondBetween(i, j - 1)) ){ //possibly swap
181             return bridgeTypes::ParallelBridge;
182         }
183         else if((hasHBondBetween(i + 1, j - 1) && hasHBondBetween(j + 1, i - 1)) || (hasHBondBetween(j, i) && hasHBondBetween(i, j)) ){ //possibly swap
184             return bridgeTypes::AntiParallelBridge;
185         }
186     }
187     return bridgeTypes::None;
188 }
189
190 void secondaryStructures::analyzeBridgesAndLaddersPatterns(){
191     for(std::size_t i {1}; i + 4 < SecondaryStructuresStatusMap.size(); ++i){
192         for(std::size_t j {i + 3}; j + 1 < SecondaryStructuresStatusMap.size(); ++j ){
193             bridgeTypes type {calculateBridge(i, j)};
194             if (type == bridgeTypes::None){
195                 continue;
196             }
197             bool found {false};
198         }
199     }
200
201
202
203
204
205
206
207
208
209
210
211
212 //    for (std::size_t i{ 1 }; i < HBondsMap.front().size() - 1; ++i){
213 //        for (std::size_t j{ 1 }; j < HBondsMap.front().size() - 1; ++j){
214 //            if (std::abs(static_cast<int>(i) - static_cast<int>(j)) > 2){
215 //                if ((HBondsMap[i - 1][j] && HBondsMap[j][i + 1])    ||
216 //                    (HBondsMap[j - 1][i] && HBondsMap[i][j + 1])){
217 //                    Bridge[i].push_back(j);
218 //                }
219 //                if ((HBondsMap[i][j] && HBondsMap[j][i])    ||
220 //                    (HBondsMap[i - 1][j + 1] && HBondsMap[j - 1][i + 1])){
221 //                    AntiBridge[i].push_back(j);
222 //                }
223 //            }
224 //        }
225 //    }
226 //    for (std::size_t i{ 0 }; i < HBondsMap.front().size(); ++i){
227 //        if ((!Bridge[i].empty() || !AntiBridge[i].empty())){
228 //            setStatus(i, secondaryStructureTypes::Bulge);
229 //        }
230 //    }
231 //    for (std::size_t i{ 2 }; i + 2 < HBondsMap.front().size(); ++i){
232 //        for (std::size_t j { i - 2 }; j <= (i + 2); ++j){
233 //            if (j == i){
234 //                continue;
235 //            }
236 //            else {
237 //                for (std::vector<bridgeTypes>::const_iterator bridge {Bridges.begin()}; bridge != Bridges.end(); ++bridge ){
238 //                    if (!getBridge(*bridge)[i].empty() || !getBridge(*bridge)[j].empty()){
239 //                        for (std::size_t i_resi{ 0 }; i_resi < getBridge(*bridge)[i].size(); ++i_resi){
240 //                            for (std::size_t j_resi{ 0 }; j_resi < getBridge(*bridge)[j].size(); ++j_resi){
241 //                                if (abs(static_cast<int>(getBridge(*bridge)[i][i_resi])
242 //                                        - static_cast<int>(getBridge(*bridge)[j][j_resi]))
243 //                                        && (abs(static_cast<int>(getBridge(*bridge)[i][i_resi])
244 //                                        - static_cast<int>(getBridge(*bridge)[j][j_resi]))
245 //                                        < 5)){
246 //                                    if (j < i){
247 //                                        for (std::size_t k{ 0 }; k <= i - j; ++k){
248 //                                            setStatus(i + k, secondaryStructureTypes::Ladder);
249 //                                        }
250 //                                    }
251 //                                    else{
252 //                                        for (std::size_t k{ 0 }; k <= j - i; ++k){
253 //                                            setStatus(i + k, secondaryStructureTypes::Ladder);
254 //                                        }
255 //                                    }
256 //                                }
257 //                            }
258 //                        }
259 //                    }
260 //                }
261 //            }
262 //        }
263 //    }
264 }
265
266 void secondaryStructures::analyzeTurnsAndHelicesPatterns(){
267     for(const turnsTypes &i : { turnsTypes::Turn_4, turnsTypes::Turn_3, turnsTypes::Turn_5 }){
268         std::size_t stride {static_cast<std::size_t>(i) + 3};
269         std::cout << "Testing Helix_" << stride << std::endl;
270         for(std::size_t j {0}; j + stride < SecondaryStructuresStatusMap.size(); ++j){
271             std::cout << "Testing " << j << " and " << j + stride << std::endl;
272             if ( hasHBondBetween(j, j + stride) && NoChainBreaksBetween(j, j + stride) ){
273                 std::cout << j << " and " << j + stride << " has hbond!" << std::endl;
274                 SecondaryStructuresStatusMap[j + stride].setStatus(HelixPositions::End, i);
275
276                 for (std::size_t k {1}; k < stride; ++k){
277                     if( SecondaryStructuresStatusMap[j + k].getStatus(i) == HelixPositions::None ){
278                         SecondaryStructuresStatusMap[j + k].setStatus(HelixPositions::Middle, i);
279                         SecondaryStructuresStatusMap[j + k].setStatus(secondaryStructureTypes::Turn);
280                     }
281
282                 }
283
284                 if( SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::End ){
285                     SecondaryStructuresStatusMap[j].setStatus(HelixPositions::Start_AND_End, i);
286                 }
287                 else {
288                     SecondaryStructuresStatusMap[j].setStatus(HelixPositions::Start, i);
289                 }
290             }
291         }
292     }
293
294     for(const turnsTypes &i : { turnsTypes::Turn_4, turnsTypes::Turn_3, turnsTypes::Turn_5 }){
295         std::size_t stride {static_cast<std::size_t>(i) + 3};
296         for(std::size_t j {1}; j + stride < SecondaryStructuresStatusMap.size(); ++j){
297             if ( (SecondaryStructuresStatusMap[j - 1].getStatus(i) == HelixPositions::Start || SecondaryStructuresStatusMap[j - 1].getStatus(i) == HelixPositions::Start_AND_End ) &&
298                  (SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::Start || SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::Start_AND_End ) ){
299                 bool empty = true;
300                 secondaryStructureTypes Helix;
301                 switch(i){
302                 case turnsTypes::Turn_3:
303                     for (std::size_t k {0}; empty && k < stride; ++k){
304                         empty = SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Loop ) || SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_3);
305                     }
306                     Helix = secondaryStructureTypes::Helix_3;
307                     break;
308                 case turnsTypes::Turn_5:
309                     for (std::size_t k {0}; empty && k < stride; ++k){
310                         empty = SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Loop ) || SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_5) || (PiHelixPreference && SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_4)); //TODO
311                     }
312                     Helix = secondaryStructureTypes::Helix_5;
313                     break;
314                 default:
315                     Helix = secondaryStructureTypes::Helix_4;
316                     break;
317                 }
318                 if ( empty || Helix == secondaryStructureTypes::Helix_4 ){
319                     for(std::size_t k {0}; k < stride - 1; ++k ){
320                         SecondaryStructuresStatusMap[j + k].setStatus(Helix);
321                     }
322                 }
323             }
324         }
325     }
326
327 //    for(std::size_t i {1}; i + 1 < SecondaryStructuresStatusMap.size(); ++i){
328 //        if (SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Loop)){
329 //            bool isTurn = false;
330 //            for(const turnsTypes &j : {turnsTypes::Turn_3, turnsTypes::Turn_4, turnsTypes::Turn_5}){
331 //                std::size_t stride {static_cast<std::size_t>(i) + 3};
332 //                for(std::size_t k {1}; k < stride; ++k){
333 //                    isTurn = (i >= k) && (SecondaryStructuresStatusMap[i - k].getStatus(j) == HelixPositions::Start || SecondaryStructuresStatusMap[i - k].getStatus(j) == HelixPositions::Start_AND_End) ;
334 //                }
335 //            }
336
337 //            if (isTurn){
338 //                SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Turn);
339 //            }
340 //            else if (SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Bend)){
341 //                SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Bend);
342 //            }
343 //        }
344 //    }
345
346 }
347
348 void secondaryStructures::analyzePPHelicesPatterns(){}
349
350 std::string secondaryStructures::patternSearch(){
351
352
353 //    analyzeBridgesAndLaddersPatterns();
354     analyzeTurnsAndHelicesPatterns();
355 //    analyzePPHelicesPatterns();
356
357 //    for(std::size_t i {0}; i < ResInfoMap->size(); ++i){
358 //        std::cout << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name) << std::endl;
359 //    }
360
361 //    std::cout.precision(5);
362 //    for(std::size_t i{0}; i < ResInfoMap->size(); ++i, std::cout << std::endl << std::endl){
363 //        std::cout << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name) ;
364 //        if ( (*ResInfoMap)[i].donor[0] != nullptr ){
365 //            std::cout << " has donor[0] = " << (*ResInfoMap)[i].donor[0]->nr << " " << *((*ResInfoMap)[i].donor[0]->name) << " with E = " << (*ResInfoMap)[i].donorEnergy[0] << " and" ;
366 //        }
367 //        else {
368 //            std::cout << " has no donor[0] and" ;
369 //        }
370 //        if ( (*ResInfoMap)[i].acceptor[0] != nullptr ){
371 //            std::cout << " has acceptor[0] = " << (*ResInfoMap)[i].acceptor[0]->nr << " " << *((*ResInfoMap)[i].acceptor[0]->name) << " with E = " << (*ResInfoMap)[i].acceptorEnergy[0] ;
372 //        }
373 //        else {
374 //            std::cout << " has no acceptor[0]" ;
375 //        }
376 //        std::cout << std::endl << "Also, " << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name);
377 //        if ( (*ResInfoMap)[i].donor[1] != nullptr ){
378 //            std::cout << " has donor[1] = " << (*ResInfoMap)[i].donor[1]->nr << " " << *((*ResInfoMap)[i].donor[1]->name) << " with E = " << (*ResInfoMap)[i].donorEnergy[1] << " and" ;
379 //        }
380 //        else {
381 //            std::cout << " has no donor[1] and" ;
382 //        }
383 //        if ( (*ResInfoMap)[i].acceptor[1] != nullptr ){
384 //            std::cout << " has acceptor[1] = " << (*ResInfoMap)[i].acceptor[1]->nr << " " << *((*ResInfoMap)[i].acceptor[1]->name) << " with E = " << (*ResInfoMap)[i].acceptorEnergy[1] ;
385 //        }
386 //        else {
387 //            std::cout << " has no acceptor[1]" ;
388 //        }
389 //    }
390
391     /*Write Data*/
392
393     for(std::size_t i {static_cast<std::size_t>(secondaryStructureTypes::Bend)}; i != static_cast<std::size_t>(secondaryStructureTypes::Count); ++i){
394         for(std::size_t j {0}; j < SecondaryStructuresStatusMap.size(); ++j){
395             if (SecondaryStructuresStatusMap[j].getStatus(static_cast<secondaryStructureTypes>(i))){
396                 SecondaryStructuresStringLine[j] = secondaryStructureTypeNames[i] ;
397             }
398         }
399     }
400
401     /*Add breaks*/
402
403     if(SecondaryStructuresStatusMap.size() > 1){
404         for(std::size_t i {0}, linefactor{1}; i + 1 < SecondaryStructuresStatusMap.size(); ++i){
405             if( SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Break) && SecondaryStructuresStatusMap[i + 1].getStatus(secondaryStructureTypes::Break) ){
406                 if(SecondaryStructuresStatusMap[i].isBreakPartnerWith(&SecondaryStructuresStatusMap[i + 1]) && SecondaryStructuresStatusMap[i + 1].isBreakPartnerWith(&SecondaryStructuresStatusMap[i]) ){
407                     SecondaryStructuresStringLine.insert(SecondaryStructuresStringLine.begin() + i + linefactor, secondaryStructureTypeNames[secondaryStructureTypes::Break]);
408                     ++linefactor;
409                 }
410             }
411         }
412     }
413     return SecondaryStructuresStringLine;
414 }
415
416 secondaryStructures::~secondaryStructures(){
417     SecondaryStructuresStatusMap.resize(0);
418     SecondaryStructuresStringLine.resize(0);
419 }
420
421 DsspTool::DsspStorage::DsspStorage(){
422     storaged_data.resize(0);
423 }
424
425 void DsspTool::DsspStorage::clearAll(){
426     storaged_data.resize(0);
427 }
428
429 std::mutex DsspTool::DsspStorage::mx;
430
431 void DsspTool::DsspStorage::storageData(int frnr, std::string data){
432     std::lock_guard<std::mutex> guardian(mx);
433     std::pair<int, std::string> datapair(frnr, data);
434     storaged_data.push_back(datapair);
435 }
436
437 std::vector<std::pair<int, std::string>> DsspTool::DsspStorage::returnData(){
438     std::sort(storaged_data.begin(), storaged_data.end());
439     return storaged_data;
440 }
441
442 void alternateNeighborhoodSearch::setCutoff(const real &cutoff_init){
443     cutoff = cutoff_init;
444 }
445
446 void alternateNeighborhoodSearch::FixAtomCoordinates(real &coordinate, const real vector_length){
447     while (coordinate < 0) {
448         coordinate += vector_length;
449     }
450     while (coordinate >= vector_length) {
451         coordinate -= vector_length;
452     }
453 }
454
455 void alternateNeighborhoodSearch::ReCalculatePBC(int &x, const int &x_max) {
456     if (x < 0) {
457         x += x_max;
458     }
459     if (x >= x_max) {
460         x -= x_max;
461     }
462 }
463
464 void alternateNeighborhoodSearch::GetMiniBoxesMap(const t_trxframe &fr, const std::vector<ResInfo> &IndexMap){
465     rvec coordinates, box_vector_length;
466     num_of_miniboxes.resize(0);
467     num_of_miniboxes.resize(3);
468     for (std::size_t i{XX}; i <= ZZ; ++i) {
469         box_vector_length[i] = std::sqrt(
470                     std::pow(fr.box[i][XX], 2) + std::pow(fr.box[i][YY], 2) + std::pow(fr.box[i][ZZ], 2));
471         num_of_miniboxes[i] = std::floor((box_vector_length[i] / cutoff)) + 1;
472     }
473     MiniBoxesMap.resize(0);
474     MiniBoxesReverseMap.resize(0);
475     MiniBoxesMap.resize(num_of_miniboxes[XX], std::vector<std::vector<std::vector<std::size_t> > >(
476                              num_of_miniboxes[YY], std::vector<std::vector<std::size_t> >(
477                              num_of_miniboxes[ZZ], std::vector<std::size_t>(
478                              0))));
479     MiniBoxesReverseMap.resize(IndexMap.size(), std::vector<std::size_t>(3));
480     for (std::vector<ResInfo>::const_iterator i {IndexMap.begin()}; i != IndexMap.end(); ++i) {
481         for (std::size_t j{XX}; j <= ZZ; ++j) {
482             coordinates[j] = fr.x[i->getIndex(backboneAtomTypes::AtomCA)][j];
483             FixAtomCoordinates(coordinates[j], box_vector_length[j]);
484         }
485         MiniBoxesMap[std::floor(coordinates[XX] / cutoff)][std::floor(coordinates[YY] / cutoff)][std::floor(
486                           coordinates[ZZ] / cutoff)].push_back(i - IndexMap.begin());
487         for (std::size_t j{XX}; j <= ZZ; ++j){
488             MiniBoxesReverseMap[i - IndexMap.begin()][j] = std::floor(coordinates[j] / cutoff);
489         }
490     }
491 }
492
493 void alternateNeighborhoodSearch::AltPairSearch(const t_trxframe &fr, const std::vector<ResInfo> &IndexMap){
494     GetMiniBoxesMap(fr, IndexMap);
495     MiniBoxSize[XX] = MiniBoxesMap.size();
496     MiniBoxSize[YY] = MiniBoxesMap.front().size();
497     MiniBoxSize[ZZ] = MiniBoxesMap.front().front().size();
498     PairMap.resize(0);
499     PairMap.resize(IndexMap.size(), std::vector<bool>(IndexMap.size(), false));
500     ResiI = PairMap.begin();
501     ResiJ = ResiI->begin();
502
503     for (std::vector<ResInfo>::const_iterator i = IndexMap.begin(); i != IndexMap.end(); ++i){
504         for (offset[XX] = -1; offset[XX] <= 1; ++offset[XX]) {
505             for (offset[YY] = -1; offset[YY] <= 1; ++offset[YY]) {
506                 for (offset[ZZ] = -1; offset[ZZ] <= 1; ++offset[ZZ]) {
507                     for (std::size_t k{XX}; k <= ZZ; ++k) {
508                         fixBox[k] = MiniBoxesReverseMap[i - IndexMap.begin()][k] + offset[k];
509                         ReCalculatePBC(fixBox[k], MiniBoxSize[k]);
510                     }
511                     for (std::size_t j{0}; j < MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]].size(); ++j) {
512                         if ( (i - IndexMap.begin()) != MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]){
513                             PairMap[i - IndexMap.begin()][MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]] = true;
514                             PairMap[MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]][i - IndexMap.begin()] = true;
515                         }
516                     }
517                 }
518             }
519         }
520     }
521 }
522
523 bool alternateNeighborhoodSearch::findNextPair(){
524
525     if(!PairMap.size()){
526         return false;
527     }
528
529     for(; ResiI != PairMap.end(); ++ResiI, ResiJ = ResiI->begin() ){
530         for(; ResiJ != ResiI->end(); ++ResiJ){
531             if(*ResiJ){
532                 resiIpos = ResiI - PairMap.begin();
533                 resiJpos = ResiJ - ResiI->begin();
534                 if ( ResiJ != ResiI->end() ){
535                     ++ResiJ;
536                 }
537                 else if (ResiI != PairMap.end()) {
538                     ++ResiI;
539                     ResiJ = ResiI->begin();
540                 }
541                 else {
542                     return false; // ???
543                 }
544                 return true;
545             }
546         }
547     }
548
549     return false;
550 }
551
552 std::size_t alternateNeighborhoodSearch::getResiI() const {
553     return resiIpos;
554 }
555
556 std::size_t alternateNeighborhoodSearch::getResiJ() const {
557     return resiJpos;
558 }
559
560
561 DsspTool::DsspStorage DsspTool::Storage;
562
563 DsspTool::DsspTool(){
564 }
565
566 void DsspTool::calculateBends(const t_trxframe &fr, const t_pbc *pbc)
567 {
568    const float benddegree{ 70.0 }, maxdist{ 2.5 };
569    float       degree{ 0 }, vdist{ 0 }, vprod{ 0 };
570    gmx::RVec   a{ 0, 0, 0 }, b{ 0, 0, 0 };
571    for (std::size_t i{ 0 }; i + 1 < IndexMap.size(); ++i)
572    {
573        if (CalculateAtomicDistances(static_cast<int>(IndexMap[i].getIndex(backboneAtomTypes::AtomC)),
574                                     static_cast<int>(IndexMap[i + 1].getIndex(backboneAtomTypes::AtomN)),
575                                     fr,
576                                     pbc)
577            > maxdist)
578        {
579            PatternSearch.SecondaryStructuresStatusMap[i].setBreak(&PatternSearch.SecondaryStructuresStatusMap[i + 1]);
580            PatternSearch.SecondaryStructuresStatusMap[i + 1].setBreak(&PatternSearch.SecondaryStructuresStatusMap[i]);
581
582 //           std::cout << "Break between " << i + 1 << " and " << i + 2 << std::endl;
583        }
584    }
585    for (std::size_t i{ 2 }; i + 2 < IndexMap.size() ; ++i)
586    {
587        if (PatternSearch.SecondaryStructuresStatusMap[i - 2].getStatus(secondaryStructureTypes::Break) ||
588            PatternSearch.SecondaryStructuresStatusMap[i - 1].getStatus(secondaryStructureTypes::Break) ||
589            PatternSearch.SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Break) ||
590            PatternSearch.SecondaryStructuresStatusMap[i + 1].getStatus(secondaryStructureTypes::Break)
591           )
592        {
593            continue;
594        }
595        for (int j{ 0 }; j < 3; ++j)
596        {
597            a[j] = fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)][j]
598                   - fr.x[IndexMap[i - 2].getIndex(backboneAtomTypes::AtomCA)][j];
599            b[j] = fr.x[IndexMap[i + 2].getIndex(backboneAtomTypes::AtomCA)][j]
600                   - fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)][j];
601        }
602        vdist = (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
603        vprod = CalculateAtomicDistances(IndexMap[i - 2].getIndex(backboneAtomTypes::AtomCA),
604                                         IndexMap[i].getIndex(backboneAtomTypes::AtomCA),
605                                         fr,
606                                         pbc)
607                * gmx::c_angstrom / gmx::c_nano
608                * CalculateAtomicDistances(IndexMap[i].getIndex(backboneAtomTypes::AtomCA),
609                                           IndexMap[i + 2].getIndex(backboneAtomTypes::AtomCA),
610                                           fr,
611                                           pbc)
612                * gmx::c_angstrom / gmx::c_nano;
613        degree = std::acos(vdist / vprod) * gmx::c_rad2Deg;
614        if (degree > benddegree)
615        {
616            PatternSearch.SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Bend);
617        }
618    }
619 }
620
621 void DsspTool::calculateHBondEnergy(ResInfo& Donor,
622                        ResInfo& Acceptor,
623                        const t_trxframe&          fr,
624                        const t_pbc*               pbc)
625 {
626    /*
627     * DSSP uses eq from dssp 2.x
628     * kCouplingConstant = 27.888,  //  = 332 * 0.42 * 0.2
629     * E = k * (1/rON + 1/rCH - 1/rOH - 1/rCN) where CO comes from one AA and NH from another
630     * if R is in A
631     * Hbond if E < -0.5
632     *
633     * For the note, H-Bond Donor is N-H («Donor of H») and H-Bond Acceptor is C=O («Acceptor of H»)
634     *
635     */
636
637     if (CalculateAtomicDistances(
638                 Donor.getIndex(backboneAtomTypes::AtomCA), Acceptor.getIndex(backboneAtomTypes::AtomCA), fr, pbc)
639         >= minimalCAdistance)
640     {
641         return void();
642     }
643
644     const float kCouplingConstant = 27.888;
645     const float minimalAtomDistance{ 0.5 },
646             minEnergy{ -9.9 };
647     float HbondEnergy{ 0 };
648     float distanceNO{ 0 }, distanceHC{ 0 }, distanceHO{ 0 }, distanceNC{ 0 };
649
650 //    std::cout << "For Donor №" << Donor.info->nr - 1 << " and Accpetor №" << Acceptor.info->nr - 1 << std::endl;
651
652     if( !(Donor.is_proline) && (Acceptor.getIndex(backboneAtomTypes::AtomC) && Acceptor.getIndex(backboneAtomTypes::AtomO)
653                                 && Donor.getIndex(backboneAtomTypes::AtomN) && ( Donor.getIndex(backboneAtomTypes::AtomH) || initParams.addHydrogens ) ) ){ // TODO
654         distanceNO = CalculateAtomicDistances(
655                Donor.getIndex(backboneAtomTypes::AtomN), Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
656         distanceNC = CalculateAtomicDistances(
657                Donor.getIndex(backboneAtomTypes::AtomN), Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
658         if (initParams.addHydrogens){
659             if (Donor.prevResi != nullptr && Donor.prevResi->getIndex(backboneAtomTypes::AtomC) && Donor.prevResi->getIndex(backboneAtomTypes::AtomO)){
660                rvec atomH{};
661                float prevCODist {CalculateAtomicDistances(Donor.prevResi->getIndex(backboneAtomTypes::AtomC), Donor.prevResi->getIndex(backboneAtomTypes::AtomO), fr, pbc)};
662                for (int i{XX}; i <= ZZ; ++i){
663                    float prevCO = fr.x[Donor.prevResi->getIndex(backboneAtomTypes::AtomC)][i] - fr.x[Donor.prevResi->getIndex(backboneAtomTypes::AtomO)][i];
664                    atomH[i] = fr.x[Donor.getIndex(backboneAtomTypes::AtomH)][i]; // Но на самом деле берутся координаты N
665                    atomH[i] += prevCO / prevCODist;
666                }
667                distanceHO = CalculateAtomicDistances(atomH, Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
668                distanceHC = CalculateAtomicDistances(atomH, Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
669             }
670             else{
671                 distanceHO = distanceNO;
672                 distanceHC = distanceNC;
673             }
674        }
675        else {
676            distanceHO = CalculateAtomicDistances(
677                    Donor.getIndex(backboneAtomTypes::AtomH), Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
678            distanceHC = CalculateAtomicDistances(
679                    Donor.getIndex(backboneAtomTypes::AtomH), Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
680        }
681        if ((distanceNO < minimalAtomDistance) || (distanceHC < minimalAtomDistance)
682         || (distanceHO < minimalAtomDistance) || (distanceNC < minimalAtomDistance))
683        {
684             HbondEnergy = minEnergy;
685        }
686        else{
687            HbondEnergy =
688                    kCouplingConstant
689                    * ((1 / distanceNO) + (1 / distanceHC) - (1 / distanceHO) - (1 / distanceNC));
690        }
691
692 //       std::cout << "CA-CA distance: " << CalculateAtomicDistances(
693 //                        Donor.getIndex(backboneAtomTypes::AtomCA), Acceptor.getIndex(backboneAtomTypes::AtomCA), fr, pbc) << std::endl;
694 //       std::cout << "N-O distance: " << distanceNO << std::endl;
695 //       std::cout << "N-C distance: " << distanceNC << std::endl;
696 //       std::cout << "H-O distance: " << distanceHO << std::endl;
697 //       std::cout << "H-C distance: " << distanceHC << std::endl;
698
699        HbondEnergy = std::round(HbondEnergy * 1000) / 1000;
700
701        if ( HbondEnergy < minEnergy ){
702             HbondEnergy = minEnergy;
703        }
704
705 //       std::cout << "Calculated energy = " << HbondEnergy << std::endl;
706     }
707 //    else{
708 //        std::cout << "Donor Is Proline" << std::endl;
709 //    }
710
711     if (HbondEnergy < Donor.acceptorEnergy[0]){
712            Donor.acceptor[1] = Donor.acceptor[0];
713            Donor.acceptor[0] = Acceptor.info;
714            Donor.acceptorEnergy[0] = HbondEnergy;
715     }
716     else if (HbondEnergy < Donor.acceptorEnergy[1]){
717            Donor.acceptor[1] = Acceptor.info;
718            Donor.acceptorEnergy[1] = HbondEnergy;
719     }
720
721     if (HbondEnergy < Acceptor.donorEnergy[0]){
722            Acceptor.donor[1] = Acceptor.donor[0];
723            Acceptor.donor[0] = Donor.info;
724            Acceptor.donorEnergy[0] = HbondEnergy;
725     }
726     else if (HbondEnergy < Acceptor.donorEnergy[1]){
727            Acceptor.donor[1] = Donor.info;
728            Acceptor.donorEnergy[1] = HbondEnergy;
729     }
730 }
731
732
733 /* Calculate Distance From B to A */
734 float DsspTool::CalculateAtomicDistances(const int &A, const int &B, const t_trxframe &fr, const t_pbc *pbc)
735 {
736    gmx::RVec r{ 0, 0, 0 };
737    pbc_dx(pbc, fr.x[A], fr.x[B], r.as_vec());
738    return r.norm() * gmx::c_nm2A; // НЕ ТРОГАТЬ
739 }
740
741 /* Calculate Distance From B to A, where A is only fake coordinates */
742 float DsspTool::CalculateAtomicDistances(const rvec &A, const int &B, const t_trxframe &fr, const t_pbc *pbc)
743 {
744    gmx::RVec r{ 0, 0, 0 };
745    pbc_dx(pbc, A, fr.x[B], r.as_vec());
746    return r.norm() * gmx::c_nm2A; // НЕ ТРОГАТЬ
747 }
748
749 void DsspTool::initAnalysis(/*const TrajectoryAnalysisSettings &settings,*/const TopologyInformation& top, const initParameters &initParamz)
750 {
751    initParams = initParamz;
752    ResInfo _backboneAtoms;
753    std::size_t                 i{ 0 };
754    std::string proLINE;
755    int resicompare{ top.atoms()->atom[static_cast<std::size_t>(*(initParams.sel_.atomIndices().begin()))].resind };
756    IndexMap.resize(0);
757    IndexMap.push_back(_backboneAtoms);
758    IndexMap[i].info = &(top.atoms()->resinfo[resicompare]);
759    proLINE = *(IndexMap[i].info->name);
760    if( proLINE.compare("PRO") == 0 ){
761        IndexMap[i].is_proline = true;
762    }
763
764    for (gmx::ArrayRef<const int>::iterator ai{ initParams.sel_.atomIndices().begin() }; (ai != initParams.sel_.atomIndices().end()); ++ai){
765        if (resicompare != top.atoms()->atom[static_cast<std::size_t>(*ai)].resind)
766        {
767            ++i;
768            resicompare = top.atoms()->atom[static_cast<std::size_t>(*ai)].resind;
769            IndexMap.emplace_back(_backboneAtoms);
770            IndexMap[i].info = &(top.atoms()->resinfo[resicompare]);
771            proLINE = *(IndexMap[i].info->name);
772            if( proLINE.compare("PRO") == 0 ){
773                IndexMap[i].is_proline = true;
774            }
775
776        }
777        std::string atomname(*(top.atoms()->atomname[static_cast<std::size_t>(*ai)]));
778        if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomCA])
779        {
780            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomCA)] = *ai;
781        }
782        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomC])
783        {
784            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomC)] = *ai;
785        }
786        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomO])
787        {
788            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomO)] = *ai;
789        }
790        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomN])
791        {
792            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomN)] = *ai;
793            if (initParamz.addHydrogens == true){
794                IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomH)] = *ai;
795            }
796        }
797        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomH] && initParamz.addHydrogens == false) // Юзать водород в структуре
798        {
799            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomH)] = *ai;
800        }
801
802
803
804 //       if( atomname == backboneAtomTypeNames[backboneAtomTypes::AtomCA] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomC] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomO]
805 //       || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomN] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomH]){
806 //           std::cout << "Atom " << atomname << " №" << *ai << " From Resi " << *(top.atoms()->resinfo[i].name) << " №" << resicompare << std::endl;
807 //       }
808    }
809
810    for (std::size_t j {1}; j < IndexMap.size(); ++j){
811        IndexMap[j].prevResi = &(IndexMap[j - 1]);
812
813        IndexMap[j - 1].nextResi = &(IndexMap[j]);
814
815 //           std::cout << "Resi " << IndexMap[i].info->nr << *(IndexMap[i].info->name) << std::endl;
816 //           std::cout << "Prev resi is " << IndexMap[i].prevResi->info->nr << *(IndexMap[i].prevResi->info->name) << std::endl;
817 //           std::cout << "Prev resi's next resi is " << IndexMap[i - 1].nextResi->info->nr << *(IndexMap[i - 1].nextResi->info->name) << std::endl;
818 //         std::cout << IndexMap[j].prevResi->info->nr;
819 //         std::cout << *(IndexMap[j].prevResi->info->name) ;
820 //         std::cout << " have CA = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomCA) ;
821 //         std::cout << " C = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomC);
822 //         std::cout << " O = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomO);
823 //         std::cout << " N = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomN);
824 //         std::cout << " H = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomH) << std::endl;
825    }
826
827    nres = i + 1;
828 }
829
830 void DsspTool::analyzeFrame(int frnr, const t_trxframe &fr, t_pbc *pbc)
831 {
832
833     switch(initParams.NBS){
834     case (NBSearchMethod::Classique): {
835
836         // store positions of CA atoms to use them for nbSearch
837         std::vector<gmx::RVec> positionsCA_;
838         for (std::size_t i{ 0 }; i < IndexMap.size(); ++i)
839         {
840             positionsCA_.emplace_back(fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)]);
841         }
842
843         AnalysisNeighborhood nb_;
844         nb_.setCutoff(initParams.cutoff_);
845         AnalysisNeighborhoodPositions       nbPos_(positionsCA_);
846         gmx::AnalysisNeighborhoodSearch     start      = nb_.initSearch(pbc, nbPos_);
847         gmx::AnalysisNeighborhoodPairSearch pairSearch = start.startPairSearch(nbPos_);
848         gmx::AnalysisNeighborhoodPair       pair;
849         while (pairSearch.findNextPair(&pair))
850         {
851             if(CalculateAtomicDistances(
852                         IndexMap[pair.refIndex()].getIndex(backboneAtomTypes::AtomCA), IndexMap[pair.testIndex()].getIndex(backboneAtomTypes::AtomCA), fr, pbc)
853                 < minimalCAdistance){
854                 calculateHBondEnergy(IndexMap[pair.refIndex()], IndexMap[pair.testIndex()], fr, pbc);
855                 if (IndexMap[pair.testIndex()].info != IndexMap[pair.refIndex() + 1].info){
856                     calculateHBondEnergy(IndexMap[pair.testIndex()], IndexMap[pair.refIndex()], fr, pbc);
857                 }
858             }
859         }
860
861         break;
862     }
863     case (NBSearchMethod::Experimental): { // TODO FIX
864
865         alternateNeighborhoodSearch as_;
866
867         as_.setCutoff(initParams.cutoff_);
868
869         as_.AltPairSearch(fr, IndexMap);
870
871         while (as_.findNextPair()){
872             if(CalculateAtomicDistances(
873                         IndexMap[as_.getResiI()].getIndex(backboneAtomTypes::AtomCA), IndexMap[as_.getResiJ()].getIndex(backboneAtomTypes::AtomCA), fr, pbc)
874                 < minimalCAdistance){
875                 calculateHBondEnergy(IndexMap[as_.getResiI()], IndexMap[as_.getResiJ()], fr, pbc);
876                 if (IndexMap[as_.getResiJ()].info != IndexMap[as_.getResiI() + 1].info){
877                     calculateHBondEnergy(IndexMap[as_.getResiJ()], IndexMap[as_.getResiI()], fr, pbc);
878                 }
879             }
880         }
881
882         break;
883     }
884     default: {
885
886         for(std::vector<ResInfo>::iterator Donor {IndexMap.begin()}; Donor != IndexMap.end() ; ++Donor){
887             for(std::vector<ResInfo>::iterator Acceptor {Donor + 1} ; Acceptor != IndexMap.end() ; ++Acceptor){
888                 if(CalculateAtomicDistances(
889                             Donor->getIndex(backboneAtomTypes::AtomCA), Acceptor->getIndex(backboneAtomTypes::AtomCA), fr, pbc)
890                     < minimalCAdistance){
891                     calculateHBondEnergy(*Donor, *Acceptor, fr, pbc);
892                     if (Acceptor != Donor + 1){
893                         calculateHBondEnergy(*Acceptor, *Donor, fr, pbc);
894                     }
895                 }
896             }
897         }
898         break;
899     }
900     }
901
902
903 //    for(std::size_t i {0}; i < IndexMap.size(); ++i){
904 //        std::cout << IndexMap[i].info->nr << " " << *(IndexMap[i].info->name) << std::endl;
905 //    }
906
907    PatternSearch.initiateSearch(IndexMap, initParams.PPHelices);
908    calculateBends(fr, pbc);
909    Storage.storageData(frnr, PatternSearch.patternSearch());
910
911 }
912
913 std::vector<std::pair<int, std::string>> DsspTool::getData(){
914     return Storage.returnData();
915 }
916
917 } // namespace analysismodules
918
919 } // namespace gmx