dsadasdsadasd
[alexxy/gromacs-dssp.git] / src / dssptools.cpp
1 /*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2021, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35 /*! \internal \file
36 * \brief
37 * Implements gmx::analysismodules::Trajectory.
38 *
39 * \author Sergey Gorelov <gorelov_sv@pnpi.nrcki.ru>
40 * \author Anatoly Titov <titov_ai@pnpi.nrcki.ru>
41 * \author Alexey Shvetsov <alexxyum@gmail.com>
42 * \ingroup module_trajectoryanalysis
43 */
44
45 /*
46     There's something wrong with energy calculations of redidues with E ≈ -0
47 */
48
49
50 #include "dssptools.h"
51
52 #include <algorithm>
53 #include "gromacs/math/units.h"
54
55 #include "gromacs/pbcutil/pbc.h"
56 #include <gromacs/trajectoryanalysis.h>
57 #include "gromacs/trajectoryanalysis/topologyinformation.h"
58 #include <set>
59 #include <fstream>
60 #include <mutex>
61 #include <iostream>
62
63 namespace gmx
64 {
65
66 namespace analysismodules
67 {
68
69 //void ResInfo::setIndex(backboneAtomTypes atomTypeName, std::size_t atomIndex)
70 //{
71 //   _ResInfo.at(static_cast<std::size_t>(atomTypeName)) = atomIndex;
72 //}
73
74 //std::size_t ResInfo::getIndex(backboneAtomTypes atomTypeName) const
75 //{
76 //   return _ResInfo[static_cast<std::size_t>(atomTypeName)];
77 //}
78
79 std::size_t ResInfo::getIndex(backboneAtomTypes atomTypeName) const{
80     return _backboneIndices[static_cast<std::size_t>(atomTypeName)];
81 }
82
83 secondaryStructures::secondaryStructures(){
84 }
85 void secondaryStructures::initiateSearch(const std::vector<ResInfo> &ResInfoMatrix, const bool PiHelicesPreferencez){
86     SecondaryStructuresStatusMap.resize(0);
87     SecondaryStructuresStringLine.resize(0);
88     std::vector<std::size_t> temp; temp.resize(0),
89     PiHelixPreference = PiHelicesPreferencez;
90     ResInfoMap = &ResInfoMatrix;
91     SecondaryStructuresStatusMap.resize(ResInfoMatrix.size());
92     SecondaryStructuresStringLine.resize(ResInfoMatrix.size(), '~');
93 }
94
95 void secondaryStructures::secondaryStructuresData::setStatus(const secondaryStructureTypes secondaryStructureTypeName){
96     SecondaryStructuresStatusArray[static_cast<std::size_t>(secondaryStructureTypeName)] = true;
97 }
98
99 void secondaryStructures::secondaryStructuresData::setStatus(const HelixPositions helixPosition, const turnsTypes turn){
100     TurnsStatusArray[static_cast<std::size_t>(turn)] = helixPosition;
101 }
102
103 bool secondaryStructures::secondaryStructuresData::getStatus(const secondaryStructureTypes secondaryStructureTypeName) const{
104     return SecondaryStructuresStatusArray[static_cast<std::size_t>(secondaryStructureTypeName)];
105 }
106
107 bool secondaryStructures::secondaryStructuresData::isBreakPartnerWith(const secondaryStructuresData *partner) const{
108     return breakPartners[0] == partner || breakPartners[1] == partner;
109 }
110
111 HelixPositions secondaryStructures::secondaryStructuresData::getStatus(const turnsTypes turn) const{
112     return TurnsStatusArray[static_cast<std::size_t>(turn)];
113 }
114
115 void secondaryStructures::secondaryStructuresData::setBreak(secondaryStructuresData *breakPartner){
116     if (breakPartners[0] == nullptr){
117         breakPartners[0] = breakPartner;
118     }
119     else{
120         breakPartners[1] = breakPartner;
121     }
122     setStatus(secondaryStructureTypes::Break);
123 }
124
125 bool secondaryStructures::hasHBondBetween(std::size_t Donor, std::size_t Acceptor) const{ // prob should add resi name comparison ?
126     if( (*ResInfoMap)[Donor].acceptor[0] == nullptr ||
127         (*ResInfoMap)[Donor].acceptor[1] == nullptr ||
128         (*ResInfoMap)[Acceptor].info == nullptr ){
129         std::cout << "Bad hbond check. Reason(s): " ;
130         if ( (*ResInfoMap)[Donor].acceptor[0] == nullptr ){
131             std::cout << "Donor has no acceptor[0]; ";
132         }
133         if ( (*ResInfoMap)[Donor].acceptor[1] == nullptr ){
134             std::cout << "Donor has no acceptor[1]; ";
135         }
136         if ( (*ResInfoMap)[Acceptor].info == nullptr ){
137             std::cout << "No info about acceptor; ";
138         }
139         std::cout << std::endl;
140         return false;
141     }
142     else if (!( (*ResInfoMap)[Acceptor].donor[0] == nullptr ||
143               (*ResInfoMap)[Acceptor].donor[1] == nullptr ||
144               (*ResInfoMap)[Donor].info == nullptr )) {
145         std::cout << "Comparing DONOR №" << (*ResInfoMap)[Donor].info->nr << " And ACCEPTOR №" << (*ResInfoMap)[Acceptor].info->nr << ": " << std::endl;
146         std::cout << "Donor's acceptors' nr are = " << (*ResInfoMap)[Donor].acceptor[0]->nr << " (chain " << (*ResInfoMap)[Donor].acceptor[0]->chainid << ") , " << (*ResInfoMap)[Donor].acceptor[1]->nr << " (chain " << (*ResInfoMap)[Donor].acceptor[1]->chainid << ")" << std::endl;
147         std::cout << "Donor's acceptors' energy are = " << (*ResInfoMap)[Donor].acceptorEnergy[0] << ", " << (*ResInfoMap)[Donor].acceptorEnergy[1] << std::endl;
148         std::cout << "Acceptors's donors' nr are = " << (*ResInfoMap)[Acceptor].donor[0]->nr << " (chain " << (*ResInfoMap)[Acceptor].donor[0]->chainid << ") , " << (*ResInfoMap)[Acceptor].donor[1]->nr << " (chain " << (*ResInfoMap)[Acceptor].donor[1]->chainid << ")" << std::endl;
149         std::cout << "Acceptors's donors' energy are = " << (*ResInfoMap)[Acceptor].donorEnergy[0] << ", " << (*ResInfoMap)[Acceptor].donorEnergy[1] << std::endl;
150         if( ( (*ResInfoMap)[Donor].acceptor[0] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[0] < HBondEnergyCutOff ) ||
151                 ( (*ResInfoMap)[Donor].acceptor[1] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[1] < HBondEnergyCutOff ) ){
152             std::cout << "HBond Exist" << std::endl;
153         }
154     }
155     else {
156         std::cout << "Bad hbond check. Reason(s): " ;
157         if ( (*ResInfoMap)[Acceptor].donor[0] == nullptr ){
158             std::cout << "Acceptor has no donor[0]; ";
159         }
160         if ( (*ResInfoMap)[Acceptor].donor[1] == nullptr ){
161             std::cout << "Acceptor has no donor[1]; ";
162         }
163         if ( (*ResInfoMap)[Donor].info == nullptr ){
164             std::cout << "No info about donor; ";
165         }
166         std::cout << std::endl;
167     }
168
169     return ( (*ResInfoMap)[Donor].acceptor[0] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[0] < HBondEnergyCutOff ) ||
170            ( (*ResInfoMap)[Donor].acceptor[1] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[1] < HBondEnergyCutOff );
171
172
173 }
174
175 bool secondaryStructures::NoChainBreaksBetween(std::size_t Resi1, std::size_t Resi2) const{
176     std::size_t i{Resi1}, j{Resi2}; // From i to j → i <= j
177     if ( i > j ){
178         std::swap(i, j);
179     }
180
181     for (; i != j; ++i){
182         if ( SecondaryStructuresStatusMap[i].isBreakPartnerWith(&SecondaryStructuresStatusMap[i + 1]) && SecondaryStructuresStatusMap[i + 1].isBreakPartnerWith(&SecondaryStructuresStatusMap[i]) ){
183             std::cout << "Patternsearch has detected a CHAINBREAK between " << Resi1 << " and " << Resi2 << std::endl;
184             return false;
185         }
186     }
187     return true;
188 }
189
190 bridgeTypes secondaryStructures::calculateBridge(std::size_t i, std::size_t j) const{
191     if( i < 1 || j < 1 || i + 1 >= ResInfoMap->size() || j + 1 >= ResInfoMap->size() ){
192         return bridgeTypes::None;
193     }
194     if(NoChainBreaksBetween(i - 1, i + 1) && NoChainBreaksBetween(j - 1, j + 1)){
195         if((hasHBondBetween(i + 1, j) && hasHBondBetween(j, i - 1)) || (hasHBondBetween(j + 1, i) && hasHBondBetween(i, j - 1)) ){ //possibly swap
196             return bridgeTypes::ParallelBridge;
197         }
198         else if((hasHBondBetween(i + 1, j - 1) && hasHBondBetween(j + 1, i - 1)) || (hasHBondBetween(j, i) && hasHBondBetween(i, j)) ){ //possibly swap
199             return bridgeTypes::AntiParallelBridge;
200         }
201     }
202     return bridgeTypes::None;
203 }
204
205 void secondaryStructures::analyzeBridgesAndLaddersPatterns(){
206     for(std::size_t i {1}; i + 4 < SecondaryStructuresStatusMap.size(); ++i){
207         for(std::size_t j {i + 3}; j + 1 < SecondaryStructuresStatusMap.size(); ++j ){
208             bridgeTypes type {calculateBridge(i, j)};
209             if (type == bridgeTypes::None){
210                 continue;
211             }
212             bool found {false};
213         }
214     }
215
216
217
218
219
220
221
222
223
224
225
226
227 //    for (std::size_t i{ 1 }; i < HBondsMap.front().size() - 1; ++i){
228 //        for (std::size_t j{ 1 }; j < HBondsMap.front().size() - 1; ++j){
229 //            if (std::abs(static_cast<int>(i) - static_cast<int>(j)) > 2){
230 //                if ((HBondsMap[i - 1][j] && HBondsMap[j][i + 1])    ||
231 //                    (HBondsMap[j - 1][i] && HBondsMap[i][j + 1])){
232 //                    Bridge[i].push_back(j);
233 //                }
234 //                if ((HBondsMap[i][j] && HBondsMap[j][i])    ||
235 //                    (HBondsMap[i - 1][j + 1] && HBondsMap[j - 1][i + 1])){
236 //                    AntiBridge[i].push_back(j);
237 //                }
238 //            }
239 //        }
240 //    }
241 //    for (std::size_t i{ 0 }; i < HBondsMap.front().size(); ++i){
242 //        if ((!Bridge[i].empty() || !AntiBridge[i].empty())){
243 //            setStatus(i, secondaryStructureTypes::Bulge);
244 //        }
245 //    }
246 //    for (std::size_t i{ 2 }; i + 2 < HBondsMap.front().size(); ++i){
247 //        for (std::size_t j { i - 2 }; j <= (i + 2); ++j){
248 //            if (j == i){
249 //                continue;
250 //            }
251 //            else {
252 //                for (std::vector<bridgeTypes>::const_iterator bridge {Bridges.begin()}; bridge != Bridges.end(); ++bridge ){
253 //                    if (!getBridge(*bridge)[i].empty() || !getBridge(*bridge)[j].empty()){
254 //                        for (std::size_t i_resi{ 0 }; i_resi < getBridge(*bridge)[i].size(); ++i_resi){
255 //                            for (std::size_t j_resi{ 0 }; j_resi < getBridge(*bridge)[j].size(); ++j_resi){
256 //                                if (abs(static_cast<int>(getBridge(*bridge)[i][i_resi])
257 //                                        - static_cast<int>(getBridge(*bridge)[j][j_resi]))
258 //                                        && (abs(static_cast<int>(getBridge(*bridge)[i][i_resi])
259 //                                        - static_cast<int>(getBridge(*bridge)[j][j_resi]))
260 //                                        < 5)){
261 //                                    if (j < i){
262 //                                        for (std::size_t k{ 0 }; k <= i - j; ++k){
263 //                                            setStatus(i + k, secondaryStructureTypes::Ladder);
264 //                                        }
265 //                                    }
266 //                                    else{
267 //                                        for (std::size_t k{ 0 }; k <= j - i; ++k){
268 //                                            setStatus(i + k, secondaryStructureTypes::Ladder);
269 //                                        }
270 //                                    }
271 //                                }
272 //                            }
273 //                        }
274 //                    }
275 //                }
276 //            }
277 //        }
278 //    }
279 }
280
281 void secondaryStructures::analyzeTurnsAndHelicesPatterns(){
282     for(const turnsTypes &i : { turnsTypes::Turn_4, turnsTypes::Turn_3, turnsTypes::Turn_5 }){
283         std::size_t stride {static_cast<std::size_t>(i) + 3};
284         std::cout << "Testing Helix_" << stride << std::endl;
285         for(std::size_t j {0}; j + stride < SecondaryStructuresStatusMap.size(); ++j){
286             std::cout << "Testing " << j << " and " << j + stride << std::endl;
287             if ( hasHBondBetween(j, j + stride) && NoChainBreaksBetween(j, j + stride) ){
288                 std::cout << j << " and " << j + stride << " has hbond!" << std::endl;
289                 SecondaryStructuresStatusMap[j + stride].setStatus(HelixPositions::End, i);
290
291                 for (std::size_t k {1}; k < stride; ++k){
292                     if( SecondaryStructuresStatusMap[j + k].getStatus(i) == HelixPositions::None ){
293                         SecondaryStructuresStatusMap[j + k].setStatus(HelixPositions::Middle, i);
294                         SecondaryStructuresStatusMap[j + k].setStatus(secondaryStructureTypes::Turn);
295                     }
296
297                 }
298
299                 if( SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::End ){
300                     SecondaryStructuresStatusMap[j].setStatus(HelixPositions::Start_AND_End, i);
301                 }
302                 else {
303                     SecondaryStructuresStatusMap[j].setStatus(HelixPositions::Start, i);
304                 }
305             }
306         }
307     }
308
309     for(const turnsTypes &i : { turnsTypes::Turn_4, turnsTypes::Turn_3, turnsTypes::Turn_5 }){
310         std::size_t stride {static_cast<std::size_t>(i) + 3};
311         for(std::size_t j {1}; j + stride < SecondaryStructuresStatusMap.size(); ++j){
312             if ( (SecondaryStructuresStatusMap[j - 1].getStatus(i) == HelixPositions::Start || SecondaryStructuresStatusMap[j - 1].getStatus(i) == HelixPositions::Start_AND_End ) &&
313                  (SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::Start || SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::Start_AND_End ) ){
314                 bool empty = true;
315                 secondaryStructureTypes Helix;
316                 switch(i){
317                 case turnsTypes::Turn_3:
318                     for (std::size_t k {0}; empty && k < stride; ++k){
319                         empty = SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Loop ) || SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_3);
320                     }
321                     Helix = secondaryStructureTypes::Helix_3;
322                     break;
323                 case turnsTypes::Turn_5:
324                     for (std::size_t k {0}; empty && k < stride; ++k){
325                         empty = SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Loop ) || SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_5) || (PiHelixPreference && SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_4)); //TODO
326                     }
327                     Helix = secondaryStructureTypes::Helix_5;
328                     break;
329                 default:
330                     Helix = secondaryStructureTypes::Helix_4;
331                     break;
332                 }
333                 if ( empty || Helix == secondaryStructureTypes::Helix_4 ){
334                     for(std::size_t k {0}; k < stride - 1; ++k ){
335                         SecondaryStructuresStatusMap[j + k].setStatus(Helix);
336                     }
337                 }
338             }
339         }
340     }
341
342 //    for(std::size_t i {1}; i + 1 < SecondaryStructuresStatusMap.size(); ++i){
343 //        if (SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Loop)){
344 //            bool isTurn = false;
345 //            for(const turnsTypes &j : {turnsTypes::Turn_3, turnsTypes::Turn_4, turnsTypes::Turn_5}){
346 //                std::size_t stride {static_cast<std::size_t>(i) + 3};
347 //                for(std::size_t k {1}; k < stride; ++k){
348 //                    isTurn = (i >= k) && (SecondaryStructuresStatusMap[i - k].getStatus(j) == HelixPositions::Start || SecondaryStructuresStatusMap[i - k].getStatus(j) == HelixPositions::Start_AND_End) ;
349 //                }
350 //            }
351
352 //            if (isTurn){
353 //                SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Turn);
354 //            }
355 //            else if (SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Bend)){
356 //                SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Bend);
357 //            }
358 //        }
359 //    }
360
361 }
362
363 void secondaryStructures::analyzePPHelicesPatterns(){}
364
365 std::string secondaryStructures::patternSearch(){
366
367
368 //    analyzeBridgesAndLaddersPatterns();
369     analyzeTurnsAndHelicesPatterns();
370 //    analyzePPHelicesPatterns();
371
372 //    for(std::size_t i {0}; i < ResInfoMap->size(); ++i){
373 //        std::cout << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name) << std::endl;
374 //    }
375
376 //    std::cout.precision(5);
377 //    for(std::size_t i{0}; i < ResInfoMap->size(); ++i, std::cout << std::endl << std::endl){
378 //        std::cout << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name) ;
379 //        if ( (*ResInfoMap)[i].donor[0] != nullptr ){
380 //            std::cout << " has donor[0] = " << (*ResInfoMap)[i].donor[0]->nr << " " << *((*ResInfoMap)[i].donor[0]->name) << " with E = " << (*ResInfoMap)[i].donorEnergy[0] << " and" ;
381 //        }
382 //        else {
383 //            std::cout << " has no donor[0] and" ;
384 //        }
385 //        if ( (*ResInfoMap)[i].acceptor[0] != nullptr ){
386 //            std::cout << " has acceptor[0] = " << (*ResInfoMap)[i].acceptor[0]->nr << " " << *((*ResInfoMap)[i].acceptor[0]->name) << " with E = " << (*ResInfoMap)[i].acceptorEnergy[0] ;
387 //        }
388 //        else {
389 //            std::cout << " has no acceptor[0]" ;
390 //        }
391 //        std::cout << std::endl << "Also, " << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name);
392 //        if ( (*ResInfoMap)[i].donor[1] != nullptr ){
393 //            std::cout << " has donor[1] = " << (*ResInfoMap)[i].donor[1]->nr << " " << *((*ResInfoMap)[i].donor[1]->name) << " with E = " << (*ResInfoMap)[i].donorEnergy[1] << " and" ;
394 //        }
395 //        else {
396 //            std::cout << " has no donor[1] and" ;
397 //        }
398 //        if ( (*ResInfoMap)[i].acceptor[1] != nullptr ){
399 //            std::cout << " has acceptor[1] = " << (*ResInfoMap)[i].acceptor[1]->nr << " " << *((*ResInfoMap)[i].acceptor[1]->name) << " with E = " << (*ResInfoMap)[i].acceptorEnergy[1] ;
400 //        }
401 //        else {
402 //            std::cout << " has no acceptor[1]" ;
403 //        }
404 //    }
405
406     /*Write Data*/
407
408     for(std::size_t i {static_cast<std::size_t>(secondaryStructureTypes::Bend)}; i != static_cast<std::size_t>(secondaryStructureTypes::Count); ++i){
409         for(std::size_t j {0}; j < SecondaryStructuresStatusMap.size(); ++j){
410             if (SecondaryStructuresStatusMap[j].getStatus(static_cast<secondaryStructureTypes>(i))){
411                 SecondaryStructuresStringLine[j] = secondaryStructureTypeNames[i] ;
412             }
413         }
414     }
415
416     /*Add breaks*/
417
418     if(SecondaryStructuresStatusMap.size() > 1){
419         for(std::size_t i {0}, linefactor{1}; i + 1 < SecondaryStructuresStatusMap.size(); ++i){
420             if( SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Break) && SecondaryStructuresStatusMap[i + 1].getStatus(secondaryStructureTypes::Break) ){
421                 if(SecondaryStructuresStatusMap[i].isBreakPartnerWith(&SecondaryStructuresStatusMap[i + 1]) && SecondaryStructuresStatusMap[i + 1].isBreakPartnerWith(&SecondaryStructuresStatusMap[i]) ){
422                     SecondaryStructuresStringLine.insert(SecondaryStructuresStringLine.begin() + i + linefactor, secondaryStructureTypeNames[secondaryStructureTypes::Break]);
423                     ++linefactor;
424                 }
425             }
426         }
427     }
428     return SecondaryStructuresStringLine;
429 }
430
431 secondaryStructures::~secondaryStructures(){
432     SecondaryStructuresStatusMap.resize(0);
433     SecondaryStructuresStringLine.resize(0);
434 }
435
436 DsspTool::DsspStorage::DsspStorage(){
437     storaged_data.resize(0);
438 }
439
440 void DsspTool::DsspStorage::clearAll(){
441     storaged_data.resize(0);
442 }
443
444 std::mutex DsspTool::DsspStorage::mx;
445
446 void DsspTool::DsspStorage::storageData(int frnr, std::string data){
447     std::lock_guard<std::mutex> guardian(mx);
448     std::pair<int, std::string> datapair(frnr, data);
449     storaged_data.push_back(datapair);
450 }
451
452 std::vector<std::pair<int, std::string>> DsspTool::DsspStorage::returnData(){
453     std::sort(storaged_data.begin(), storaged_data.end());
454     return storaged_data;
455 }
456
457 void alternateNeighborhoodSearch::setCutoff(const real &cutoff_init){
458     cutoff = cutoff_init;
459 }
460
461 void alternateNeighborhoodSearch::FixAtomCoordinates(real &coordinate, const real vector_length){
462     while (coordinate < 0) {
463         coordinate += vector_length;
464     }
465     while (coordinate >= vector_length) {
466         coordinate -= vector_length;
467     }
468 }
469
470 void alternateNeighborhoodSearch::ReCalculatePBC(int &x, const int &x_max) {
471     if (x < 0) {
472         x += x_max;
473     }
474     if (x >= x_max) {
475         x -= x_max;
476     }
477 }
478
479 void alternateNeighborhoodSearch::GetMiniBoxesMap(const t_trxframe &fr, const std::vector<ResInfo> &IndexMap){
480     rvec coordinates, box_vector_length;
481     num_of_miniboxes.resize(0);
482     num_of_miniboxes.resize(3);
483     for (std::size_t i{XX}; i <= ZZ; ++i) {
484         box_vector_length[i] = std::sqrt(
485                     std::pow(fr.box[i][XX], 2) + std::pow(fr.box[i][YY], 2) + std::pow(fr.box[i][ZZ], 2));
486         num_of_miniboxes[i] = std::floor((box_vector_length[i] / cutoff)) + 1;
487     }
488     MiniBoxesMap.resize(0);
489     MiniBoxesReverseMap.resize(0);
490     MiniBoxesMap.resize(num_of_miniboxes[XX], std::vector<std::vector<std::vector<std::size_t> > >(
491                              num_of_miniboxes[YY], std::vector<std::vector<std::size_t> >(
492                              num_of_miniboxes[ZZ], std::vector<std::size_t>(
493                              0))));
494     MiniBoxesReverseMap.resize(IndexMap.size(), std::vector<std::size_t>(3));
495     for (std::vector<ResInfo>::const_iterator i {IndexMap.begin()}; i != IndexMap.end(); ++i) {
496         for (std::size_t j{XX}; j <= ZZ; ++j) {
497             coordinates[j] = fr.x[i->getIndex(backboneAtomTypes::AtomCA)][j];
498             FixAtomCoordinates(coordinates[j], box_vector_length[j]);
499         }
500         MiniBoxesMap[std::floor(coordinates[XX] / cutoff)][std::floor(coordinates[YY] / cutoff)][std::floor(
501                           coordinates[ZZ] / cutoff)].push_back(i - IndexMap.begin());
502         for (std::size_t j{XX}; j <= ZZ; ++j){
503             MiniBoxesReverseMap[i - IndexMap.begin()][j] = std::floor(coordinates[j] / cutoff);
504         }
505     }
506 }
507
508 void alternateNeighborhoodSearch::AltPairSearch(const t_trxframe &fr, const std::vector<ResInfo> &IndexMap){
509     GetMiniBoxesMap(fr, IndexMap);
510     MiniBoxSize[XX] = MiniBoxesMap.size();
511     MiniBoxSize[YY] = MiniBoxesMap.front().size();
512     MiniBoxSize[ZZ] = MiniBoxesMap.front().front().size();
513     PairMap.resize(0);
514     PairMap.resize(IndexMap.size(), std::vector<bool>(IndexMap.size(), false));
515     ResiI = PairMap.begin();
516     ResiJ = ResiI->begin();
517
518     for (std::vector<ResInfo>::const_iterator i = IndexMap.begin(); i != IndexMap.end(); ++i){
519         for (offset[XX] = -1; offset[XX] <= 1; ++offset[XX]) {
520             for (offset[YY] = -1; offset[YY] <= 1; ++offset[YY]) {
521                 for (offset[ZZ] = -1; offset[ZZ] <= 1; ++offset[ZZ]) {
522                     for (std::size_t k{XX}; k <= ZZ; ++k) {
523                         fixBox[k] = MiniBoxesReverseMap[i - IndexMap.begin()][k] + offset[k];
524                         ReCalculatePBC(fixBox[k], MiniBoxSize[k]);
525                     }
526                     for (std::size_t j{0}; j < MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]].size(); ++j) {
527                         if ( (i - IndexMap.begin()) != MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]){
528                             PairMap[i - IndexMap.begin()][MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]] = true;
529                             PairMap[MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]][i - IndexMap.begin()] = true;
530                         }
531                     }
532                 }
533             }
534         }
535     }
536 }
537
538 bool alternateNeighborhoodSearch::findNextPair(){
539
540     if(!PairMap.size()){
541         return false;
542     }
543
544     for(; ResiI != PairMap.end(); ++ResiI, ResiJ = ResiI->begin() ){
545         for(; ResiJ != ResiI->end(); ++ResiJ){
546             if(*ResiJ){
547                 resiIpos = ResiI - PairMap.begin();
548                 resiJpos = ResiJ - ResiI->begin();
549                 if ( ResiJ != ResiI->end() ){
550                     ++ResiJ;
551                 }
552                 else if (ResiI != PairMap.end()) {
553                     ++ResiI;
554                     ResiJ = ResiI->begin();
555                 }
556                 else {
557                     return false; // ???
558                 }
559                 return true;
560             }
561         }
562     }
563
564     return false;
565 }
566
567 std::size_t alternateNeighborhoodSearch::getResiI() const {
568     return resiIpos;
569 }
570
571 std::size_t alternateNeighborhoodSearch::getResiJ() const {
572     return resiJpos;
573 }
574
575
576 DsspTool::DsspStorage DsspTool::Storage;
577
578 DsspTool::DsspTool(){
579 }
580
581 void DsspTool::calculateBends(const t_trxframe &fr, const t_pbc *pbc)
582 {
583    const float benddegree{ 70.0 }, maxdist{ 2.5 };
584    float       degree{ 0 }, vdist{ 0 }, vprod{ 0 };
585    gmx::RVec   a{ 0, 0, 0 }, b{ 0, 0, 0 };
586    for (std::size_t i{ 0 }; i + 1 < IndexMap.size(); ++i)
587    {
588        if (CalculateAtomicDistances(static_cast<int>(IndexMap[i].getIndex(backboneAtomTypes::AtomC)),
589                                     static_cast<int>(IndexMap[i + 1].getIndex(backboneAtomTypes::AtomN)),
590                                     fr,
591                                     pbc)
592            > maxdist)
593        {
594            PatternSearch.SecondaryStructuresStatusMap[i].setBreak(&PatternSearch.SecondaryStructuresStatusMap[i + 1]);
595            PatternSearch.SecondaryStructuresStatusMap[i + 1].setBreak(&PatternSearch.SecondaryStructuresStatusMap[i]);
596
597 //           std::cout << "Break between " << i + 1 << " and " << i + 2 << std::endl;
598        }
599    }
600    for (std::size_t i{ 2 }; i + 2 < IndexMap.size() ; ++i)
601    {
602        if (PatternSearch.SecondaryStructuresStatusMap[i - 2].getStatus(secondaryStructureTypes::Break) ||
603            PatternSearch.SecondaryStructuresStatusMap[i - 1].getStatus(secondaryStructureTypes::Break) ||
604            PatternSearch.SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Break) ||
605            PatternSearch.SecondaryStructuresStatusMap[i + 1].getStatus(secondaryStructureTypes::Break)
606           )
607        {
608            continue;
609        }
610        for (int j{ 0 }; j < 3; ++j)
611        {
612            a[j] = fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)][j]
613                   - fr.x[IndexMap[i - 2].getIndex(backboneAtomTypes::AtomCA)][j];
614            b[j] = fr.x[IndexMap[i + 2].getIndex(backboneAtomTypes::AtomCA)][j]
615                   - fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)][j];
616        }
617        vdist = (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
618        vprod = CalculateAtomicDistances(IndexMap[i - 2].getIndex(backboneAtomTypes::AtomCA),
619                                         IndexMap[i].getIndex(backboneAtomTypes::AtomCA),
620                                         fr,
621                                         pbc)
622                * gmx::c_angstrom / gmx::c_nano
623                * CalculateAtomicDistances(IndexMap[i].getIndex(backboneAtomTypes::AtomCA),
624                                           IndexMap[i + 2].getIndex(backboneAtomTypes::AtomCA),
625                                           fr,
626                                           pbc)
627                * gmx::c_angstrom / gmx::c_nano;
628        degree = std::acos(vdist / vprod) * gmx::c_rad2Deg;
629        if (degree > benddegree)
630        {
631            PatternSearch.SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Bend);
632        }
633    }
634 }
635
636 void DsspTool::calculateHBondEnergy(ResInfo& Donor,
637                        ResInfo& Acceptor,
638                        const t_trxframe&          fr,
639                        const t_pbc*               pbc)
640 {
641    /*
642     * DSSP uses eq from dssp 2.x
643     * kCouplingConstant = 27.888,  //  = 332 * 0.42 * 0.2
644     * E = k * (1/rON + 1/rCH - 1/rOH - 1/rCN) where CO comes from one AA and NH from another
645     * if R is in A
646     * Hbond if E < -0.5
647     *
648     * For the note, H-Bond Donor is N-H («Donor of H») and H-Bond Acceptor is C=O («Acceptor of H»)
649     *
650     */
651
652     if (CalculateAtomicDistances(
653                 Donor.getIndex(backboneAtomTypes::AtomCA), Acceptor.getIndex(backboneAtomTypes::AtomCA), fr, pbc)
654         >= minimalCAdistance)
655     {
656         return void();
657     }
658
659     const float kCouplingConstant = 27.888;
660     const float minimalAtomDistance{ 0.5 },
661             minEnergy{ -9.9 };
662     float HbondEnergy{ 0 };
663     float distanceNO{ 0 }, distanceHC{ 0 }, distanceHO{ 0 }, distanceNC{ 0 };
664
665 //    std::cout << "For Donor №" << Donor.info->nr - 1 << " and Accpetor №" << Acceptor.info->nr - 1 << std::endl;
666
667     if( !(Donor.is_proline) && (Acceptor.getIndex(backboneAtomTypes::AtomC) && Acceptor.getIndex(backboneAtomTypes::AtomO)
668                                 && Donor.getIndex(backboneAtomTypes::AtomN) && ( Donor.getIndex(backboneAtomTypes::AtomH) || initParams.addHydrogens ) ) ){ // TODO
669         distanceNO = CalculateAtomicDistances(
670                Donor.getIndex(backboneAtomTypes::AtomN), Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
671         distanceNC = CalculateAtomicDistances(
672                Donor.getIndex(backboneAtomTypes::AtomN), Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
673         if (initParams.addHydrogens){
674             if (Donor.prevResi != nullptr && Donor.prevResi->getIndex(backboneAtomTypes::AtomC) && Donor.prevResi->getIndex(backboneAtomTypes::AtomO)){
675                rvec atomH{};
676                float prevCODist {CalculateAtomicDistances(Donor.prevResi->getIndex(backboneAtomTypes::AtomC), Donor.prevResi->getIndex(backboneAtomTypes::AtomO), fr, pbc)};
677                for (int i{XX}; i <= ZZ; ++i){
678                    float prevCO = fr.x[Donor.prevResi->getIndex(backboneAtomTypes::AtomC)][i] - fr.x[Donor.prevResi->getIndex(backboneAtomTypes::AtomO)][i];
679                    atomH[i] = fr.x[Donor.getIndex(backboneAtomTypes::AtomH)][i]; // Но на самом деле берутся координаты N
680                    atomH[i] += prevCO / prevCODist;
681                }
682                distanceHO = CalculateAtomicDistances(atomH, Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
683                distanceHC = CalculateAtomicDistances(atomH, Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
684             }
685             else{
686                 distanceHO = distanceNO;
687                 distanceHC = distanceNC;
688             }
689        }
690        else {
691            distanceHO = CalculateAtomicDistances(
692                    Donor.getIndex(backboneAtomTypes::AtomH), Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
693            distanceHC = CalculateAtomicDistances(
694                    Donor.getIndex(backboneAtomTypes::AtomH), Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
695        }
696        if ((distanceNO < minimalAtomDistance) || (distanceHC < minimalAtomDistance)
697         || (distanceHO < minimalAtomDistance) || (distanceNC < minimalAtomDistance))
698        {
699             HbondEnergy = minEnergy;
700        }
701        else{
702            HbondEnergy =
703                    kCouplingConstant
704                    * ((1 / distanceNO) + (1 / distanceHC) - (1 / distanceHO) - (1 / distanceNC));
705        }
706
707 //       std::cout << "CA-CA distance: " << CalculateAtomicDistances(
708 //                        Donor.getIndex(backboneAtomTypes::AtomCA), Acceptor.getIndex(backboneAtomTypes::AtomCA), fr, pbc) << std::endl;
709 //       std::cout << "N-O distance: " << distanceNO << std::endl;
710 //       std::cout << "N-C distance: " << distanceNC << std::endl;
711 //       std::cout << "H-O distance: " << distanceHO << std::endl;
712 //       std::cout << "H-C distance: " << distanceHC << std::endl;
713
714        HbondEnergy = std::round(HbondEnergy * 1000) / 1000;
715
716        if ( HbondEnergy < minEnergy ){
717             HbondEnergy = minEnergy;
718        }
719
720 //       std::cout << "Calculated energy = " << HbondEnergy << std::endl;
721     }
722 //    else{
723 //        std::cout << "Donor Is Proline" << std::endl;
724 //    }
725
726     if (HbondEnergy < Donor.acceptorEnergy[0]){
727            Donor.acceptor[1] = Donor.acceptor[0];
728            Donor.acceptor[0] = Acceptor.info;
729            Donor.acceptorEnergy[0] = HbondEnergy;
730     }
731     else if (HbondEnergy < Donor.acceptorEnergy[1]){
732            Donor.acceptor[1] = Acceptor.info;
733            Donor.acceptorEnergy[1] = HbondEnergy;
734     }
735
736     if (HbondEnergy < Acceptor.donorEnergy[0]){
737            Acceptor.donor[1] = Acceptor.donor[0];
738            Acceptor.donor[0] = Donor.info;
739            Acceptor.donorEnergy[0] = HbondEnergy;
740     }
741     else if (HbondEnergy < Acceptor.donorEnergy[1]){
742            Acceptor.donor[1] = Donor.info;
743            Acceptor.donorEnergy[1] = HbondEnergy;
744     }
745 }
746
747
748 /* Calculate Distance From B to A */
749 float DsspTool::CalculateAtomicDistances(const int &A, const int &B, const t_trxframe &fr, const t_pbc *pbc)
750 {
751    gmx::RVec r{ 0, 0, 0 };
752    pbc_dx(pbc, fr.x[A], fr.x[B], r.as_vec());
753    return r.norm() * gmx::c_nm2A; // НЕ ТРОГАТЬ
754 }
755
756 /* Calculate Distance From B to A, where A is only fake coordinates */
757 float DsspTool::CalculateAtomicDistances(const rvec &A, const int &B, const t_trxframe &fr, const t_pbc *pbc)
758 {
759    gmx::RVec r{ 0, 0, 0 };
760    pbc_dx(pbc, A, fr.x[B], r.as_vec());
761    return r.norm() * gmx::c_nm2A; // НЕ ТРОГАТЬ
762 }
763
764 void DsspTool::initAnalysis(/*const TrajectoryAnalysisSettings &settings,*/const TopologyInformation& top, const initParameters &initParamz)
765 {
766    initParams = initParamz;
767    ResInfo _backboneAtoms;
768    std::size_t                 i{ 0 };
769    std::string proLINE;
770    int resicompare{ top.atoms()->atom[static_cast<std::size_t>(*(initParams.sel_.atomIndices().begin()))].resind };
771    IndexMap.resize(0);
772    IndexMap.push_back(_backboneAtoms);
773    IndexMap[i].info = &(top.atoms()->resinfo[resicompare]);
774    proLINE = *(IndexMap[i].info->name);
775    if( proLINE.compare("PRO") == 0 ){
776        IndexMap[i].is_proline = true;
777    }
778
779    for (gmx::ArrayRef<const int>::iterator ai{ initParams.sel_.atomIndices().begin() }; (ai != initParams.sel_.atomIndices().end()); ++ai){
780        if (resicompare != top.atoms()->atom[static_cast<std::size_t>(*ai)].resind)
781        {
782            ++i;
783            resicompare = top.atoms()->atom[static_cast<std::size_t>(*ai)].resind;
784            IndexMap.emplace_back(_backboneAtoms);
785            IndexMap[i].info = &(top.atoms()->resinfo[resicompare]);
786            proLINE = *(IndexMap[i].info->name);
787            if( proLINE.compare("PRO") == 0 ){
788                IndexMap[i].is_proline = true;
789            }
790
791        }
792        std::string atomname(*(top.atoms()->atomname[static_cast<std::size_t>(*ai)]));
793        if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomCA])
794        {
795            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomCA)] = *ai;
796        }
797        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomC])
798        {
799            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomC)] = *ai;
800        }
801        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomO])
802        {
803            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomO)] = *ai;
804        }
805        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomN])
806        {
807            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomN)] = *ai;
808            if (initParamz.addHydrogens == true){
809                IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomH)] = *ai;
810            }
811        }
812        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomH] && initParamz.addHydrogens == false) // Юзать водород в структуре
813        {
814            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomH)] = *ai;
815        }
816
817
818
819 //       if( atomname == backboneAtomTypeNames[backboneAtomTypes::AtomCA] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomC] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomO]
820 //       || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomN] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomH]){
821 //           std::cout << "Atom " << atomname << " №" << *ai << " From Resi " << *(top.atoms()->resinfo[i].name) << " №" << resicompare << std::endl;
822 //       }
823    }
824
825    for (std::size_t j {1}; j < IndexMap.size(); ++j){
826        IndexMap[j].prevResi = &(IndexMap[j - 1]);
827
828        IndexMap[j - 1].nextResi = &(IndexMap[j]);
829
830 //           std::cout << "Resi " << IndexMap[i].info->nr << *(IndexMap[i].info->name) << std::endl;
831 //           std::cout << "Prev resi is " << IndexMap[i].prevResi->info->nr << *(IndexMap[i].prevResi->info->name) << std::endl;
832 //           std::cout << "Prev resi's next resi is " << IndexMap[i - 1].nextResi->info->nr << *(IndexMap[i - 1].nextResi->info->name) << std::endl;
833 //         std::cout << IndexMap[j].prevResi->info->nr;
834 //         std::cout << *(IndexMap[j].prevResi->info->name) ;
835 //         std::cout << " have CA = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomCA) ;
836 //         std::cout << " C = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomC);
837 //         std::cout << " O = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomO);
838 //         std::cout << " N = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomN);
839 //         std::cout << " H = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomH) << std::endl;
840    }
841
842    nres = i + 1;
843 }
844
845 void DsspTool::analyzeFrame(int frnr, const t_trxframe &fr, t_pbc *pbc)
846 {
847
848     switch(initParams.NBS){
849     case (NBSearchMethod::Classique): {
850
851         // store positions of CA atoms to use them for nbSearch
852         std::vector<gmx::RVec> positionsCA_;
853         for (std::size_t i{ 0 }; i < IndexMap.size(); ++i)
854         {
855             positionsCA_.emplace_back(fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)]);
856         }
857
858         AnalysisNeighborhood nb_;
859         nb_.setCutoff(initParams.cutoff_);
860         AnalysisNeighborhoodPositions       nbPos_(positionsCA_);
861         gmx::AnalysisNeighborhoodSearch     start      = nb_.initSearch(pbc, nbPos_);
862         gmx::AnalysisNeighborhoodPairSearch pairSearch = start.startPairSearch(nbPos_);
863         gmx::AnalysisNeighborhoodPair       pair;
864         while (pairSearch.findNextPair(&pair))
865         {
866             if(CalculateAtomicDistances(
867                         IndexMap[pair.refIndex()].getIndex(backboneAtomTypes::AtomCA), IndexMap[pair.testIndex()].getIndex(backboneAtomTypes::AtomCA), fr, pbc)
868                 < minimalCAdistance){
869                 calculateHBondEnergy(IndexMap[pair.refIndex()], IndexMap[pair.testIndex()], fr, pbc);
870                 if (IndexMap[pair.testIndex()].info != IndexMap[pair.refIndex() + 1].info){
871                     calculateHBondEnergy(IndexMap[pair.testIndex()], IndexMap[pair.refIndex()], fr, pbc);
872                 }
873             }
874         }
875
876         break;
877     }
878     case (NBSearchMethod::Experimental): { // TODO FIX
879
880         alternateNeighborhoodSearch as_;
881
882         as_.setCutoff(initParams.cutoff_);
883
884         as_.AltPairSearch(fr, IndexMap);
885
886         while (as_.findNextPair()){
887             if(CalculateAtomicDistances(
888                         IndexMap[as_.getResiI()].getIndex(backboneAtomTypes::AtomCA), IndexMap[as_.getResiJ()].getIndex(backboneAtomTypes::AtomCA), fr, pbc)
889                 < minimalCAdistance){
890                 calculateHBondEnergy(IndexMap[as_.getResiI()], IndexMap[as_.getResiJ()], fr, pbc);
891                 if (IndexMap[as_.getResiJ()].info != IndexMap[as_.getResiI() + 1].info){
892                     calculateHBondEnergy(IndexMap[as_.getResiJ()], IndexMap[as_.getResiI()], fr, pbc);
893                 }
894             }
895         }
896
897         break;
898     }
899     default: {
900
901         for(std::vector<ResInfo>::iterator Donor {IndexMap.begin()}; Donor != IndexMap.end() ; ++Donor){
902             for(std::vector<ResInfo>::iterator Acceptor {Donor + 1} ; Acceptor != IndexMap.end() ; ++Acceptor){
903                 if(CalculateAtomicDistances(
904                             Donor->getIndex(backboneAtomTypes::AtomCA), Acceptor->getIndex(backboneAtomTypes::AtomCA), fr, pbc)
905                     < minimalCAdistance){
906                     calculateHBondEnergy(*Donor, *Acceptor, fr, pbc);
907                     if (Acceptor != Donor + 1){
908                         calculateHBondEnergy(*Acceptor, *Donor, fr, pbc);
909                     }
910                 }
911             }
912         }
913         break;
914     }
915     }
916
917
918 //    for(std::size_t i {0}; i < IndexMap.size(); ++i){
919 //        std::cout << IndexMap[i].info->nr << " " << *(IndexMap[i].info->name) << std::endl;
920 //    }
921
922    PatternSearch.initiateSearch(IndexMap, initParams.PPHelices);
923    calculateBends(fr, pbc);
924    Storage.storageData(frnr, PatternSearch.patternSearch());
925
926 }
927
928 std::vector<std::pair<int, std::string>> DsspTool::getData(){
929     return Storage.returnData();
930 }
931
932 } // namespace analysismodules
933
934 } // namespace gmx